欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

航天知识问题优选九篇

时间:2023-08-17 17:41:35

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇航天知识问题范例。如需获取更多原创内容,可随时联系我们的客服老师。

航天知识问题

第1篇

关键词:航天测控;教学改革;教学模式

作者简介:陆必应(1976-),男,安徽舒城人,国防科学技术大学电子科学与工程学院,副教授;王建(1981-),男,湖北宜城人,国防科学技术大学电子科学与工程学院,讲师。(湖南 长沙 410073)

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)25-0141-02

“航天测控”是国防科学技术大学电子工程专业本科生的一门专业必修课程,同时也是通信工程和信息工程专业本科生的选修课程。课程重点讲述基于无线电的航天测控系统的概念、体制、组成和工作原理,引导学生了解现代航天测控技术的发展动态和方向。[1,2]作为一门专业课,一方面要传授学生航天测控系统的专业知识,另一方面要培养学生对复杂电子系统的分析能力并掌握设计方法,加强学生的工程素养。航天技术的发展及其在军事和国民经济中日益广泛的应用,特别是我国载人航天技术的跨越式发展,激发了学生学习本课程的热情,同时对课程的教学也提出了越来越高的要求。[3]本文先分析“航天测控”课程特点和教学中存在的问题,随后介绍以教学内容、教学方法、教学实践环节相配套的教学改革探索和实践,以实现专业知识学习和工程能力培养兼顾的教学目标。

一、课程特点与教学现状

“航天测控”课程教学具有如下特点:一是基本概念多,涉及领域广 。包括天文学基础、航天器轨道运行基本原理、无线电测距定位原理、高速无线数据传输原理等。二是基本原理复杂,涉及的理论基础宽,包括随机信号分析、信号与系统、雷达原理、通信原理等。三是系统复杂,安排实践环节困难。航天测控系统是复杂的电子系统,而先修课程偏重基础知识的学习,对电子系统的介绍偏少,学生很难通过一两个简单的实验课达到理解和掌握复杂航天系统的目标。以上特点决定采用传统的方法进行教学时,教师讲授难度大,学生学习理解困难,学习效果差。

该课程教学现状与存在的主要问题有:

1.教学内容多,课时少

本课程内容包括航天测控的基本原理、统一载波测控系统、跟踪与数据中继卫星系统、全球定位系统及其在航天测控中的应用四大部分,仅统一载波测控系统就包括跟踪测轨分系统、遥测分系统、遥控分系统。上述每一门技术都具有相对的独立性,涉及的理论、方法和系统都有其独特的内容。国防科学技术大学(以下简称“我校”)电子科学与工程学院早期设有航天测控专业,上述内容安排80~120课时讲授,现行的教学大纲仅安排了40课时,教学内容却没有减少,要完成教学任务,学生学习上存在较大困难。

2.教材相对陈旧,新技术介绍少

本课程的教材编写于1998年,内容上继承了航天测控专业所用内部教材的精华,重点内容为统一载波测控系统的原理、系统分析和系统设计。其优点是基本概念清楚,理论推导详实,系统分析深入,但也存在如下几个问题:一是内容过多,部分内容分析得过于深入,基础稍差的学生掌握起来有困难;二是近年来航天测控技术进步迅速,不断涌现出新概念、新方法和新技术,航天测控体制也从传统的统一载波测控体制加速向以跟踪与数据中继卫星系统为代表的天基测控体制发展,而教材没有充分反映航天测控技术的新发展。

3.教学手段单调,实践环节不足

原先的课程教学以教师板书讲授为主,配合以少量的幻灯片和课后习题作为辅助手段;学生的学习停留在阅读教材和参考书目、做课后习题上,缺少必要的实践环节。这种以讲授为主的教学模式无法充分调动学生的学习兴趣和积极性,缺少必要的实践环节,学生对理论和技术的理解无法深化,学生的主观能动性没有充分发挥,分析问题、解决问题的能力和工程素养得不到提高。

二、教学改革探索与实践

1.突出教学重点,合理选择教学内容

综合考虑航天测控技术的发展现状,并结合电子工程专业本科生的预修课程以及学时数,对教学内容进行了重新安排,修订了教材。将教学内容根据测控体制划分为统一载波测控系统、跟踪与数据中继卫星系统、全球定位系统的原理及其在航天测控中的应用三个部分。对统一载波测控系统部分内容进行了三个方面的删减:一是与先修课程内容有重复或雷同的,如跟踪测轨技术中的角度测量技术,在先修课程“雷达原理”中已有讲述,直接删除;二是要求具备比较专业的预修知识而学生又不具备的,如遥控编码体制,对电子工程专业的本科生来说由于不具备相应的预修课程,理解存在较大的困难,进行了删减,并提供相关的参考书籍供有兴趣的学生参考;三是难度太大的内容,如测控信道的设计,这部分内容要求学生在理解信号调制理论的基础上,结合特定工程实际设计出最佳波形,对大部分学生来说要求过高,也进行了删减。根据航天测控技术的发展趋势,对跟踪与数据中继卫星系统的组成、工作原理以及采用的新技术等部分内容进行了扩充。调整后的教学内容,既重视基本原理的教学,也重视测控系统的分析,还涉及测控新技术的介绍。

2.采用多种模式教学方法,提高教学效率

对课程的总体教学目标和教学所包含的知识点进行了分析,并对教学方法和教学过程进行精心设计。针对不同的教学内容,采取多种形式的教学方法,包括课堂理论教学、比较教学、案例教学、讨论教学等,并有机地结合起来。

基本原理如测控信号基本理论、测距原理、GPS工作原理等内容采用课堂理论教学,开发了多媒体教学课件,除传统的公式推导和文字描述外,配以适当的图片、动画,直观地说明理论分析结果,使学生对一些重要的结论留下深刻的印象,强化教学效果。

航天测控系统的教学若采用简单的讲授教学,由于学生工程实践经验少,往往不能深刻领会系统的内涵,抓不住重点,因此采用案例教学法与比较教学法相结合的教学方法。选择航天测控系统中较为简单但具有代表性的“单通道锁相接收机”作为教学案例,先对系统作简单介绍,使得大家对航天测控系统有一个感性认识,然后提出问题,供同学们分组分析、讨论。如跟踪测轨系统锁相接收机与一般雷达系统接收机进行比较,通过比较启发学生思考二者结构上的根本区别是什么,工作原理有什么不同,航天测控系统采用这种特殊类型接收机的原因是什么。通过比较学生较易理解航天测控跟踪测轨系统与一般雷达系统的异同,达到触类旁通的效果。通过开设讨论环节,营造生动、活跃的课堂气氛,培养学生思考问题、解决问题的能力,变被动接受为主动思考。最后以科研成果进课堂的形式对案例进行总结,同时引导学生了解航天测控系统设计基本方法。将教学团队在航天测控接收机领域所作的科研成果——某改进型航天测控接收机实物搬进课堂,分析传统接收机存在的缺陷,改进型接收机性能有哪些改善,从哪几个方面着手进行改善,如何进行改进等。通过这一具体案例,充分激发了学生的积极性,对航天测控系统设计方法这一难点也有了初步的认识。

在教学手段上,除采用计算机辅助教学外,还充分利用校园网资源,开展网络教学。编制适合网络教学的课件,提倡学生网上提问,进行网上答疑,对课外拓展性的内容提供更多的学习资料和参考文献。此外,利用网络教学可部分缓解教学内容多而课时少的矛盾。

3.重视实践环节,提高学生工程素养

“航天测控”是一门理论较深、实践性强的课程,提高学生的工程素质也是本专业课的一个重要学习目标。航天无线电测控系统是一个复杂庞大的系统,没有条件开展针对整个系统的实践性教学,但在基本原理和分系统教学过程中增加了实践性环节,如简单的实验设计、开放式研究性习题设计等。另外,对深空测控、小卫星测控、星座测控等测控领域的新课题、新技术、新发展,根据情况开设一两个专题讲座,使学生了解航天测控技术的最新发展,提升学生应用能力。

4.加强教学团队建设

作为一门专业课,虽然面向的专业范围窄,学生层次相对统一,只要一两名老师就可完成课程的教学任务,但不能因此就忽视教学团队的建设。作为教学活动中的关键要素之一和教学活动的具体实施者,教师本身的专业理论知识、实践能力、教学能力、科研能力对课程的教学效果有决定性的影响。因此,我校建立了一个由教授、副教授、讲师等不同层次教师组成的教学团队。团队中所有成员都从事航天测控领域的科研工作,由同时具有丰富科研经验和教学经验的副教授担任主讲老师,由教授开展航天测控领域新技术、新发展专题讲座,其他成员的科研成果为教学案例提供支撑。同时通过“跟、帮、带”,促进年青教师的成长,保证教学团队教学水平的稳步提高。

三、结束语

随着航天技术在国防、国民经济中日益广泛的应用,航天测控技术也获得了快速发展和广泛重视,对“航天测控”课程教学提出了越来越高的要求。本文对“航天测控”课程存在的问题进行了分析并提出了切实可行的改进措施,通过教学内容、教学方法、教学过程和师资队伍建设的改革,精简了教学内容,采用了以比较教学法和案例教学法为主导的多样化教学方法,充分调动了学生的学习积极性和主动性,培养了学生自主学习能力、分析解决问题能力,达到了专业知识学习和专业技能培养并举的目标。

参考文献:

[1]周智敏,陆必应,宋千.航天无线电测控原理与系统[M].北京:电子工业出版社,2008.

