欢迎来到易发表网,期刊咨询:400-808-1701 订阅咨询:400-808-1721

关于我们 期刊咨询 科普杂志

航空航天的未来优选九篇

时间:2023-08-17 17:41:48

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇航空航天的未来范例。如需获取更多原创内容,可随时联系我们的客服老师。

航空航天的未来

第1篇

航空航天技术是信息、能源、制造等综合性尖端技术的集合,是一个国家综合科技实力的象征和衡量标志,在国家的军事国防中起着中流砥柱的作用。近几年“神舟”系列载人飞船的成功飞行,以及我国首架具有自主知识产权的喷气式支线飞机ARJ21总装下线等,引发了人们对航空航天技术领域的极大关注,而航空航天类专业更是吸引了不少同学和家长的眼球,被同样怀揣飞天梦想的考生所追捧。

学科优势助推人才起飞

航空航天类专业主要研究飞行器的结构、性能和运动规律,培养如何把飞行器设计制造出来并送上太空的工程技术专业人才。从狭义上讲,航空航天类专业包括飞行器设计与工程、飞行器动力工程、飞行器制造工程、飞行器环境与生命保障工程、探测制导与控制技术等主体学科专业。然而,无论是飞机还是航天飞行器,都是综合科学技术的结晶,涉及材料、电子通讯设备、仪器仪表、遥控遥测、导航、遥感等诸方面。因此从广义上讲,材料科学与工程、电子信息工程、自动化、计算机、交通运输、质量与可靠性工程等都是航空航天技术不可或缺的学科专业。随着航空航天事业的迅猛发展,近年来又催生出航天运输与控制、遥感科学与技术等新兴专业。

航空航天类专业对同学们的要求是“厚基础、强能力,高素质、重创新”。同学们要学习和掌握航空航天技术的基础理论和知识,接受航空航天飞行器工程方面的系统训练,通过各种实践性教学环节,可具备坚实的理论基础,良好的实践能力和分析、解决问题的能力,以及创新能力。毕业生在数学、物理、力学、计算机等方面的基础比较扎实,在逻辑、分析、空间想象力、推理等思维上优势明显,知识面宽,适应力强,发展潜力大。本科毕业生考取研究生的比例很高,申请国外大学奖学金的成功率也较高。

有同学认为航空航天类专业就业覆盖面窄,如果毕业后不能进入航空航天类企业,就很难找到专业对口的工作。其实不然,航空航天高科技辐射国民经济各个部门,航空航天类专业扎实的工程技术理论与实践基础平台,促成了其拓展性宽、应用性强、适用面广的专业特点。可供毕业生选择的对口职业有很多,如飞行器设计、制造人员,科研机构研究人员,国防部门研究管理人员,各级政府部门负责航空航天相关工作的研究管理人员,民航企事业单位的技术管理人员等。毕业生不仅可从事航空航天等领域的设计、制造、研发、管理等工作,还可在民航、船舶、能源、交通、信息、轻工等其他国民经济领域施展才华,像微软、IBM、贝尔、方正、海尔等知名企业都曾纷纷到航空航天院校招贤纳才。很多民用部门也都点名要航空航天类专业的毕业生,认为他们基础扎实、学以致用。

行业繁荣点燃人才需求

航空航天科技工业是知识密集和技术密集的高技术领域,航空航天技术的广泛应用影响到政治、经济、军事、科技、文化及通信、气象、能源、探测等领域,成为社会进步的强大动力。从世界范围来看,航空航天科技工业是朝阳产业,在提升国家整体科技水平和综合国力方面起着龙头的作用。

我国经济的快速发展为航空航天工业提供了广阔的发展空间。国务院公布的《国家中长期科学和技术发展规划纲要》中,关于大型飞机、高分辨率对地观测系统、载人航天工程与探月工程等航空航天领域范畴的工程便占到16个重大专项中的4项。未来我国航空航天发展将重点开发大型飞机设计与制造成套技术,载人航天实现航天员出舱进行航天器交会对接试验活动,直至实现登月计划等。2007年大飞机项目正式上马,给我国的航空业带来了空前繁荣,带活了一批航空类企业,也为航空航天类专业毕业生带来了良好的机遇。

航空航天科技工业极具发展前景,对人才的需求会持续旺盛。据统计,2011年最被看好的12类专业之航空航天产业将引发对航空航天人才的巨大需求,包括航空航天经营管理,航空航天飞机总体设计与研发、发动机研发与制造,零部件研发与设计,航空航天新材料研发、制造及总装技术、计量检测技术、航空航天电子电器设备设计开发、信息及测控技术,航空航天生物技术、航空适航管理、航空维修改装,以及航空航天产品光电通信技术、能源系统设计、力学及环境工程、计算机、仿真、可靠性技术等领域在内的专业人才缺口巨大。有关人士根据教育部公布的相关信息归纳出的“最出人意料的十个高就业专业”,便将航空航天类专业列入其中。

上海作为我国新支线飞机和未来大型民用飞机设计总装基地和重要的航天基地,举办了“上海航展”,展会上举行了航空航天人才大型招聘会。据航展招聘组负责人介绍,目前航空航天项目需要大量人才,仅空客A380一个项目组的技术人员需求数量就超过六千人,而我国这方面人才缺口非常大。

近年来,以航天科技,科工集团,航空一、二集团等为代表的航空航天类企事业单位生产和科研任务饱满,条件大为改善,待遇提高很快,一些单位的员工年薪可达十几万,稍差一些的单位其员工薪资待遇也可达到当地中上水平。航空航天事业的迅猛发展,无异于为年轻学子的成长搭建了理想的平台。像航天空间设计研究院、航空材料研究院等单位都炙手可热,受到重点院校毕业生的青睐。毕业生就业地域以北京、上海、西安、成都、沈阳、哈尔滨、深圳等省会及核心城市为主。

从个人长远发展来看,在航空航天类企事业单位工作,发展前景好,待遇高,成长快。随着载人飞船、探月工程、大飞机等重大项目的深入实施,必将有越来越多的青年才俊在锻炼中脱颖而出。

报考提示

我国目前开设航空航天类专业的重点院校有北京航空航天大学、南京航空航天大学、哈尔滨工业大学、北京理工大学、西北工业大学、南京理工大学、哈尔滨工程大学等。近年来,清华大学、复旦大学、上海交通大学、厦门大学等也相继设置了此类专业。开设航空航天类专业的普通院校有南昌航空工业学院、沈阳航空工业学院、郑州航空工业管理学院、中北大学、中国民航大学等。由于各个院校的发展历史、层次、实力不同,学科专业水平差异也较大,同学们应注意了解自己感兴趣的院校,根据自身实力,准确定位,合理选择。

学习航空航天类专业以及将来从事航空航天技术工作,需要具备较强的学习钻研及动手能力,要求同学们的数理化基础扎实,逻辑思维能力较强,严谨求实,乐于钻研。同学们应从实际出发,量体裁衣。

一些考生和家长误以为报考航空航天类专业,体检的标准要按照军检的标准来进行,其实不然。航空航天类专业主要是培养航空航天领域的专业技术人才,对考生的身体状况没有特殊要求,同学们只要符合《普通高等学校招生体检指导意见》,就可放心报考。

第2篇

关键词:计算力学;多物理场耦合;先进复合材料;有限元技术(FEM)

中图分类号:V211 文献标识码:A 文章编号:1671-2064(2017)12-0252-02

1 力学在航空航天领域的支柱地位

作为与材料科学、能源科学并肩的航空航天领域三大基础学科之一,力学在航空航天领域拥有无可辩驳的支柱地位。航空航天技术的发展与力学学科的发展有着举足轻重的关系。同样,力学学科的发展也推动了航空航天技术的发展。从航空航天的历史开端,力学便扮演着开天辟地的角色:莱特兄弟发明飞机前的时代,人类的航空器长期停留在热气球与飞艇的水平,人们普遍认为任何总密度比空气重的航空器是无法上天的;而随着流体力学的发展,越来越多总密度大于空气的航空器被发明出来进行试验,而莱特兄弟的飞机即为第一个成功的尝试,莱特兄弟的L洞也成为一个经典(图1)。从此,航空器的发展步入了快车道,各种结构的飞机翱翔于蓝天,从不到一吨的轻型飞机到上百吨的运输机,直至今天我们对机已经习以为常。

时至今日,航空航天的总体设计已由庞大的力学各分支支撑起来,从最基本的方面分类,可包括:飞行器整体气动外形归属于空气动力学;整体支承结构归属于结构力学以及材料力学;复合材料归属于复合材料力学;材料疲劳性能归属于疲劳分析;结构动力特性归属于振动力学;缺陷结构分析归属于损伤力学以及断裂力学。而对于具体的问题细分,则还有如:针对超高速飞行器的高超空气动力学;针对紊流等大气不稳定情况的非定常空气动力学;针对流固耦合问题的气动弹性力学;以及针对非金属材料的粘弹性力学等。此外,还有众多与力学相关的技术被发展起来,如有限元技术(FEM)等。

展望未来,力学发展的源动力在于航空航天综合多学科的交叉与技术。被誉为“工业之花”的航空航天工业,其研发生产涵盖了目前已知的所有工科门类,如此多的学科交叉下,力学的发展势必会与其他学科进行技术交流,这会带来问题的进一步复杂化,同时也丰富了力学的研究内容。

2 航空航天领域力学发展新挑战

航空航天的发展,给力学带来了新的挑战。结构的日趋复杂,给力学计算带来困难;繁琐的理论公式,需根据工程需要进行必须的简化;新材料的应用在航空航天领域最为敏感,在为飞行器降低结构重量的同时,也带来诸多的不利因素如耐热性能差、环境敏感度高等;而在某些关键部件的多物理场耦合问题也将成为重要的研究方向。

2.1 程序化

航空航天器和大型空间柔性结构的分析规模往往高达数万个结点、近十万个自由度的计算量级,这些问题包括但不限于:飞行器的高速碰撞间题,如飞机的鸟撞, 坠撞,包容发动机的叶片与机匣设计,装甲的设计与分析,载人飞船在着陆或溅落时的撞击等。为了解决这种计算量庞大的问题,上世纪50年代初,力学便发展出一门崭新的分支学科――计算力学。伴随着电子计算机以及有限元技术的发展,计算力学取得辉煌的成绩,这也说明了其本身发展潜力巨大。

力学分析技术的发展,特别是对于各种非线性问题(几何非线性、材料非线性、接触问题等)分析能力,是长期存在的。然而在很长一段时间内,受到计算机能力的制约,以及模型建立本身的局限性,力学分析求解停留在解析方法和小规模数值算法中。这对于工程人员的设计工作是一个极大的限制,对于航空航天领域而言则尤甚如此。计算力学的发展,带来的效益是巨大的。首先其可以用计算机数值模拟一些常规的验证性试验和小部分研究型试验,这可以节省很大一笔试验费用。其次,其可以求解某些逆问题,逆问题的理论解往往无法通过非数值的手段得到。最后,从工程管理角度考虑,数值模拟方法大大节省了产品研发的周期,由此单位时间内产生了更多的经济收益。有限无技术分析机翼见图2。

上述计算力学给工程设计方面带来的种种好处,都基于一个很重要的前提。那就是力学问题程序化。如何将力学问题转化为一个计算机可以求解的程序,一直是计算力学研究的重点,比如有限元技术就是其中一个典型代表。目前,有限元技术已经涵盖了大部分力学问题,包括:静力学求解,动力学求解,各种非线性问题,以及多物理场耦合等。但值得注意的是,除了静力学以及相对简单的问题外,其余问题所用的算法目前精度仍然有限,相较于工程运用而言仍存在诸多壁垒。对于这些问题算法的更新,是力学问题程序化必须面对的挑战,仍需研究人员不断探索。

2.2 工程化

力学工程化依然是基于计算力学而讨论的。所不同的是,程序化是针对一项力学问题能不能解决,工程化关注的问题是如何使得力学问题的解决过程更符合工程需求。

21世纪的航空航天,已经越来越趋向于商业化,美国已有数家私有航天企业成立,我国的航天科技集团也在进行着一些商业卫星发射。而商业化的工程问题,所追求的目标永远是效益。因此,力学工程化发展也应基于这一要求。航空航天工程的研发工作,一直给人周期长的印象,动辄10年以上的研究周期,对于目前商业化的运营是不适用的。如何快速的给出解决方案,是今后力学工程化的重要考量。随着软件技术的发展,越来越多的数值计算可以通过可视化、图表化等快捷的交互式设计方法呈现出结果,这可以直观地给予工程师设计反馈,从而达到加快设计进程的目的。同时,直观的结果反馈,也能避免数据分析过程出现人为失误,起到规避风险的作用。

2.3 非均质化

新材料往往首先出现在航空航天领域,其中典型代表便是先进复合材料。先进复合材料具有高比强度、高比模量、耐腐蚀、耐疲劳、阻尼减震性好、破损安全性好以及性能可设计等优点。由于上述优点,先进复合材料继铝、钢、钛之后,迅速发展成四大结构材料之一,其用量成为航空航天结构的先进性标志之一。

复合材料的运用给力学提出了新要求,相比于传统各向同性的金属材料,其各向异性的力学特性使得非均质力学应运而生,代表便是复合材料力学的诞生。非均质化力学需要将材料的承力主方向设计为结构中的主承力方向,而非主承力方向则需要保证一定强度,不至于破坏,这是其主要的设计特点。相比各向同性材料,其理论模型更为复杂,相应的数值求解方法也没有那么完善。同时,实际中复合材料的性能分散性和环境依赖性相当复杂, 设计准则和结构设计值的确定还很保守,导致最终设计结果并没有理论中那么完美,很大程度上制约了工程领域大规模使用复合材料。对于国内而言,复合材料研究工作相比国外则更为落后,无论是设计经验还是试验数据积累都有不小差距。