第2篇

关键词:航天器;总体设计;教学方法

Probing into some problems on teaching of spacecraft systems engineering

Wen Xin, Xiong Wu, Wang Yazhou, Jin Zhecheng, Zhao Yang

Nanjing university of aeronautics and astronautics, Nanjing, 210016, China

Abstract: Spacecraft systems engineering is an integrated course that combines multi-disciplines and technology development. according to the characteristics of the course and the valuable teaching experiences of other universities, the paper analyzes the existing problems of the lesson on teaching contents, teaching methods, evaluation methods and bilingual teaching were proposed. Some of the reformative schemes have been put into practice and obtained good teaching results.

Key words: spacecraft; system engineering; teaching methods

1 航天器总体设计课程的内涵

航天器总体设计中的“总体设计”一词是“中国航天之父”钱学森给出的定义,英文是“System Engineering”,所以学术界又称“航天器总体设计”为“航天器系统工程”。

什么是“总体设计”或“系统工程”?钱学森说它是一种科学方法,美国学者说是一门科学,还有专家说它是一门特殊工程学,但大多数科学家认为是一种管理技术。

航天器总体设计课程以航天器系统为基础,主要论述航天器系统级方面的问题,它所涉及的对象是工程大系统,所涉及的知识深度局限于设计最优大系统需要,所涉及的知识领域包含“机、光和电”等十几个技术的交叉学科。所以,“航天器总体设计”课程是培育航天器设计领军人才的专业课。

2 航天器总体设计课程的特征

从理论角度看,航天器总体设计属于系统工程范畴,涉及的对象是工程大系统。从航天任务角度看,航天器总体设计是探索、开发和利用太空以及太空以外天体的综合性工程技术,是集诸多科学领域之大成,它的发展又反过来促进各个学科领域向前发展。

航天器总体设计课程的内容包括航天任务分析、航天器环境分析、总体设计概述、总体方案设计、姿态与轨道控制系统、轨道动力学、运载器、地面测控站、通信系统、电源系统、结构与机构、电磁兼容性、地面测试和产品可靠性等。所以,不难看出,航天器总体设计课程的目标是使学生通过本课程的学习,基本了解航天器总体方案设计的方法,初步具备在任务分析基础上构思航天器总体方案的能力,如有能力和信心去挑战中国航天五院举办的“超越杯”竞赛。

3 航天器总体设计课程的教材

鉴于世界上最著名的自然科学方面的教材,几乎都是在剑桥、牛津和麻省理工学院这样的名校诞生的,所以,我校航天器总体设计课程选用的教材是由Peter Fortescue等人编写、WILEY出版的“Spacecraft Systems Engineering”[1]。该书从航天器系统级角度分析和论述了总体设计问题,包括航天器环境、任务分析和系统工程,以及系统设计中的核心子系统,如机构、电气、推进、热、控制、装配集成和测试试验等。

“Spacecraft Systems Engineering”最初源于欧洲Southampton大学的短期培训讲义,该讲义是20世纪70年代为毕业后希望成为航天器系统设计工程师的学生而编写。该书至今已经修订再版4次,每次都组织近30位专家和专业教师参加修订和编写。第一版是在“航天器系统”讲义基础上编写而成;第二版是在广大读者反馈意见基础上,进行修改完善;第三版是在新技术发展的推动下,特别是在小卫星的“重量轻、性能好、研制周期快、造价低”的理念技术推动下,为了适应先进技术发展的需要,进行修订;第四版是在原来基础上,每章内容都有所删减和增加,另外还增加了《航天器装调、集成和试验验证》一章。显而易见,在过去40年的时间里,由于作者的不断修订和更新,该书始终保持内容新颖和技术先进的状态。

“Spacecraft Systems Engineering”一直是国外著名大学航天器系统工程课程的教材或主要参考书,如麻省理工学院、高等航空航天学院(法国)、和帝国理工学院(英国)等[2]。

对于我校的航天器总体设课程来说,选择该书的理由有三点:第一,能从总体上反映课程的知识结构,包括各方面的知识点和拓展的需要;第二,有助于学生的学习,知识的来龙去脉交代清楚;第三,符合48学时的授课需要。

4 航天器总体设计课程的研讨式教学

航天器总体设计课程在我国高校开设多年,随着很多高校多媒体教学条件的完善,航天方面的纪录片和故事片走进了课题[3],当然也走进了航天器总体设计的教学中。实践证明,由于航天器总体设计内容庞杂,传统的教师讲、学生听以及看电影的灌输式教学方法,造成学生食而不化。鉴于航天器总体设计课程的性质和特征,现采用目前国外比较流行的“研讨式教学方法”与“基于问题的授课方式”相结合的方式,在教学实践中取得较好效果。在研讨式教学过程中,教师给出问题及答案,让学生积极地寻找中间的解答过程,教师和学生共同以研究探讨的形式完成课程教学任务[4]。航天器总体设计涉及的学科范围非常广泛,带着问题教和学,通过互动教学环节,可以引导学生围绕航天器设计任务进行研究型学习,如通过航天器电源结构与机构的设计学习空间环境的危害,这些问题无疑会引导学生自觉地理解和掌握系统性的知识,这不仅帮助学生“学会”了一门课程,而且还使学生掌握了“会学”的能力。

5 航天器总体设计课程的考核方式

传统的闭卷考试能够延续至今,有其自身优点,但针对航天器总体设计课程的特征和内容而言,完全采用这种闭卷考试方式,很难评估学生的真正水平。该课程除了应该检查学生了解和掌握其系统级知识外,还应考查学生对总体设计水平和系统指标的把握能力,以及在多种约束条件下的优化设计综合能力、语言表达和综述能力。

我校在航天器总体设计课程考核方式方面,进行了改革尝试,加大了研究型学习的评价权重。考核的总评成绩满分为100分,其中,期末试卷重点考查基本概念的理解、系统设计方法与步骤,其试卷成绩占总评成绩的30%;课外作业,如方案设计、大论文、小论文等,占总评成绩的50%;口头汇报中的表达能力,即方案设计的讲演占总评成绩的20%。这样的考核方式不仅可以促进学生平时对课程的投入,还能提高学生在总体设计方面的综合能力,保证了课程培养目标的实现。

6 航天器总体设计课程双语教学

双语教学是我国高等教育与国际接轨的必然趋势,是培养适应21世纪社会发展高素质人才的需要。美国在航天器研究的多数领域都处于遥遥领先的地位,而我国航天器研究起步较晚,有许多地方需要向发达国家学习和借鉴。所以对航天器总体设计课程,开展双语教学是非常必要的。

我校航天器总体设计课程的双语教学,根据学生的实际英文水平和开展双语教学的不同阶段确定在教学中英文所占的比例,同时以此为主要依据调整学时分配。另外,为了帮助学生理解,在“Spacecraft Systems Engineering”为主要教材基础上,再给学生推荐一本国内出版的教材,即《航天器系统工程》。该书由航天五院总师谭维炽和胡金刚主编,他们组织十几位专家参考国外教材“Spacecraft Systems Engineering”的编写模式,并结合中国航天器研制背景,编写出版了本教材。这两本书的编写思路和技术用语基本类似,这样学生在阅读教材的时候不用把精力浪费在学习不同称谓的专业词汇上。

另外,我校航天器总体设计课程开展双语教学的目的,不仅仅是教给学生英语或者专业知识,而是用英语去认知航天器专业领域的前沿知识和科技发展,培养学生接受最新专业知识的能力。

参考文献

[1] Peter Fortescue,John Stark,Graham Swinerd.Spacecraft Systems Engineering 4th Edition[M].WILEY,2011.

[2] 英国帝国理工学院[EB/OL].www3.inperial ac. uk /ugprospectus.