建立完备的非均质化力学模型,积累足够的原始参数,大胆尝试提高复合材料的设计水平以及用量是今后力学非均质化的主要任务,需要研究人员付出更多的努力。

2.4 多物理场耦合

2.4.1 电磁与力学耦合

新时代下的航空航天材料,已不仅仅局限于提供简单的支承作用,功能化是航空航天器新材料发展的重点和热点,其最终目的是为了未来航空航天器发展智能化目标。

目前,越来越多的具有电-力耦合功能的新型材料正成为航空航天器结构材料的选择。因为在对飞行器的自我检测技术方面,具有电-力耦合功能的材料的受力状态与电磁性能存在特定的函数关系,由此系统能通过检测电磁性能达到检测受力状态的效果,这大大方便了对飞行器的健康监测,也有效保证了飞行器的安全。这其中耦合函数的准确性便成为关键,电-力耦合的发展能促进这些技术的健全,具有十分积极意义。

2.4.2 温度与力学耦合

温度场与力场的耦合主要体现在发动机上,对于发动机内部涵道的设计最优化一直是热力学着力解决的问题。

目前大部分飞机均采用喷气式发动机,包括:涡喷发动机、涡扇发动机以及涡桨发动机。上世纪40年代末,涡喷发动机出现,飞机飞行速度第一次能超过音速,带来了一场飞机发动机的技术革命。由此,包括进气道以及发动机涵道的设计成为发动机研发的一个关键点,早期的涡喷发动机,由于涵道上的设计缺陷,导致燃料燃烧产生热能转化为推进力的转化比很低,同时伴随着燃烧不充分,因此发动机耗油量很高且推力较小。经过几十年的发展,目前无论军用还是民用飞机发动机,大部分均采用涡扇发动机,通过优化得到的涵道形状最大化了单位燃油所提供的推力。图3为民用客机发动机涵道。

我国的飞机发动机工业水平距离世界领先水平仍有较大距离,特别是在大涵道比的商用发动机研发上。发展热力学,对热-力耦合问题进行更深入的研究,是发展我国飞机发动机事业的奠基石。

2.4.3 流固耦合

流固耦合是飞行器研制最基本的问题之一。几十年的发展历程中,基于流固耦合研究的飞机外形设计取得了诸多进展,包括整体机身外形的优化,翼梢小翼的出现等。随着飞机飞行速度的不断提高,特别是军用飞机机动性的要求,出现了许许多多新的流固耦合问题。比如针对飞机在大攻角飞行时(一般出现在军机上),传统小攻角气动表示法、稳定理论等均不再适用。因此,解决大攻角非定常问题,需要从飞行器运动以及流动方程同时出发,建立多自由度分析和数值模拟模型。这是典型的流固耦合问题。

同时,以往旧的流固耦合理论,在先进复合材料大量运用的今天,显然已经不再使用。对旧有理论进行必要的修正,也将成为流固耦合问题亟需完成的工作。

3 结语

当前,国家大力发展航空航天事业,作为高精尖产业,其所运用的理论与技术绝不能落后。力学作为一门古老而又应用广泛的学科,其对航空航天事业的发展起着举足轻重的作用。为符合未来航空航天领域发展,航空航天领域的力学应着力向着程序化、工程化、非均质化、以及多物理场耦合化综合发展。

参考文献

[1]杜善义.先进复合材料与航空航天[J].复合材料学报,2007(2):1-11.

[2]尧南.计算固体力学的发展及其在航空航天工程中的应用[J].计算结构力学及其应用,1993(3):199-209.

第3篇

1、产业规模,产出,投资

目前,全市涉航企业有48家。2013年全市航空航天产业实现销售165.3亿元,同比增长107.7%,利税11.3亿元,同比下降79.5%,利润7.5亿元,同比下降68.0%。2012年1-8月实现销售123.09亿元,同比增长12.5%,利税5.17亿元,同比下降49.0%,利润8.87亿元,同比下降74.4%。截至目前,全市航空航天产业在建重点项目21个,总投资达204.46亿元,累计完成投资49.22亿元,同比增长92.6%。

2、主要产品

通用航空、航空航天信息技术、航空航天新材料、航空大件加工及部件组装、航空机电、客舱设备及内饰件、宇航级高可靠电子元器件等。

3、规上企业,龙头企业和基地型企业

规模以上企业14家。龙头企业5家,铝业有限公司、市精密合金厂有限公司、纤维材料有限公司、航天特种材料有限公司、航空有限公司。

4、市场份额,至少20%以上,单个企业产量,技术

市精密合金厂有限公司拥有的具有自主知识产权的高温合金大型精密浇铸技术处于世界领先水平,是全球第3家(中国第一家)掌握该技术的企业,国内市场占有率超20%,2013年超纯净镍基高温合金系列产品实现销售2.6亿元。

5、品牌

中国驰名商标:“绿扬”

著名商标:华阳及图、彤明、“DSLY及图”

6、区域布局

初步形成“一城两园多基地”的空间格局(航空航天产业城、市航空航天产业园、京口航空信息产业园、京口航空航天高性能铝合金材料产业基地、句容航空复合材料产业基地、丹徒航空航天制造及配套产业基地)

二、为什么作为重点产业?

1、产出规模,增速,发展前景

2013年全市航空航天产业实现销售165.3亿元,同比增长107.7%,利税11.3亿元,同比下降79.5%,利润7.5亿元,同比下降68.0%。2012年1-8月实现销售123.09亿元,同比增长12.5%,利税5.17亿元,同比下降49.0%,利润8.87亿元,同比下降74.4%。航空航天产业作为国家战略性高技术产业,具有产业链长、辐射面宽、拉动效应强等鲜明特点,对相关产业的带动为1:10,对科技和经济发展具有巨大的带动作用。相关数据显示,近5年全球航空航天产业的增速为25%,远超同期GDP的增速。未来20年,我国共需要ARJ-21同类飞机1000架、国产大飞机C919同类飞机2700架、军用运输机230架,对应市场容量分别为300亿美元、1350亿美元、161亿美元,航空航天信息技术产业产值将超过500亿元美元,航空航天产业已经成为快速上升的战略性产业。

2、财税贡献,占第二产业份额

2013年全市航空航天产业实现销售165.3亿元,同比增长107.7%,利税11.3亿元,同比下降79.5%,利润7.5亿元,同比下降68.0%。2012年1-8月实现销售123.09亿元,同比增长12.5%,利税5.17亿元,同比下降49.0%,利润8.87亿元,同比下降74.4%。