第3篇

关键词: 高中物理教学 天文学 航天知识

2012年浙江高考理科综合卷的第15题,考查学生用物理知识和天文航天知识,以及用数学知识解决物理问题的能力。同样的,浙江2011年的第19题,2010年的第20题和2009年的第19题,考的都是这些知识和能力。其他省份和全国卷也都存在这一现象:天文和航天知识在物理高考中几乎年年出现。这表明在新课程标准的指导下,现行的高中物理教材和考试题型都紧跟时代的发展,反映现代科技的进步。教师在课堂教学过程中,需要注意增加物理的实用性和趣味性,使学生能把枯燥的物理理论和当代高新科学技术发展联系起来,增强学生的求知欲。特别是天文学和航天技术的发展这些内容。

一、物理学与天文知识、航天技术的关系

天文学在物理学中扮演着一个很特殊的角色。它是物理学的一个重要分支,又占据了物理学中一个相对重要的地位。它的发展是极其曲折而又激动人心的,每一次进步都带动了整个物理学界的巨大变革。而物理学界里程碑似的成绩无不有与之相关的地方,无不有其应用的地方。哥白尼的日心说带来了天文学的一次翻天覆地的变革。之后导致了天体物理学的自诞生以来最为飞速的一次发展,其中牛顿的万有引力的影响是极其深远的。它给天文学家解释许多问题提供了一个最有力的论证。

航天技术是一门高度综合性的科学技术,是很多现代科学和技术成就的综合集成。航天技术的设想来源于基础物理学中的力学和热学,而其发展主要依赖于电子技术、自动化技术、遥感技术和计算机技术等众多先进技术的发展。而这些技术的发展都离不开物理学基础理论的研究。如没有电磁学的发展,人类就无法使用电能,也无法生产电子产品,其他的高新技术就更加无法实现了。

二、扎实掌握高中物理基础知识

1.构建完整的知识脉络。

与天文、航天联系的物理问题主要考查了学生的力学和电磁学方面的知识。如:圆周运动,万有引力,洛伦兹力等知识点。如2009年浙江理综卷第19题,“关于太阳和月球对地上相同质量海水的引力”,考查的就是万有引力定律。2010年浙江理综卷的第20题“宇宙飞船以周期为T绕地球做圆周运动……”考查的就是圆周运动与航天知识,以及用数学解决物理问题的能力。2011年浙江理综卷的第19题“探测X星球”,考查的也是万有引力和圆周运动,体现了理的实用性。

通过认真理解题目信息,联系所学物理知识,建立物理模型,就能运用所学的知识轻松解决这类问题。这需要学生全面、完整、系统地掌握相关的知识。具体有开普勒的三大行星运动定律:轨道定律、面积定律和周期定律;万有引力定律,包括万有引力定律的发现,定律公式,引力常量及其测定G,以及万有引力定律在实际中的应用:计算地球质量、中心天体质量和发现未知天体。宇宙航行章节中的三个宇宙速度及人造地球卫星的运行都需要扎实地掌握。

2.补充天文知识,激发学习兴趣。

有高中物理中,在介绍万有引力定律时,为了让学生感受万有引力定律的巨大作用,我引用了这样两个事实:哈雷应用万有引力定律预言了彗星的回归和勒维耶根据万有引力定律完成了对海王星位置的推算。这不仅证明了万有引力定律的正确性,而且是物理学和天文学互动发展的有力例证。

教师还可以在课堂上及时补充一些天文常识,开阔学生的视野,提高学生的兴趣,激发他们学好物理的主动性。如:中国为何远古就有“金木水火土”五行说呢?虽不科学,但也并非完全不科学,因为太阳系中唯有“金木水火土”五大行星,是用肉眼能观察到的,其他都要用望远镜才能观测到,而我们的祖先很早就对此有了记录,作为后辈的我们更要鞭策自己不断努力了。

再比如金星,又名太白金星,它是天空中最亮的星星,所以一眼就能看到它。它又叫启明星,每天天快要亮时,它出现在东方,很明亮,太阳出来后消失。它又被叫做长庚星,因为傍晚太阳落下不久,最早在西方天边出现的星星就是它。由于它的明亮,西方人把它叫做“爱神之星”。木星,体积最大的行星,它的亮度仅次于金星,也较早呈现天空中,西方人把它命为“众神之父”。

三、关注天文学的热点和新发现

宇宙大爆炸理论,黑洞,中子星这些都是天文学上最热门的研究领域,也是高考的热点。如果学生平时对这些知识有所关注,就可以在短时间内迅速理解题意,正确解答出来。

如2009年安徽理综卷的第16题,先给出宇宙大爆炸理论,假如真是这样,要求学生选出标志宇宙大小的宇宙半径R和宇宙年龄t的关系图像。该题考查的知识点很简单,就是对运动图像的分析,看懂题目,准确了解题意,选择正确的图像并不难。

2009年江苏高考物理第3题以“英国《新科学家》杂志评选出了2008年度世界8项科学之最”之一的“最小黑洞”为背景,紧跟国际新动向。但此题考查的仍然是万有引力定律的应用。虽然知识点非常简单,但是具备相关的天文知识,却能帮助学生更快地解题。尤其是其中计算结果精确到数量级,是天文中常见的估算法的运用。

2009年四川6月的高考,引用的是当年4月底美国的天文发现:代号为2009HC82,与太阳系其他行星逆向运行的小行星。可见高考对天文上的新发现的关注程度。

四、关注我国航天事业的发展

当我国重大天文和航天事件发生时,物理高考中常常会联系这些问题。比如2000年1月26日我国发射卫星,全国卷和天津、广东卷都考了;又如和平号退役,神舟2号、神舟4号、嫦娥一号等重大科技事件的发生,也在当年的高考中体现出来。如2008年的广东卷第12题的“嫦娥一号”奔月示意图,北京卷第17题“嫦娥一号”卫星,2009年福建理综卷的第14题的“嫦娥一号”月球探测器,2009年重庆理综题第17题都以“嫦娥一号”为背景,考查万有引力和圆周运动的知识点。

2010年安徽理综卷第17题,虽然考查的知识点依旧是万有引力定律的应用,却是以“我国预计于2011年10月发射第一颗火星探测器‘萤火一号’”为背景,时代感很强。可以预见,火星探测器项目还会随着今后航天技术的发展而在未来的高考题中成为被高度关注的对象。

在今年的高考中,江苏高考物理第8题也考到了我国航天的最新发展:2011年8月,“嫦娥二号”成功进入了环绕“日地拉格朗日点”的轨道,我国成为世界上第三个造访该点的国家。如图所示,该拉格朗日点位于太阳和地球连线的延长线上,一飞行器处于该点,在几乎不消耗燃料的情况下与地球同步绕太阳做圆周运动,则此飞行器的(?摇?摇?摇)

(A)线速度大于地球的线速度

(B)向心加速度大于地球的向心加速度

(C)向心力仅由太阳的引力提供

(D)向心力仅由地球的引力提供

该题并不难,考查的是匀速圆周运动的知识,但了解一定的航天知识对学生题意理解和考场发挥起着很重要的作用。因此,教师应该多关注生活中发生的重大事件,特别是我国航天事业的新发展。同时也引导学生多关注这方面的知识。关注我国天文和航天技术的发展,还有助于增强学生的民族自豪感和社会责任感,同时使学生对物理学在实际科技生产中的应用有更深的认识,激发学生对物理学习的兴趣,提高学生的积极性和主动性。

参考文献:

第4篇

今天我们学校组织三四年级去参观航天展。中午吃完饭我们就盛着大巴向着科技馆出发。因为中午玩累了,所以我在车上睡了一觉。“到科技馆了喽”有人喊道,果然科技馆到了。科技馆位于翠湖西路一号,这里的景色很迷人,湖上不时出现几只玩耍的鸭子,偶尔一只小船划过来,在水中央荡起了波纹,几只鸭子围着小船游两圈“嘎嘎”地叫两声,游走了。

进了博物馆,一位叔叔给我们做解说员。他先介绍了一号到四号,又介绍了一级助推器到三级助推器,最后还介绍了各国的卫星和空间站,听完以后我们又了解了更多的知识。我们还体验了宇宙失重的感觉。我心想当宇航员真辛苦,穿那么重的宇航服,体重还不能超标。我们都听完了航天知识以后,我们又到外面去参加航天知识有奖问答。回答问题了,我把手举的高高地,可主持人就不点我。我心想:这些问题我都会,为什么不点我后来我们班的李传良同学答对了问题获得了一架玩具直升飞机。我们都高高兴兴地回学校了,到了学校李传良玩起了他的直升飞机,很得意。

这次活动可真有意义,不仅让我们学到了航天知识,还让我们知道了航天器材的功能与用处。通过这次参观,我了解了中国的航天发展又有了新的提高,并且名列世界前茅,我身为一名中国人,为此感到骄傲。

第5篇

随着我国航天事业的迅速发展,多种携带不同类型载荷的航天器成功在轨运行,在气象环境监测、国土资源普查等方面发挥着重要作用。一旦航天器有效载荷出现故障,将会造成巨大损失,因此及时发现其在运行过程中出现的故障情况,是非常有必要的。

2航天器故障分类

航天器在轨工作状态监视主要分为两种方式:遥感数据和遥测数据。遥感数据是航天器有效载荷的工作目的,对其进行分析可以间接发现部分的载荷故障;而遥测数据则直接全面地反映了是航天器各分系统工作状况,因此一直以来,遥测数据都是航天器工作状态监视的一个重要输入。从对遥测数据进行分析的角度,航天器故障可分为以下三种:单点故障、组合故障、时态故障。单点故障是指对单个遥测参数进行判断即可确定的故障,无需其它的辅助信息;组合故障是指需要对多个有逻辑关系的遥测参数进行组合判断才能确定的故障,这种故障比较复杂,一般需要通过领域专家会诊才推出故障原因;时态故障是指对多个既有逻辑关系又有时间关系的遥测参数进行综合判断才能确定的故障,这类故障更为复杂,还需要结合相关遥测参数的变化情况才能推出结果。对于单点故障,由于只需要进行简单的阈值判断,因此传统的遥测处理方法已经可以实现对其快速准确的报警。对于组合故障和时态故障,传统的做法是由汇集航天器研制方各部件专家会诊,通过大量的人工分析给出诊断结论。但这种做法已经无法满足信息化的发展要求,为了解决后两种故障诊断的效率问题,可在航天器故障诊断中引入基于知识的故障诊断方法。

3基于知识的故障诊断方法

基于知识的故障诊断方法将综合应用了专家经验和人工智能技术,将专家经验抽象成诊断知识,并通过计算机程序设计实现复杂故障的自动诊断。这种诊断方法不需要复杂的模型分析,具有较高的诊断效率,因此得到了广泛的应用。基于知识的故障诊断方法主要分为以下几种。

3.1基于规则推理的诊断方法

基于规则推理的诊断方法,又称产生式方法,通过归纳总结专家经验,抽象为故障的判断处理规则来进行故障诊断。该种方法的优点在于知识的表达很直观,容易理解,便于解释。能够很方便地将领域专家的经验转化为知识表达,不容易在知识的翻译过程中出错。而且由于知识的表达比较简单,对数据存储空间的要求也不高,容易进行软件系统开发。其缺点是不具备自适应能力和自学习能力,当出现库中没有相应规则的故障时,则会诊断错误或失败,不适用于缺乏经验知识的领域。

3.2基于故障树的诊断方法

故障树表现了系统内各部件的逻辑关系。一般是将系统中最不希望发生的故障作为顶事件,按照诊断系统的结构和功能关系逐层展开,直到不可分事件(底事件)为止。该种诊断方法优点是:能够清晰地表达复杂故障问题的逻辑关系,提高诊断效率;便于对知识库进行动态修改;诊断技术与领域无关,只要相应的故障树给定,就可以实现诊断。缺点是诊断结果严重依赖故障树信息的完全程度,不能诊断不可预知的系统故障。

3.3基于案例推理的诊断方法

基于案例的推理(CBR,Case-BasedReasoning)方法核心是通过查找案例知识库中已有的近似案例处置经验来获取当前问题的解决方案。CBR诊断方法具备较强的自适应能力,并且是一种增量式方法,能够持续地更新知识库,具备较强的学习能力,克服了传统诊断方法知识获取瓶颈的问题。其缺点是知识库过于庞大时,案例搜索速度较慢,且得到的处理方案未必最优;此外,使用该种方法的前提是已有一定的案例积累。

3.4多信息融合的故障诊断方法

多信息融合的故障诊断方法是指将通过多种方式获取的多种状态信息进行综合分析应用,最终得到一个综合诊断结论。该种诊断方法能够有效提高故障诊断结果的可靠性、精确性,但也存在着易受人为因素影响、故障隶属度难确定等缺点。

4有效载荷在轨故障诊断模型

对于航天器有效载荷在轨管理来说,地面需要快速、准确地掌握载荷工作状态,需要知道故障导致的后果,避免对载荷的操作引起进一步的危害。结合人工智能和计算机技术的发展,对于有效载荷在轨故障诊断来说,应该基于故障分类区别对待:对于单点故障,采用阈值判断即可;对于组合异常和时序异常,其判断流程和故障树结构有很大的相似之处,可采用基于故障树的诊断方法,此外为避免故障树不全无法诊断的问题,可以用案例推理方法作为补充。第一,故障树和案例都来源于专家或者经验知识构建的,这在客观上符合实际情况;第二,这种模型可以给出推理过程,描述因果关系,用户可据此了解异常程度和涉及部件。第三,这种模型可有效结合两种故障诊断方法的优点,避免缺点,诊断速度快,诊断全面,可以满足用户对异常监视的实时性和准确性要求。图1给出了一种基于故障树和案例推理的故障诊断模型。

4.1诊断知识构建

在该种混合诊断模型中,需要用到两种故障诊断知识:一是故障树诊断知识;二是故障案例诊断知识,下面具体介绍两种诊断知识的构建方法。4.1.1故障树诊断知识的构建故障树是表示系统故障事件与它的各个子系统或各个部件故障事件之间的逻辑结构,通过这种结构对系统故障产生原因进行逐层分析。如图2所示的故障树,其系统故障(顶事件)为R301,当子系统故障(中间事件)T201、T202中任一个发生时即会引起系统故障的发生,其中T201又是由部件故障(底事件)L101、L102、L103中任一个发生引起的,T202是由L104、L105中任一个发生引起的。由此可见故障树诊断知识之间具有层次性,本文采用框架作为知识的基本表示形式,每个框架结构对应于故障树的一个节点。框架中的各个槽分别表示激发节点的报警信息、对应的子框架号、判断规则等。框架知识的结构如图3所示,将图2所示故障树转换为框架知识表示如图4所示。4.1.2故障案例诊断知识的构建一般来说,案例需要包含问题和问题的解两部分内容,不同领域的案例包含的具体内容也大不相同。对于航天器有效载荷来说,其结构组成复杂,工作过程涉及多个分系统,发生的故障也多种多样。通过对大量发生的航天器故障事件进行分析,根据故障发生流程本文建立了如图5所示的故障案例模型。其中产生原因表示引发该故障的根本原因;发展过程表示故障从发生到处理的过程,具体包含有故障发生时刻、故障的特征现象等;处理结果包含有故障的处理措施,以及处理是否成功等;相关影响表示此次故障对航天器此次任务及后续使用造成的影响。一个航天器载荷故障案例可以用一个四元组表示:C=<D,F,S,M>,其中D={d1,d2,......dn}用于描述故障的基本特征,包括故障编号、故障名称、故障类型等信息;F={f1,f2,......fn}用于描述故障对应的特征现象;表示故障的诊断结果,包括解决措施、产生原因等;M表示故障造成的影响。在具体系统实现时,航天器有效载荷故障案例可用面向对象的方法表示如图6所示:

4.2混合推理流程

根据前文分析,当地面收到航天器遥测数据时,首先使用基于故障树的方法对载荷状态进行诊断,如果库中未能搜索到相应的故障树,则采用基于案例推理的诊断方法,如果两种方法都未能成功,则转入人工处理。混合推理的流程如图7所示。

5结束语

第6篇

一、热点导入,激发兴趣

良好的开端是成功的一半,在教学论中,教学过程的第一步是激发学生的兴趣和学生的学习动机。教师利用社会热点问题导入新课,可以有效激发学生的學习兴趣。

例如,在学习新课“食物中的营养物质”时,视频播放2016年10月景海鹏、陈东两名航天员在“天宫二号”实验室内工作的录像,让学生思考,航天员飞向太空,在飞船中进行各种科学实验,甚至还要出舱活动,这都需要消耗大量的脑力和体力。为了保证航天员的健康,航天员的一日三餐必须科学合理,接着提出问题,给航天员带到太空的食物中,至少应该含有哪些成分?为什么含有这些成分呢?学生们对于航天实验十分感兴趣,甚至有些同学还是航天迷,对于这一系列的问题学生们展开了积极思考,注意力很快集中到课堂上,在强烈的求知欲下开始本课的学习。

二、穿插热点,深化知识

在学习新知识的过程中,教师可以穿插介绍近期发生的社会热点新问题。既使学生增长见识,拓展知识面,又深化了对新知识的理解。

例如,在“呼吸道对空气的处理”学习中,讲解呼吸道对空气的处理能力是有一定限度的,许多老师选用“沙尘暴”的实例,让学生说出在沙尘天气我们应该怎样做?在这里我将社会广泛关注的超级雾霾版的《北京北京》视频呈现给大家。提到“雾霾”大家都知道,但是,“雾霾”到底指什么,它有哪些危害?很多同学并不能说清楚。通过资料分析,学生拓展了知识,知道了雾霾天气中含有大量的PM2.5颗粒。PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也可称为入肺颗粒物。可沉积于肺泡,而且粒子容易吸附一些对人类有害的重金属和病菌,对人体造成危害。由此学生确信,即使有呼吸道的处理,人体也不能完全避免空气中有害物质的危害,更深刻理解了呼吸道的作用。