3、提供就业情况

提供就业岗位2万个。

4、投资规模,市场导向,企业家信心

截至目前,全市航空航天产业在建重点项目21个,总投资达204.46亿元,这些项目投产后可实现销售规模达1000亿元以上。国家出台的高端装备制造“十二五”规划将航空航天产业作为战略性新兴产业提升到国家战略推动层面,给予宏观政策支持,市场前景巨大,企业家对未来发展充满信心。

5、要素保障和服务支撑

研发支持,人才支持,金融支持,园区载体支持(土地、环保)

三、我市如何培育重点产业政策建议

1、产业规划导向,定位准确,布局合理,保障有力

总体规划、单项规划,用1-2年时间制定产业规划

2013年,联合南京航空航天大学编制出台了《市航空制造产业发展规划纲要》。《规划纲要》明确我市航空产业布局、发展重点和目标。2012年,为加快我市航空航天产业发展,编制了《市航空制造产业发展规划纲要》(征求意见稿)。

2、如何强化政策扶持

国家、省、市、县区四级政策

3、要素配套保障

人力支持,公共服务平台

船舶与海洋工程产业

1、产业规模,产出,投资

全市拥有船舶及配套企业95家,其中,造修船企业30家,具有万吨以上造修船能力的企业7家;船舶配套企业65家。2013年,船舶与海洋工程产业实现销售收入243.1亿元,位居南通、泰州、扬州、南京之后,列全省第五,占规模以上工业比重的5%,其中销售收入过亿元的企业11家。2012年1-8,实现销售188.48亿元,同比增长16.3%,利税9.4亿元,同比增长4.5%,利润7.5亿元,同比下降3.6%。截至目前,全市船舶与海洋工程在建重点项目9个,总投资94.62亿元,累计完成投资10.75亿元,同比下降33.62%。

2、主要产品

船舶产品:海洋工程船、全回转工程船、液货运输船、散货船等。

配套产品:中低速柴油机及发电机组、螺旋桨、船舶电器、船舶电气与自动化控制系统、船舶救生装置、船用锚链、船舶辅机、甲板机械、舾装件、海洋系泊链、海洋平台吊机及救生装置、海洋工程大型结构件等产品。

3、规上企业,龙头企业和基地型企业

规上企业44家,龙头企业5家,省船厂(集团)有限公司、新韩通船舶重工有限公司、中船设备有限公司、鼎盛重工有限公司、赛尔尼柯电器有限公司。

4、市场份额,至少20%以上,单个企业产量,技术

省船厂(集团)有限公司的高技术海洋工程船和全回转工程船两大产品,国内市场占有率高达70%以上,创造了27项中国第一,位居全国同行业之首,2013年,完成工业总产值28.6亿元,实现销售共计20.1亿元,利税6.5亿元。

中船设备的中速柴油机国内市场占有率第一,2013年,实现主营业务收入14.03亿元元,利润1.20亿元元,同比增长16.4%,连续四年利润总额超亿元。在柴油机及动力系统集成、发电机及电气系统集成、海洋工程机电等领域处于全国领先水平。

赛尔尼柯电器有限公司的高端船舶和海洋工程配电板连续五年国内市场占有率第一并进入国际前列,2013年,实现销售3亿元,在船舶与海洋工程电气与自动化控制等领域处于世界先进水平。

中船瓦锡兰螺旋桨有限公司的船舶螺旋桨国内市场占有率超过40%,2013年,实现销售5亿元,在螺旋桨与轴系设计制造、船舶动力打包集成等领域处于世界先进水平。

正茂集团的海洋工程系泊链国际市场占有率超过20%,2013年,实现销售3.1亿元,在海洋工程系泊链设计研发处于国内领先水平。

5、品牌

省著名商标:“蓝波”、“赛尔尼柯SaierNico”、“三星及图”、“三山”图形

名牌产品:“威和”桥式起重机

6、区域布局

第4篇

关键词 现代控制方法 人工智能控制 最优控制

中图分类号:TP18 文献标识码:A

0前言

现代控制理论是以解决航空航天领域的科技问题所诞生的一种拥有特定意义的理论,随着科学技术的不断进步,各种现代控制方法被逐渐研究出来,为了使现代控制方法更好地应用于航空航天领域,因此人们逐渐加深对现代主要控制方法的研究现状及未来发展趋势的探索分析。

1现代控制理论概述

现代控制理论的基础是状态空间学,然后结合了线性代数、微积分方程等数学方法,从而形成的一种控制系统。该理论自上世纪五十年代诞生以来便受到人们的广泛关注并且得到快速的发展。该理论最初主要运用于航空航天领域,是为了解决如何使用最少的燃料和最短的时间将宇宙火箭或者是人造地球卫星发射到预定的轨道等问题,随着这些问题的逐渐解决,控制理论的范围也逐渐扩大,经过半个多世纪的发展,现代控制理论已经产生了多种不同的控制理论分支,应用于社会生产生活的各个领域。

2现代主要控制方法

目前应用于航空航天领域的现代控制方法主要有以下几种。

2.1人工智能控制

人工智能控制中又衍生出多种不同的控制方法,主要有:

(1)神经网络控制。神经网络一般是用于对信息的处理及控制。神经网络的结构具有分层的特性,在每个神经元之间都可以进行输入与输出的连接,但是在不同层次的神经元则无法实现连接。神经网络具有不同的网络形式,其中以BP网络和RBF网络形式最为典型。自八十年代以来,神经网络在控制理论中的广泛应用已经可以解决控制理论中的绝大多数问题,成为社会上关注的焦点。例如建模与辨识系统、配置极点、控制内膜、自适应控制等。而神经网络可以对航空航天领域进行智能控制,主要归功于神经网络具备的学习能力,从而减少了适应环境的变化,能够十分方便地对控制系统进行在线离线的控制。而且神经网络具备计算的特质,可以准确高效的完成计算处理。同时信息的分布式储存和处理结构,有较高的泛化与容错能力。

(2)模糊控制。模糊控制的理论基础是计算机的模糊集合论、模糊逻辑推理和模糊语言变量这是中模糊理论。目前,模糊控制理论可以对不确定的控制对象模型进行满足系统非线性的操作,同时模糊控制系统可以将枯燥难懂的数学变量变为语言文字信息,方便人们进行理解。模糊控制理论是对人的思维进行高度的模拟,以此根据人在航空航天工程建设中积累的经验进行模糊推理。

但是,模糊控制理论中仍存在一些问题,例如:模糊控制器的工作原理相对复杂,影响到系统运行的稳定性,而且模糊控制同鲁棒控制的对比关系还需进一步进行研究,因此模糊控制理论还在在不断的完善发展中,在未来模糊控制理论将更趋近于专家模糊控制、智能优算法相结合的模糊控制等。

2.2最优控制

最优控制理论又被称为动态最优化或过程最优化理论,在满足各类式对初始、过程以及终端的制约条件的情况下,找到最优的控制策略,确保系统的性能指标可以符合规定的性能指标式,以此来实现对系统最优化的操作。