密切联系生活实际,让学生切实感受到在日常生产生活中,生物知识与我们密不可分,并使学生做到学以致用,获得成功的体验。

三、交流热点,合作学习

叶圣陶先生说“教者,盖在于引导、启发。”这就是说教师是指导者,课堂上教师可以采用“小组合作学习”的教学形式,拓展学生思维空间,提高学生自学能力。在这一过程中,教师可以安排小组共同收集与课程相关的社会热点问题,课上讨论表达交流,扩展了学生的视野,锻炼了收集、整理资料的能力。

例如,教材中有很多关环境保护方面的内容,在“分析人类活动对生态环境的影响”一课中,我安排学生以小组为单位收集有关滥伐森林、大气污染、水污染、捕杀野生动物等现象的原因、危害及应对措施。查找有关“雾霾”、“温室效应”、“全球气候大会”、“穿山甲事件”等社会热点问题。小组合作收集整理,制成课件向全班展示。在联系社会实际过程中,增强了团队合作能力,提高了对环境保护的意识。

四、拓展热点,提升情感教

第7篇

张元贵 江苏省淮阴中学校长,是一位资深教育工作者,在实际工作中身体力行,积极倡导素质教育,努力追求“让高考成绩成为深化素质教育的自然结果”。在他的领导下,淮阴中学的航空航天特色课程基地建设成绩斐然,学生们真正做到了乐在其中,学在其中。

在江苏省淮阴中学风景如画的校园里,有一座设计独特,建设标准相当高的航空航天科技体验馆,学生们可以在这里领略人类对飞行的远古期盼,感悟这一梦想实现的艰辛,知晓航空航天技术的不断演进。馆内陈列的不少实物,是在中国航空史上占有重要地位的文物级展品。徜徉在这个馆里,你能体味到筹划者的良苦用心。在走进淮阴中学之前,笔者始终怀着这样的疑问:是什么动机促使淮阴中学花费如此大的精力和费用,建设看似与学生的考试与学业并无直接关联的航空航天特色课程基地?这样的做法事实上又收到了怎样的效果?等到张元贵校长坐在我的面前,一切都有了答案。

记:淮阴中学为什么会选择航空航天作为建设特色课程基地的方向?

张:这个想法最早形成于2011年。当时江苏省教育厅提出支持各高中学校建设具有自身特色的课程基地。我们考虑了很久,最初也曾想过其他方向,但都觉得特色不够鲜明。经过广泛论证,我们认为航空航天是一个值得关注的方向。原因很简单,航空航天既凝结了人类最先进的科技成果,又有着悠久的历史脉络,它是人类对行梦想不断求索的结果,也是一个国家科技实力的集中体现。除此以外,我们更看重飞行这一活动本身所凝聚的探索精神和求知信念,飞行充满风险和变数,而人类正是通过科技的不断进步在逐步消除其中的风险,使其成为一种服务于人类的可靠技术。淮阴中学与南京航空航天大学素来有着密切的合作关系,这也是我们建设航空航天特色课程基地的有利条件。正是出于这一想法,我们将航空航天作为特色课程基地建设方向申报了上去。

记:建设这样的课程基地,其实在硬件和软件上都有非常高的要求,淮阴中学选择这样的方向,当初是否考虑过其中的困难?

张:当然考虑过。这一点不仅我们自己早已认识到,江苏省教育部门负责评审各校申报特色课程基地项目的专家组也有所考虑。最初我们申报时,一些专家认为,一所中学要建立这样的课程基地,很难做到高水准,因为这要花费大量的人力物力,并且短期内很难看到建设成效。但经过我们的不懈努力,淮阴中学的航空航天特色课程基地建设很快初具规模,在2013年的成果评审中,被评为全省10个优秀课程基地之一(全省第一批共计38个课程基地),并把省课程基地建设现场会议放在我校召开。这说明,我们的方向是正确的,我们的建设方法也是正确的。在建设过程中,我们在航空航天科技馆上花费了大量心血,不仅聘请了两位专业素养很高的专职科普教师任职,还筹措了700余万资金,用于置办各项陈列品,在展馆的设计上也独具匠心,整个展馆的参观脉络是从模拟的机场起飞线开始,经历人类航空史的各个阶段,最终到着陆区结束,在展馆最后的外部廊道上,绘制了广袤的星空壁画,寓意人类的星际探索之梦永无止境。所有参观展馆的学生都表现出浓厚的兴趣,他们真的乐在其中。除了这个展馆,我们学校的图书馆也专门开辟了航空航天类图书专区,学校每年拨款,有选择地购买优秀航空航天科普图书,当然也包括全套的《航空知识》,这些图书丰富了学生们系统学习相关知识的资源。

记:淮阴中学建设航空航天特色课程基地的宗旨是怎样的?

张:我们的原则是,要么不建,要么就建设成高标准的课程基地。我们当然可以降低标准,这样省钱省力,但学生们从中获取的东西就很有限,比如他们就没有机会亲自体验更专业的飞行模拟器,没有机会近距离看到这么多珍贵的航空用品乃至文物,更谈不上互动式和体验式学习。如果那样,他们获取知识的方式就很难与传统的书本和网络方式有所区别,特色课程建设就难以做到可持续发展。需要强调的是,花钱多少并不是标准高低的评判依据,你看到包括科技馆在内的整个特色课程基地的建设,我们都是花了许多心思的,在策划方案上更是反复论证,广泛听取专业人士和学生们的意见,再加上精心组织实施,才有今天这个局面。我们就是要让学生看到真正的特色,体验到别处难以获得的感受,享受整个学习的过程。

记:学生们在特色课程基地学习航空航天科技知识,势必要占用一定的时间和精力,如何来处理它与课业之间的关系呢?

张:这是一个非常重要的问题,我们从一开始就有所考虑。现在淮阴中学的做法是,面向全校学生开展的航空航天科普教育属于基本层次,主要是激发学生们对航空航天的关注与热情,普及一般的知识,占用时间不多。再往上就是航空航天社团,这个社团开展的教育更为深入和全面,但要加入社团,对基本课业成绩就有个要求,课业不构成负担的学生才可望加入社团,而且加入社团后我们要求成绩要保持稳定。当然,这也不是铁律,有些热情特别高但成绩稍差的学生,我们也会允许暂时加入,并对他们进行指导和督促,促使学生们的学习成绩同步进步。结果,所有加入航空航天社团的学生,课业成绩全部成上升态势,这正是我们希望看到的。

记:现在提倡素质教育,您如何看待航空航天科普教育与素质教育的关系?

张:淮阴中学多年来积极深化素质教育,努力追求把高考成绩作为素质教育的自然结果。我们得承认,现行高考选拔制度是有缺陷的,不够科学合理,既有一考定终身的弊端,也有考核片面的局限,但改革是个长期问题,现行高考制度的存续,反而越发迫切地要求素质教育水平和质量快速跟进。有人把素质教育理解为某些技能的培养,我觉得不够全面,我更愿意把素质教育理解为一种精神内涵的培养,这种精神包含的元素更为丰富,比如学习精神、探索精神、协作精神,以及挫折耐受力等等,这些精神才是学生成长道路上最可宝贵的财富,也是学习各种技能的内在动力。

航空航天,它从蒙昧时代纯粹的飞行梦想起步,经过无数人的求索和牺牲,历经上千年的跋涉,才有今天的面貌。它不仅是人类科技的结晶,更是探索精神和科学精神的集中体现,它完全可以让学生们感受到无数先人和各个时期科技工作者的精神力量,这也是我们选择航空航天作为特色课程基地方向的重要原因之一。

第8篇

【关键词】主干知识 难点突破 建模能力

一、万有天引力与航天的2012年考试说明

二、高考命题特点及命题趋势

由于现代空间技术的飞速发展,万有引力与航天成为高考的热点问题。我对2011年的全国20份高考试卷进行分析,发现几乎每份试卷都考查了万有用力与航天这个知识点,而命题形式大多为选择题形式,以天体问题为背景命题,突出考查物理知识与实际的应用,这种现象不得不引起我们的高度重视。