极值原理、微分对策以及动态规划是现阶段最优控制下形成的主要理论,我们在使用最优控制时所使用的数值方法主要有:梯度法、伪谱法、遗传算法等,我们也可以将不同的算法进行组合,融合每种算法的优点,打破只用一种算法的局限性,从而提高整体算法的控制水平,可以有效地对一些更加复杂的最优控制问题进行解决。

目前最优控制理论主要应用于航空航天工程中的一些问题,例如:如何解决线性二次型指标的最优问题、伺服机构问题、跟踪问题等。但是随着时代的发展,社会的进步,我们对最优控制的要求也越来越高,需要使用最优控制解决的问题也越来越多,因此在未来,最优控制的对象将会变的多样化,系统的结构也会更加复杂,从而使最优控制理论可以解决一些更加复杂的不确定性的系统问题。

2.3自适应控制

自适应控制理论下的系统通常带有明显的不确定性,所谓的不确定性指的是被控制对象的环境模型是不确定的,其中包含着一些随机因素和未知情况。因此,在自适应控制中需要对系统的工作状态进行自动的调节,所以自适应控制主要是对控制法则进行修改调整,对控制器的可变参数进行在线调整,对性能指标或辨识对象的动态特性进行在线测量,从而实现对系统的自适应控制。根据应用领域的不同,我们建立的自适应系统也存在一定的差别,但是自适应系统所完成的功能都是相同的,我们建立的自适应系统控制模型主要分为两种:一种是模型参考自适应系统和无模型参考自适应系统。

3结论

综上分析可知,现阶段我国在航空航天领域所使用的现代主要控制方法有:人工智能控制、最优化控制、自适应控制等,我们只有加深对现代控制方法的研究,将现代控制方法的作用最大限度的发挥出来,才能提高现代控制方法对航空航天领域的控制水平,才能促进我国航空航天领域的进一步发展。

参考文献

[1] 史国庆,高晓光,吴勇,等.航空航天领域现代主要控制方法的研究[J].南京航空航天大学学报,2014,18(1).

第5篇

关键词:先进复合材料;航空航天领域;飞船;卫星;火箭;飞机 文献标识码:A

中图分类号:V257 文章编号:1009-2374(2016)13-0039-04 DOI:10.13535/ki.11-4406/n.2016.13.019

1 概述

现阶段,我国航空航天事业得到前所未有的发展,航空航天领域对材料的要求不断提升,为了满足航空航天领域对材料性能的要求,应该研发新型、高性能的材料,先进复合材料应运而生,其具有多功能性、经济效益最大化、结构整体性以及可设计性等众多特点。将先进复合材料应用在航空航天领域,能够有效地提高现代航空航天器的性能,减轻其质量。和传统钢、铝材料相比,先进复合材料的应用,能够减轻航天航空器结构重量的30%左右,在提高航空航天器性能的同时,还能降低制造和发射成本。现阶段,先进复合材料已经成为飞船、卫星、火箭、飞机等现代航空航天器的理想材料,同时,先进复合材料已经和高分子材料、无机非金属材料及金属材料并列为四大材料。因此,文章针对先进复合材料在航空航天领域应用的研究具有重要的现实意义。

2 我国先进复合材料发展现状

自20世纪70年代开始,我国就开始了对复合材料的研究工作,经过40多年的研究与发展,我国先进复合材料的技术水平不断提高,并且取得了可喜的进步。现阶段,我国先进复合材料在航空航天领域中的应用,逐渐实现了从次承力构件向主承力构件的转变,被广泛地推广和应用在军机、民机、航空发动机、新型验证机和无人机、卫星和宇航器、导弹以及火箭等领域,即先进复合材料已经进入到实践应用阶段。但是,我国先进复合材料技术的发展和研究成果与国外发达国家的水平还具有一定的差距,现阶段我国先进复合材料的设计理念、制备方法、加工设备、生产工艺以及应用规模等都相对落后。例如,我国军用战斗机中复合材料的用量低于国外先进战斗机的复合材料用量,仅有少数的军用战斗机超过20%,例如J-20其复合材料的用量约为27%。我国成功研制的C9型民用飞机,单架飞机的先进复合材料的用量超过16吨,标志着我国先进复合材料在航空航天领域的应用水平在不断提高。

3 先进复合材料简介

3.1 先进复合材料的组成

复合材料是由金属、无机非金属、有机高分子等若干种材料采用复合工艺组成的新兴材料,先进复合材料不仅能够保留原有组成材料的特点,还能够对各种组成材料的优良性能进行综合,各种材料性能的相互补充和关联,能够赋予新兴复合材料无法比拟的优越性能。先进复合材料简称ACM,指的是碳纤维等高性能增强相增强的复合材料。先进复合材料的多种性能都优于普通钢、铝金属材料,在航空航天领域的应用,能够有效地减轻航空航天设备的重量,同时赋予航空航天设备特殊的性能,例如吸波、防热等。

3.2 先进复合材料的特性

先进复合材料的特性主要表现为:

3.2.1 多功能性。先进复合材料经过多年的发展,结合了众多优异的物理性能、力学性能、生物性能以及化学性能,例如防热性能、阻燃性能、屏蔽性能、吸波性能、半导性能、超导性能等,并且不同的先进复合材料的组成不同,其功能性存在一定的差别,综合性、多功能性复合材料已经成为先进复合材料发展的必然趋势之一。

3.2.2 经济效益最大化。先进复合材料在航空航天领域的应用,能够减少产品部件数量。由于复杂部件的连接不需要进行铆接、焊接,因此对连接部件的需求量降低,有效地减少了装配材料成本、装配和连接时间,进一步降低了成本。

3.2.3 结构整体性。先进复合材料可以加工成整体部件,即采用先进复合材料部件能够替代若干金属部件。某些特殊轮廓和表面复杂的部件,用金属制造的可行性较低,采用先进复合材料能够很好地满足实际需求。

3.2.4 可设计性。采用树脂、纤维、复合结构方式,能够获得不同形状、不同性能的复合材料,例如选择合适的材料、铺层程序,能够加工出膨胀系数为零的复合材料,并且复合材料的尺寸稳定性优于传统金属材料。

4 先进复合材料在航空领域的应用

传统的飞机制造以钢、铝、钛合金为主要材料,而传统飞机上应用比例最大、构成轻质结构主体的铝合金正在被越来越流行的复合材料所替代。我们所指的复合材料主要是以高性能纤维作为增强体,用树脂作为基体将纤维粘结在内部并固化成型的高性能塑料。随着复合材料的迅速发展和广泛应用,当前先进的复合材料在飞机上的关键应用部位和用量的多少,已成为衡量飞机结构先进性的重要指标之一。由于碳纤维材料具有耐高温、密度低、强度大等特点,目前在航空航天领域运用最为广泛。与密度达到2.8g/cm3左右的铝合金相比,先进的碳纤维复合材料密度一般在1.45~1.6g/cm3左右;而拉伸强度可以达到1.5GMPa以上,超过铝合金部件的3倍,接近超高强度合金钢制部件的水平。这种密度低、强度刚度高的优势,使飞机的复合材料结构部件在获得与先进铝合金部件在强度刚度等综合性能方面相当的水平时,重量可以大幅减少20%~30%。复合材料在飞机结构中的应用情况大致可以分为三个阶段:第一阶段是应用于受载不大的简单零部件,可减重20%;第二阶段是应用于承力大的部件,可减重25%~30%;第三阶段是应用于复杂受力部位,如中机身段、中央翼盒等,可减重30%。复合材料主要用于制造航空器的外饰和内饰部件,如飞机的一次构造材料:主翼、尾翼、机体,二次构造材料,副翼、方向舵、升降舵、内装材料、地板材、桁梁、刹车片等及直升飞机的叶片。根据统计,小型商务机和直升飞机的碳纤维复合材料用量已占55%左右,军用飞机占25%左右,大型客机占20%左右。

4.1 军机上的应用

为满足新一代战斗机对高机动性、超音速巡航及隐身的需求,20世纪90年代后,西方战斗机全部大量采用复合材料结构。先进的复合材料也大大增加了军用运输机的有效载重,增大了军用飞机的载油量,克服常规材料在高超声速飞行器研制中存在的瓶颈问题。因此,先进复合材料被广泛地应用在军机上,例如,碳纤维增强树脂基复合材料,在军机主结构、次结构以及特殊部位等方面的应用,有效地提高了军机的耐腐蚀性、抗疲劳性,同时还具有明显的减重效果;再如,F22由于存在超声速巡航需求,飞机外表面会长时间与空气高速剧烈摩擦,因此在机翼复合材料上放弃了环氧基树脂,而使用双马来酰亚胺树脂基体以获得260℃的最大工作温度。

4.2 民机上的应用

民机和军用飞机不同,民用飞机作为以载客飞行和运营为目的的交通工具,对安全可靠性和经济性要求更加严格。复合材料在飞机上大量应用的时间还比较短,在对材料工艺稳定性和有关试验数据尚不十分充分的情况下,应用较多含量的复合材料需要大量时间和实践的积累。民航上的复合材料应用受限,使用分为两类:结构件用复合材料、舱内材料。

以波音787为例,每架飞机的结构比例中有50%是重约35吨的复合材料,这意味着它从材料密度上就减轻了15吨左右的重量。而空客也不甘示弱,新的A350客机改名为A-350 XWB,XWB意为超宽机身,复合材料的比例达到了52%,是现在所有大型商用飞机中最高的。A-350XWB的机体比B-787还宽13cm。作为世界上仅有的两个大型商用飞机研制巨头,波音、空客先后推出复合材料占结构比例50%的主力型号,这意味着大型客机结构设计以复合材料为主要材料的时代已经拉开序幕。波音787等新一代复合材料飞机上实现的性能提升,并不仅仅是依靠低密度材料减重得来。实际上复合材料在工艺、结构力学设计上,都有着传统金属材料所完全无法比拟的优势,比如复合材料可以做出超大尺寸的整体结构部件,而且尺寸大小不会随着温度高低而产生变化。

国产大飞机在复合材料的应用上还比较保守,公开的报道显示,复合材料的使用量约占C919飞机结构重量的20%。飞机上使用的复合材料主要是碳纤维增强树脂基复合材料,它们具有高耐腐蚀、质量轻等特点,在这些性能上的确要超过一般的金属材料。通常复合材料的价格大约是常规铝合金材料的几十倍,即便是我们看起来已经很金贵的铝锂合金材料,其价格也比复合材料低得多,所以C919仅为波音737价格的1/2左右。

4.3 航空发动机上的应用

对于航空领域,特别是发动机的结构设计制造而言,高性能系统所需的轻质和耐高温等特性越来越重要。航空发动机产业是指涡扇/涡喷发动机、涡轴/涡桨发动机和传统传动系统以及航空活塞发动机的集研发、生产、维修保障服务于一体化产业集群。新的材料和工艺不断研发以应对新一代航空发动机的发展趋势,尤其是先进复合材料的应用,GE-AEBG公司、惠普公司在制造飞机发动机零部件时都采用了先进复合材料,主要包括风扇出风道导流片、风扇罩、推力反向器等部位。先进复合材料在航空发动机上的应用具体表现在以下两个方面:

4.3.1 陶瓷基复合材料的应用。陶瓷基复合材料是将碳化硅陶瓷纤维与碳化硅基底材料复合后,再涂覆一层专用涂层提升其性能,密度仅为金属材料的三分之一。由于陶瓷基复合材料具有的耐高温属性,因此在发动机流道中使用空气代替,在发动机高温区只需要较少甚至不需要冷却气体,涡轮扇发动机大幅减重,意味着发动机运转效率更高,提高了发动机的性能、耐久性、燃油经济性和高推重比。F-35战斗机使用的F135发动机是有史以来战斗机上安装过的推力最大的喷气式发动机,F135使用了陶瓷基复合材料(CMC),主要用在F135-PW-600喷管的外侧部分。

以GE航空集团为例,陶瓷基复合材料在GE航空集团的技术路线图上是一条关键路径。通用电气航空集团将于2016年新建两个复合材料制造厂,用于碳化硅和陶瓷基复合材料的批量制造,这两种复合材料都是制造喷气式发动机零部件的必备材料。GE公司是所有厂商中第一个决定使用CMC制造旋转叶片的,通过把陶瓷基复合材料叶片安装在发动机上试车,它们已经证明了旋转CMC叶片的性能,这是一个重要的里程碑。

4.3.2 树脂基复合材料的应用。树脂基复合材料具有降噪能力强、耐腐蚀性强、耐疲劳能力好、比模量高、强度高等众多优点。通过将树脂基复合材料应用在航空发动机的冷端结构、反推力装置以及发动机短舱等结构上,不仅能够降低发动机的重量,还能够提高发动机的耐腐蚀性、抗疲劳性以及强度等。例如,JTAGG验证机的进气机匣利用PMR15树脂基复合材料,该种先进复合材料的应用比传统铝合金进气机匣的重量降低了25%。