预计在2012年的高考中,对万有引力与航天仍将以联系现代航天技术的新情景,新信息以选择题形式出现,重点考查曲线运动与力学、能量的综合问题。

三、我们的做法

为了让学生在总复习中对这一知识点有明确的考点把握,在《万有引力与航天》一轮复习中,教师应准确把握高考大纲中涵盖的考点让学生掌握基本概念、基本规律及其常见的应用。而在二轮复习中,首要的任务是进行整合,充分注意知识的完整性和系统性。要着重搞清楚知识间的联系,站在整个高中物理的高度上以审视的眼光进一步认识知识,充分揭示知识间的纵横联系,把本章知识与力、曲线运动和能量串联起来,使各知识点网络化、系统化。其次要进行综合,要精心选择知识点密集、纵横联系广的典型题例,引导学生运用联想、类比和知识重组的方法,促使其在头脑中将有关的知识和方法形成纵横交叉,由点到线,由线到面,由面到体的稳定的、丰满的知识结构,并有效地将知识转化为分析问题和解决问题的能力。为达到二轮复习的目标,总体构想如下:

(一)抓住主干知识,把握高考脉搏

本章主干知识有万有引力定律,天体运动和宇宙速度。在高考试题中,应用万有引力定律解题的思路常集中于两条:

一是天体运动的向心力来源于天体间的万有引力: =m r

二是不考虑天体自转时,地球对物体的万有引力近似等于物体的重力

=Mg,从而得出GM=gr2

2012年高考大纲注重理论联系实际,关注科学、技术和社会的联系,注重物理知识在生产、生活等方面的应用。近几年以天体问题为背景的试题频频出现,命题具有启发性、隐蔽性等特点,学生有一种既陌生又似曾相识的感觉,学生能否准确解答关键在于能否排除陌生感,提取有效信息,对已知知识进行迁移。因此,教师在平时应注意收集一些科技动态资料,如我国北斗卫星、天宫一号发射等。在平时可以以这些信息为背景命题进行适当训练,减少学生的陌生感。

(二)专题讲解,突破知识难点

本章虽然考点不多,但题型多,综合性强,如卫星的超重、失重,卫星变轨问题、双星问题等。特别是卫星变轨问题,一直是高考的命题热点,变轨问题的考察往往集中在加速度、速度的比较和能量的变化这些点上。此类问题考察知识点多,要结合牛顿运动定律和能量守恒进行分析,在复习中可结合近几年高考试题,以专题形式讲解,帮助学生加强对知识难点的理解。

1.卫星变轨问题

变轨问题的考查方式往往集中在速度和加速度的比较。

【例】(2010江苏高考6)2009 年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有( )

A.在轨道Ⅱ上经过A的速度小于经过B的速度

B.在轨道Ⅱ上经过A的动能小于在轨道Ⅰ上经过A的动能

C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期

D.在轨道Ⅱ上经过A的加速度小于 在轨道Ⅰ上经过A的加速度

分析:从低轨道到高轨道加速(离心运动),从高轨道到低轨道减速(向心运动)。加速度关系:由

=Ma可知,加速度由卫星到地心的距离决定,应选ABC。

2.双星问题

双星有不同质量的两颗星构成,两颗星在相互之间的万有引力作用下绕两者连线上某一点做匀速圆周运动。此类问题要注意两点:一是两球心的距离与轨道半径不同;二是两星的T、ω相等。教师还可把该类问题扩展为三星问题、多星问题。

【例】(2010全国卷25)如右图,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速周运动,星球A和B两者中心之间距离为L。已知A、B的中心和O三点始终共线,A和B分别在O的两侧。引力常数为G。

(1)求两星球做圆周运动的周期。

(2)在地月系统中,若忽略其它星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行为的周期记为T1。但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期T2。已知地球和月球的质量分别为5.98×1024kg和7.35×1022kg。求T2与T1两者平方之比。(结果保留3位小数)

分析:解决双星问题的关键是要了解双星的特点,两颗星的T、ω相等,万有引力、向心力公式中的L、R具体指的是什么及 =m r的正确应用。

3.天体运动参数问题

行星围绕恒星运动和卫星围绕行星运动问题,仅仅是中心天体不同,但分析方法相同。利用

,可知天体运动参数取决于轨道半径r。r越大,T、v、ω、a越小。

【例】(2011广东高考20)已知地球质量为M,半径为R,自转周期为T,地球同步卫星质量为m,引力常量为G。有关同步卫星,下列表述正确的是

A.卫星距离地面的高度为

B.卫星运行时受到的向心力大小为

C.卫星的运行速度小于第一宇宙速度

D.卫星运行的向心加速度小于地球表面的重力加速度

第一宇宙速度是最大运行速度,C正确;地球表面的重力加速度为最大运行加速度,D正确;由

可知,AB错误,选择CD。

三、培养学生建模及模型迁移能力

我们知道,在物理学中不同的物理模型都对应着不同的物理规律.为了研究问题方便,我们在研究物理问题时一般都要先确定物理情景,然后将各种各样的研究对象根据它的特点,转化为合适的物理模型,最后选择相应的物理规律来研究。因此,正确建立物理模型,并能在实际问题中把模型进行迁移是解决问题的关键。在《万有引力》的复习中应使学生建立“地球-物体”和“地球-卫星”这两个模型。教师在培养学生学会建立模型的同时,更要让学生能正确掌握实际问题和模型间的转换。

【例】(2011福建高考13)“嫦娥二号”是我国月球探测第二期工程的先导星。若测得“嫦娥二号”在月球(可视为密度均匀的球体)表面附近圆形轨道运行的周期T,已知引力常数G,半径为R的球体体积公式

,则可估算月球的( )

A.密度 B.质量

C.半径 D.自转周期

分析:把“嫦娥二号”转化‘为地球-卫星’模型中的近地卫星。利用万用引力提供向心力求解。

, , ,应选择A选项,月球半径R作为未知条件BCD不能确定。

四、精选习题、评练结合

精选题,主要体现在所选习题要具有新颖性、梯度性、适度性、针对性和创新性。在二轮的复习中,可谓是试题满天飞,教师更要找好找准习题。首先对手中的资料要仔细的分析,在此基础上针对性的选取一些好题,采用拼盘的方式组织起来让学生练。其次评讲要细,即重思路、善引导、做示范、细纠正,每次在评讲时,必须先对各题的得分情况进行具体的分析与总结,然后才能做到有的放矢。最后要重视个别的指导,对问题较大或问题比较明显的单独进行点评。

五、回归课本,抓住细节

在高考复习过程中,有些学生忽略了课本,一头钻进题海中,以为多做题就可以提高成绩,舍本逐末效果并不理想。要知道课本是知识之源,在复习别要注意课本的重要性。教师应引导学生熟读、精读课本,看懂、看透,绝不留任何死角。让学生通过“行星的运动”、“太阳与行星的引力”体会大自然的奥秘,注重科学的发展过程,从而建立科学的价值观;通过“科学足迹”领略科学家不屈不饶的科学精神和一丝不苟的科学态度;通过“梦想成真”使学生产生强烈的民族自豪感;通过“STS”打开科普视窗,增进科学技术和社会的联系,促进三维课程目标的实现。同时更需要注意的是课后的阅读材料,因为大多的信息题有很多时候是从这里取材的。

【例】(2011安徽卷22)(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即 ,k是一个对所有行星都相同的常量。将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式。已知引力常量为G,太阳的质量为M太。

(2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立。经测定月地距离为3.84×108m,月球绕地球运动的周期为2.36×106s,试计算地球的质M地。(G=6.67×10-11Nm2/kg2,结果保留一位有效数字)

熟悉课本的同学很容易发现第(1)题来源于课本第一节,由

=m r很容易得到 。第(2)小题来源于第四节,天体质量的计算,只要把太阳换成地球即可:

第9篇

关键词:建构主义;基于问题的学习;航天工程教育;小卫星

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)42-0140-04

自改革开放到21世纪初期,中国的发展世界瞩目,我们不论在政治、经济、文化等方面都取得了长足的进步,中国已成为名副其实的世界大国,取得这样的成就,在很大程度上依赖于我国推行的科教兴国战略所造就的庞大的优秀人才队伍。然而,不容忽视的现实是,目前我国培养的工程师队伍虽然已经超出美国的10倍,但是工程师的整体知识水平、设计能力,尤其是优秀工程师的总体质量与美国、德国和日本等发达国家甚至一些发展中国家都有很大的差距[1],具体表现在工程教育方面就是教学内容与产业需求相脱节,工程实践经历缺乏,工程师培养体系不够健全等。导致这些问题的深层次原因主要在于我国的工程教育依然停留在科学范式而不是工程范式,工程教育过分强调了工程科学,而忽视了诸如设计等实践能力培养的环节[1-2]。工程教育不同于自然科学教育,它是一种以技术科学为主要学科基础,以培养工程技术人才为主要目标的专门教育[3]。即工程教育的目的就是培养工程师,这一理念在包括像MIT这样的世界一流大学早已达成共识,MIT的毕业生,无论学士、硕士或博士,到公司就职就是担任工程技术人员。通过工程教育提高工程师教育的水平,完成这一目标有两点很重要:教育的方式和教育的工具。PBL是一种应用广泛学科教学方法,它不仅仅使学生获取知识,并且要求他们学会运用知识。让学生能够将新的信息与学过的知识结合起来明白他们应该如何应用掌握知识。在建立学习的框架时,应当特别注意学生已有的知识基础并且激活这些知识。加快新信息的处理和帮助学生建立有意义的联系是教育和学习的基本要求。PBL促进学生主动参与和学习。学习变成一个发现的过程――讨论问题、研究背景、分析解决方法、设计方案、得出最终结果。这种主动学习方法不仅对于学生来说更加有趣,也使学生们对资料有了更深的了解。近年来,我国教育界的学者和奋战在一线的教育工作者们以这种理论为基础,针对我国教育教学的实际情况,进行了一系列基于PBL理论的教育教学改革理论研究和实践,取得了一定的效果。近年来,“小卫星”已经成为航天发展的热点话题,而将小卫星作为航天工程教育的平台,也越来越成为一种趋势。以小卫星作为载体开展航天工程教育的优势在于:(1)成本低,多数大学里的实验室都可以开展这类项目;(2)开发周期短(一年到两年),学生可以在毕业前看到项目成果;(3)体积小,重量轻,使制造和测试可以在比较狭小的大学实验室内进行;(4)复杂度适中的卫星系统,使学生在参与整个卫星系统工程实施的过程中,能够获得一些具体的系统或子系统经验。作为教育工具,小卫星的重要意义在于:可由学生自主设计、制造甚至发射升空,即使不能发射,也应在与实际发射相似的环境中进行测试。这一点非常重要,因为这样学生可以得到真实情况的反馈,虽然有时实验会失败,但失败也都是下一次实验成功的基石。“设计-制造-测试-总结-再设计”这样的系统循环设计模式,可以很容易地在机器人或计算机这类领域实施,但空间系统发展所需的巨大成本和少有的发射机会让我们不得不停止发展空间教育中的这类循环模式。而小卫星计划可以提供一个工具以实现该模式。

一、基于问题的学习

基于问题的学习是一种以学生为中心的主动型教学模式和课程体系设置方法,其最初是由加拿大的麦克马斯特大学(McMaster University)医学院于20世纪60年代在医学课程教改中逐步形成并提炼出来的。在PBL中,教师根据课程要求和学生的知识基础预先定义一个不完整的或劣构的问题,然后让学生进行研究,理论联系实际,运用已掌握的知识和技能提出解决问题的可行方案,让学生亲身参与问题求解的每一个步骤和知识构建的过程,从而将其先前获得的知识和经验很好地整合起来,使已有知识结构得到完善的同时达到对新知识的理解与掌。

1.目标和基于问题的学习法的特点。基于问题的学习方法的主要目标不仅仅是让学生获得知识,并且要运用知识。PBL重视模型和问题的解决。它试图模拟现实生活中的工程研究和开发过程。Barrows这样描述PBL的主要特点:(1)学习是以学生为中心的,即学生选择怎样去学习和他们想要学习的内容。(2)学习在小团体中展开并且提倡协作学习。(3)老师是促进者、引导者或教练。(4)问题形成组织重点并刺激学习。(5)问题是拓展真正的问题解决能力的工具。(6)新的信息是通过自学获得的。

2.PBL工程教育案例――麻省理工学院航空航天工程系。几年前,在麻省理工学院的航空航天系成立了一个由教师和科研人员组成的新战略计划小组,专门负责课程改革。为了强调教育以学生为中心,讨论小组花费了一定的时间和精力通过对项目和学习成果进行验收,设计了新的教学方法,建造与之配套的实验室。尽管基于问题的学习是关键,但它不是课程组织的原则。新的航空航天工程课程以现实生活中产品完整的生命周期工程为背景,即构思、设计、实施和执行(CDIO),结合设计建造经验,贯穿于整个项目中。接下来就是从简单的项目到高度复杂的系统设计建立过程,以及从中取得的经验教训。第一年,在《航空航天设计导论》课上,学生们设计、构思并且试飞的由无线电控制浮空飞行器(LTA)。第二年,在《联立工程学》课上,学生们设计、搭建并且试飞了无线电控制的电推力飞行器。在一些比较深入的课程例如《空气动力学》课上,从工厂或者政府以往项目中提出航空工业中很常见一个实际的问题,像是以洛克希德・马丁战术飞机系统为模板提供项目设计方案。高级课程完全利用基于问题的学习方法,如:《实验项目实验室空间系统工程》、《CDIO高等课程》。在这些PBL体验中,学生发现自己感兴趣的问题,通过做实验找到解决方法,并用多学科方法设计出复杂系统。麻省理工学院航空航天系“复杂系统学习实验室”的主任提出了一个对于基于问题的学习方法的分类框架(见表1)。它将问题分为四个等级,给出了解决基础科学及先进工程课题的系统方法。

一级:问题集。问题集是指在大多数工程课程中发现的传统问题。它们往往具有一定的结构与较成熟的解决方案(至少问题的设计者知道)。所有学生解决同样的问题,有时独自解决,有时以小组形式解决。问题需要在相对较短的时间内解决。二级:小型实验。小型实验是指在结构化问题下的实验课。例如测量或观察某种工程现象或数据。这些问题在一或两个学期内解决,可以“重复地进行”,也就是说,每个学生团队解决与其他团队同样的问题。在麻省理工学院有许多例子,如《联立工程学》课上的桁架实验室,《空气动力学》课上对在风洞中的流速计的校准,《航空航天设计导论》课上对空气动力减速器的各种测试。三级:大型实验。比起前几个阶段,这个阶段的问题需要更长的时间去解决,可能会耗费几周或整个学期。到了这个阶段问题明显复杂了很多,需要更多的规划和教员支持。在麻省理工学院有许多如是例子:《实验项目实验室》课上的风洞试验、飞行器模型项目,《空气动力学》课上的机械项目,《航空航天教育导论》课上的轻于空气的飞艇,《联立工程学》课上的电动飞行器设计等。四级:顶级CDIO实验。这个阶段在系统中整合了核心工程的顶级实验。麻省理工学院的航空航天工程项目用构思-设计-实施-操作(CDIO)的方法来设法更接近于实际工程。在顶级实验中,工程的四个阶段都将涉及。顶级实验室的项目均为研究的重点,需要更多的资金,工程的复杂度和依赖经验的程度也很高。例如麻省理工学院的自主卫星光学阵列项目和磁控编队飞行器。四级的项目需要学生、老师和研究员花费三个学期去完成。可以看出三级和四级问题的解决过程是由学生主导的、不受约束的、复杂的、多方面的且具有很高的主动性过程,符合之前所说的PBL标准。然而一级和二级中的项目体验过程更结构化,在这个过程中学生体验到关于问题构想的有用指导,使用工具进行研究发现。基于问题的学习方法和设计-制造经验贯穿了整个麻省理工学院航空航天工程系的本科生阶段。使用四个等级的框架来层次化PBL体验过程确保了从高度结构化问题到无约束和复杂问题情况的合理推广。

3.基于问题的学习方法的评估。基于问题的学习方法的评估是多模式和长期性的。这些方法包括实验室期刊、技术简报、设计审查、技术报告、团队协作评估、设计作品、互评和自评。教师的角色主要是顾问和指导员,以及在学习过程中为学生提供大量反馈信息。在《航空航天设计导论》课上,学生们设计、制造并试飞由无线电控制的浮空飞行器,设计审查作品和最后的评估工作都是由飞行器竞赛的方式进行。在《综合工程》课的飞行器设计项目中,二年级学生分析在问题集中与气动性能、稳定性和推进装置有关的问题,并动手组装和试飞无线电控制的电推力飞行器。与第一年的课程相似,评估手段包括问题集、设计审查以及最后的一场比赛。

除了评估认知能力的培养效果,情感变化也要被评估。评估学生们在问题处理过程中的信心、参与到解决具有挑战性问题中的意愿和控制问题解决进展的感觉也很重要。这些情感变化可以通过观察、访谈、作品、期刊和其他形式的自评进行评估。

二、小卫星平台与基于PBL的航天工程教育创新结合途径

在全球化大背景下,除去意识形态的差别,世界人才的标准正趋于统一。根据著名的CDIO(Conceive-Design-Implement-Operate,即:构想-设计-实现-运作)工程教育模型,工程教育包括以下几大培养目标:掌握深厚的基础知识和应用技术;善于构思、设计、实现和运作新产品或系统的能力;承担和实施复杂系统工程的能力;适应现代团队协作开发模式及其开发环境。这些目标是直接参照工业界的需求而制定的,它实际上定义了现代工程技术人员的素质构成。