4.4 新型验证机及无人机上的应用

现代战争理念的改变,使无人机倍受青睐,无人战斗机是未来航空武器的一个重点发展方向。无人机除在情报、监视、侦察等信息化作战中的特殊作用外,还能在突防、核战、化学和生物武器战争中发挥有人军机无法替代的作用。无人机的发展方向是飞行更高、更远、更长,隐身性能更好,制造更加简便快捷,成本更低等,其中关键技术之一就是大量采用复合材料,超轻超大复合材料结构技术是提高其续航能力、生存能力、可靠性和有效载荷能力的关键。和传统的铝合金混合结构相比,以复合材料为结构的无人机,例如“全球鹰”“捕食者”等无人机都采用先进复合材料。以“全球鹰”为例,该种无人机的机翼、尾翼都采用石墨/环氧复合材料,采用该种复合材料制造的无人机,和传统铝合金混合结构的重量相比降低了65%。再如,诺斯罗普・格鲁门公司研发的X-47无人战斗机,为了满足生存力、机动性、隐身性能等特殊要求,该无人机除了接头部位采用了少量的铝合金外,几乎整个机体都采用先进复合材料。依靠复合材料,设计师还可以做出传统金属材料所无法达成的气动力学设计,比如超声速飞行的前掠翼飞机。

5 先进复合材料在航天领域的应用

5.1 卫星和宇航器结构材料

卫星结构的质量会影响对运载火箭的要求以及卫星功能,卫星结构的轻型化设计已经成为卫星结构发展的趋势之一。国际通讯卫星中心的推力桶采用先进复合材料,该种推力桶质量比传统铝结构的质量降低了30%左右,降低的重量可以增加460条电话线路,同时还能够有效地降低卫星的发射费用。欧美国家卫星结构的质量为总质量的1/10,其原因就是大量的应用了先进复合材料。现阶段,我国神州系列飞船、风云二号气象卫星等都采用碳纤维/环氧复合材料,有效地降低了总体重量,同时发射成本也显著降低。

5.2 导弹用结构材料

现阶段,美国已经将先进复合材料作为导弹弹头结构壳体、级间段、仪器舱等部件的主要材料,洛克希德导弹与宇航公司指出,采用碳纤维/环氧复合材料制造的导弹比传统铝结构导弹的重量减轻40%。现阶段,采用先进复合材料的导弹发射筒也被国外发达国家应用在战术、战略型号上,例如,俄罗斯的“白杨M”导弹、美国的“MX”导弹都采用复合材料发射筒。因为先进复合材料导弹发射筒和传统金属结构相比,其结构质量显著降低,能有效地提高战略、战术导弹的灵活性。在战术导弹领域,先进复合材料结构的导弹发射筒更加灵活、应用范围更加广泛。现阶段,我国也研发了先进复合材料结构的战略导弹和导弹发射筒,还研发了先进复合材料仪器舱,有效地提高了战略导弹的灵活性和机动性,应用效果良好。

5.3 运载火箭结构材料

国外发达国家于20世纪50年代开始应用纤维缠绕成型的玻璃钢壳体代替传统的钢壳,例如,美国的“北极星A-3”潜地导弹,采用纤维缠绕成型的玻璃钢壳体,其重量比采用传统钢壳的“A-1”轻了55%左右,随后研发的“MX”“三叉戟1”的三级发动机壳体,全部都采用芳纶/环氧复合材料,该种结构形式的壳体质量比纤维缠绕成型玻璃体壳体的重量减轻了50%左右。随着先进复合材料的发展,其在运载火箭发动机壳体中的应用优势越来越明显,并且先进复合材料被应用在三叉戟Ⅱ、德尔塔Ⅱ-7925运载火箭等型号中。现阶段,我国运载火箭发动机壳体制造业逐渐的开始应用先进复合材料,虽然起步较晚,但是经过40多年的发展获得了巨大的进步,经过多年的研发,已经成功地将芳纶/环氧复合材料、玻璃纤维/环氧复合材料应用在运载火箭发动机壳体中。先进复合材料在运载火箭结构设计中的应用,有效地降低了运载火箭发动机的重量,同时提高了运载火箭发动机的性能。

6 复合材料在航空航天领域的发展前景

先进复合材料的应用已经成为评价航空航天器水平的重要标准,同时也是提高航空航天器结构先进性的重要物质基础和先导技术。由于我国先进复合材料的应用水平和国外发达国家还存在一定的差距,但是我国已经进行大量投入来强化先进复合材料方面的研究,其发展前景良好。未来先进复合材料的发展主要表现在以下四个方面:

6.1 智能化

智能型先进复合材料和结构的研究,能够创造巨大的经济效益和社会效益,智能型先进复合材料在航空航天器外表的应用:在未来航空器表面增加各种传感器,能够对周围环境进行实时、全面、智能的检测,同时为通讯系统、电子战以及雷达系统提供瞬时模态,以此保证航空器能够安全、稳定地飞行。

6.2 多功能化

在减小航空航天器体积的基础上,为了提高航空航天器的突防能力,许多结构部件需要具备多种功能,多功能先进复合材料的应用能够赋予航空航天器新的功能,现阶段,多功能先进复合材料的研究已经从双功能型向三功能型方向转变。

6.3 质量轻、性能高

目前,我国先进复合材料能够减轻航空航天器的质量占总重的20%左右,和国外25%以上的减重效率还存在一定的差距。导致该种现状的原因是我国先进复合材料的整体性能较低,并且结构的整体性相对较差。因此,在未来的发展过程中,应该加强对复合材料强度、韧性以及整体性等方面的研究,研发整体性好、强度高和韧性高的先进复合材料,同时使复合材料的减重率超过25%。

6.4 低成本

成本较高是限制先进复合材料在航空航天领域应用和发展的主要原因之一,为了解决该问题,应该对先进复合材料的制造工艺进行研究,采用科学的制造工艺进行先进复合材料结构、尺寸以及形状的加工和制造,同时采用先进的质量控制技术、自动化技术、机械化技术等,提高先进复合材料的生产效率,提高其成品率,以此降低先进复合材料的成本。

7 结语

综上所述,经过40多年的发展,我国先进复合材料工业逐渐形成了一个完整的体系,并且部分先进复合材料已经成功地应用在航空航天器生产实践中,获得了良好的效果。但是,从整体上来说我国先进复合材料技术水平和发达国家还存在一定的差距。因此,我国先进复合材料研究、研发人员和生产企业应该加快先进复合材料结构、制造技术、生产工艺等方面的研究,同时借鉴国外的先进技术和经验,解决我国先进复合材料在航空航天领域应用的各种难题,以此提高我国航空航天器的各种性能,进一步促进我国航空航天领域的全面、高速发展。

参考文献

[1] 王衡.先进复合材料在军用固定翼飞机上的发展历程

及前景展望[J].纤维复合材料,2014,(4).

[2] 朱晋生,王卓,欧峰.先进复合材料在航空航天领域

的应用[J].新技术新工艺,2012,(9).

[3] 吴良义.先进复合材料的应用扩展:航空、航天和民

用航空先进复合材料应用技术和市场预测[J].化工新

型材料,2012,40(1).

[4] 何东晓.先进复合材料在航空航天的应用综述[J].高

科技纤维与应用,2006,31(2).

[5] 刘强.碳纤维复合材料在航空航天领域的应用[J].科

技与企业,2015,(22).

[6] 高琳.智能复合材料在航空、航天领域的研究应用

[J].纤维复合材料,2014,(1).