1.小卫星作为航天工程教育的意义。小卫星为空间发展提供了的一条新途径,这是与以往基于传统空间开发模式的“政府导向的大型项目”完全不同的。此外,NASA已经开展了很多项目为大学提供发射机会,让他们逐渐学会如何开发、运营卫星。超小型卫星计划是其中一个著名的案例,选定十所大学并给予他们项目资金,最终的成品将搭载航天飞机发射上天。凭借多年的项目经验,一些大学已经能够制造卫星,甚至出售卫星给其他大学或国家。小卫星为大型卫星上已经实现的一些任务提供了一条新的实现途径。一定数目的小卫星协作是一个非常重要的概念,通常被称为“星座”或“编队飞行”。这种多卫星体系的优点是容错量大、重构能力强、系统的可扩展性好。

2.基于小卫星平台的航天工程教育项目。小卫星的操作训练为大学生的太空教育提供了一个特别的机会,让他们能够体验从任务创建、卫星设计、制造、测试、发射、运行,直到结果的分析的整个太空项目周期。同时他们还能从这些项目中学到项目管理和团队协作等重要技能。小卫星项目不仅对教育有益,而且有望成为太空技术发展与商业运营中的一名新成员。(1)日本卫星设计大赛。上世纪90年代初期,日本的大学小卫星研究项目远远落后于美国和欧洲各国。然而,在意识到了小卫星在教育和技术发展上的重要性后,日本国内开始大力推动高校小卫星设计-制造计划。第一个里程碑是“卫星设计大赛”。1992年三个学术社团共同成立了大赛组委会,他们分别是JSME、JSASS与IEICE。经过一年时间的准备,于1993年举办了第一届比赛。这项比赛的目的是为更多的大学生提供参与太空项目的机会,同时鼓励一流大学开始进行实体卫星的制造项目。评审项目分成两大类,创意类评审该项目的创意与想法,设计类评审卫星设计的可实现性。提交的项目首先会进行初步的评审,合格的项目才能入围最终的决赛。届时,将进行卫星模型的展示和评审。优秀的作品将获得“设计奖”、“创意奖”以及三大学术社团颁发的奖项。大赛每年都会收到20到30个创意独特的项目。(2)大学空间系统研讨会(USSS)以及CanSat项目。USSS始于1998年,每年11月由JUSTSAP小卫星工作组在夏威夷举办。研讨会的形式十分独特,出席会议的日本和美国的大学首先提出自己卫星项目的构想,以及各大学自身的科研实力,然后将具有相同兴趣、能力或科研实力的大学进行组队。各组展开讨论,在一天半的研讨会后,各组需要向其他组展示他们的项目设计书。这些项目要在USSS结束后的一年内实施,他们的成果将在下一年的USSS上展示。其中最成功的项目就是CanSat(罐装卫星)项目了。CanSat项目是1998年由特维格教授提出的。在最初的计划中,每所大学都要制造一个350mL饮料罐大小的微型卫星,卫星将被发射到轨道上,在下一年的USSS上进行控制操作。(3)立方体卫星。立方体卫星项目由特维格教授在1999年的USSS大会上提出。立方体卫星为重1kg,长宽高均为10cm的微型卫星。每所大学制作的立方体卫星都被放在一个名为“P-POD”的盒形载体内,它由俄罗斯的“第聂伯”火箭装载发射升空。为了减少立方体卫星和P-POD之间的机械和电气接口,P-POD释放机制设置得非常简单:当P-POD的门打开,里面的立方体卫星就被P-POD末端的弹簧弹出。东京大学和东京工业大学已经开始了立方体卫星项目,并大致完成了设计和EM级别的模型制造。这些大学的学生已经在立方体卫星项目中获得了微型卫星开发的基本专业知识。但他们现在需要面临新的挑战:如何使用现成的廉价的部件设计可靠的空间系统,如何进行空间环境试验(如真空热或辐射试验)并获得试验结果,以及如何处理更大的风险,更多的人力资源、时间和成本。目前计划于2002年底发射第一个立方体卫星。(4)欧洲大学生月球轨道航天器。欧洲大学生月球轨道航天器ESMO是欧空局教育卫星计划的第四项任务,它是基于“欧洲大学生太空探索与技术倡议”计划中的“SSETI-Express”卫星。ESMO项目是为了吸引和培养下一代的月球与其他行星的工程师和科学家。航天器有效载荷包括:船载液压双组元推进系统,用船从地球同步轨道通过“日地系统中的拉格朗日点L1”转移到绕月运行轨道的过程,历时3个月;表面光学成像的窄角相机和一个用于测绘全球引力场的子卫星,将在历时超过6个月的时间里执行测量任务;可供选择的载荷还包括一个生物实验和一个微波辐射计。ESMO项目是未来欧洲的科学和勘探计划的一个强大的动手教育和公共宣传工具。它是一个面向大学生的项目,训练和培养了下一代的月球任务的工程师和科学家。

三、建立基于PBL的航天工程教育实验平台和培养范式

我国在“十二五”规划中提出了“创新驱动,实施科教兴国战略和人才强国战略”,要“围绕提高科技创新能力、建设创新型国家,以高层次创新型科技人才为重点,造就一批世界水平的科学家、科技领军人才、工程师和高水平创新团队。实施PBL教学是一项系统工程,由于受国情、传统教育教学模式和人才培养机制的约束,在中国工科大学中实施PBL教学存在问题案例少、实施成本高、评价方式单一和师生角色僵化等问题,因此,需要根据我国工程教育的现状和国情对PBL教学进行本地化处理,不能生搬硬套,具体来讲有以下几个方面需要注意。

1.树立以学生为中心的教学理念。树立以学生为中心的教学理念是实施PBL教学的前提条件,PBL强调以学生为中心,作为PBL教学的实施者,教师必须要深刻认识到这一点。

2.根据具体航天任务设计问题。丰富的问题案例是PBL教学成功的关键。每门专业课的设置都是基于学生已具备一定的先修课程基础为前提,但个体的差异不容忽视,教师或教师团队在进行某课程PBL问题设计的时候要充分了解学生的知识基础,结合具体的实施条件进行问题案例的设计。为了保持热情,学生们可以一种竞赛的形式开始项目,学生们互相分享自己的认识,用自己的双手选择出最吸引人并且最有意义的项目。

3.提高卫星实验平台的开放性与多样性。除了教育实践空间项目对航空航天教育带来的价值之外,学生建造空间项目长期承诺创新型大学的任务是可直接有利于空间行业本身。目前,各大学中设立的大学或研究生开放实验室及其配套的开放创新基金都是一些很好的尝试,取得了很好的效果,但其范围需要扩大,让大学生能够进入一些比较前沿的和良好国际合作背景的研究型实验室,使其很早就能受到良好的学术熏陶,以促进其产生向更高层次发展的内部动机和欲望。

4.加强学习能力的培养。发展学生的学习能力,使其成为高效、独立的终生学习者是PBL的重要目标之一。通过参加PBL学习,让学生明白学习不完全是个人的事情,在PBL小组中每个学生都担当一定的角色,并承担相应的责任,在小组讨论中无私贡献自己的学习成果,并吸取其他成员的学习成果,达到共同进步。

5.建立合理多样化的评估体系。在实施PBL的过程中,可以采用学生自我评价、同学互评及教师评价相结合的办法,注重学生的过程表现,而不是结果。创新人才的多样性和创新思维的多样性决定了我们不能用一刀切的方法来评价学生,而是要采取灵活多样的评估体系,建立激发创新的长效机制。除了评估认知能力的发展和成就,情感变化也要被评估。评估学生们在问题处理过程中的信心、参与到解决具有挑战性问题中的意愿和控制问题解决进展的感觉也很重要。

四、结论

PBL植根于建构主义理论之上,强调发现和知识意义的构建,是一种先进的培育创新精神和激发创新思维活动的教学/学习方式。PBL强调以学生为中心,问题、教师和团队学习是PBL教学法实施的三大关键要素。本文在总结PBL理论的基础上,在此基础上根据我国航天工程教育的现状,从国外几个航空航天教育典型案例吸取经验,讨论了以小卫星作为航天工程教育工具的重要性;其次,叙述了它作为太空技术发展新成员的重要性。探讨了基于PBL理论的航天工程教育在学生群体中推行的途径,期望能促进教育工作者对有关问题的思考。

由学生运作卫星项目极具挑战性,但这会给参与项目的学生和院校带来巨大回报。这些项目提供大学生关于设计、分析、测试、制造和操作空间系统方面的实践经历。有证据表明,参与空间飞行器设计项目的学生,能力得到显著提高。统计证据也显示如果相当数量的大学参与空间飞行器设计活动,进入空间领域工作的学生数量会显著增长。

参考文献:

[1]余晓,孔寒冰.能力导向的工程实践模式比较与评价[J].高等工程教育研究,2011,(3):28-34.

相关文章
相关期刊