[7] 徐倩.航空碳纤维复合材料切削研究[D].北方工业大

学,2010.

[8] 施晶晶.航空复合材料可重入制造过程建模与调度方

法研究[D].南京航空航天大学,2014.

[9] 沈军,谢怀勤.先进复合材料在航空航天领域的研发

与应用[J].材料科学与工艺,2008,16(5).

[10] 王春净,代云霏.碳纤维复合材料在航空领域的应

用[J].机电产品开发与创新,2010,23(2).

[11] Yin-hsuan Lee,Chuei-Tin Chang,David Shan-

Hill Wong,Shi-Shang Jang.Petri-net based

scheduling strategy for semiconductor manufacturing

processes[J].Chemical Engineering Research and

Design,2011,89(3).

[12] El-Khouly I.A.,El-Kilany,K.S.El-Sayed,

A.E.Modeling and simulation of re-entrant flow

shop scheduling:an application in semiconductor

第6篇

这一成功令一直紧张注视“好奇”号的美国国家航空航天局火星项目团队异常兴奋。在得知“好奇”号成功登陆火星后,美国总统奥巴马表示,“好奇”号是迄今登陆其他星球最为复杂、精密的移动实验室,标志着科技空前进步,表明即便是最艰难的挑战也无法抵挡创新和决心的脚步。奥巴马的科学顾问霍德伦认为,这是人类在太空探索上迈出的巨大一步,是一项无与伦比的成就。

这是美国国家航空航天局所发射的探测器第七次在火星着陆。“好奇”号着陆在火星盖尔陨坑内一块平坦地面,所载的一台照相机捕捉了着陆瞬间情景。对此连称“漂亮”的美国国家航空航天局局长博尔登说,“好奇”号的轮子已经开始为人类踏足火星开辟道路。

在“好奇”号登陆火星的过程中,最令人揪心的惊险过程当属进入火星大气层后的下降和着陆。在短短7分钟内,“好奇”号的时速由约2万公里下降至零,且无法人为控制,完全由一项最新着陆技术自行完成,其间充满不确定性,任何一个微小失误便将导致全盘皆输,因此美国国家航空航天局称之为“恐怖7分钟”。

此外,由于“好奇”号所发出的信号需要围绕火星运行的另外3颗探测器中转,“好奇”号着陆的信号最快也要在14分钟后才能传递到美国国家航空航天局地面控制中心。这一“度秒如年”的等待更使这一着陆的成功令人欣喜异常。

在火星表面着陆约两小时后,“好奇”号探测器发回了一张有关其“新家”盖尔陨坑的高分辨率黑白图片。“好奇”号还将发回更多图片,并将传回彩色图片。人类也因此能够更为真切地了解火星景象。

据了解,此次“好奇”号的任务目标是搜寻碳、氮、磷、硫和氧等基本生命元素,但没有计划搜寻生物或化石微生物。未来将岩石和土壤样本带回地球后,人们才能最终确认火星是否确有生命存在。

此次“好奇”号之所以选定在盖尔陨坑着陆,是因为有迹象表明,那里曾经有水存在,盖尔陨坑旁的高山富含矿物质。在经过几周“身体检查”后,“好奇”号将开始行走并登山,使用机械臂等钻探岩石、采集土壤,开展查看是否有微生物生长环境等科研工作。

火星一直被称为宇宙飞船的墓地。自上世纪60年代以来,美国、苏联及欧洲等一直进行火星探索活动,但多数失败。耗资25亿美元的“好奇”号是美国国家航空航天局一次代价最为高昂的“豪赌”,其成功与否事关美国国家航空航天局今后发展前景。由于经费紧张,美国国家航空航天局已经停止与欧洲航天局原定于2018年联合登陆火星计划。欧洲航天局因此决定与俄罗斯联手进行相关领域合作。

美国国家航空航天局希望“好奇”号此次登陆火星后能有重大发现,为今后宇航员登陆火星打好前站。

(综合8月7日《人民日报》和《北京日报》)

花 絮

美华裔少女为“好奇”命名

2009年5月27日,美国宇航局宣布,堪萨斯州小学6年级12岁的华裔学生马天琪在美国太空总署举办的为火星探测器命名的作文比赛中获得冠军,得以用“好奇”命名美国下一代火星探测器。

第7篇

为期两天的南京航空航天大学2012年自主招生航模特长生考试于2月9日结束,来自全国各地的50多名航模特长生报名参加了考试。报考条件为:在航空、航天、航海模型运动项目上具有特长,获得过省级比赛冠军或全国比赛前三名。考试分外场飞行操作测试和室内手工制作。主要依据选拔测试成绩并结合学生特长与获奖等情况综合考虑,分类确定合格名单,最后经招生工作领导小组讨论审定。2012年参加测试的人数创历年新高,总体水平明显高于往年。考试结果于3月在网上公示。 (袁 伟)

北京航空航天大学2012年自主招生航模特长生面试

2012年3月11日,北京航空航天大学自主招生航模特长生面试在北京航空航天大学创新实践基地进行。2012年自主招生航模特长生考试分为笔试和面试两个环节,来自全国各地的6位航模特长生通过严格的笔试考试(已于2月12日举行)进入此次面试环节。由于笔试环节主要考查考生的基础知识、书面表达及综合应用等方面的能力,因此面试着重考察考生的制作能力,同时还包括对考生航空航天及航模等方面理论知识的提问环节等。考试结果随后将在网上进行公示。 (马家骏)

本刊点评:在国内四大自主招生联盟联考进行期间,一些具备航空航天相关专业的院校也同时开展了航模特长生自主招生考试。虽然各校在考试内容、形式及准入资格、要求等方面有所不同,但对在航模方面有突出特长的考生无疑增加了一次继续深造的机会。经过不断学习历练,入选的考生大都会成为各校在科研类全国航空航天模型锦标赛中的主力队员,其中的佼佼者还有机会投身我国航空航天尖端领域的科研工作。

机器狗狂奔视频引轰动

近日美国官方公布了一段关于军用机器狗在粗糙的路面上疾速狂奔的视频,展示出其惊人的活动能力和适应性,在互联网上引起轰动。这个形似机器狗的四足机器人被命名为“大狗(Bigdog)”,由波士顿动力学工程公司(Boston Dynamics)专为美军研究设计。这只机器狗与真狗一般大小,能在战场上发挥重要作用――为士兵运送弹药、食物和其他物品。其原理是:由单缸两冲程发动机驱动的液压系统带动有关节的四肢保持平衡与运动。每条腿有三个动力关节与一个“弹性”关节,均由机载计算机控制,根据内力传感器探测到地势变化来进行主动平衡控制。陀螺仪和其它传感器则帮助机载计算机规划每一步的运动。如果有一条腿比预期更早地碰到了地面,计算机就会认为它可能踩到了岩石或山坡,进而会相应调节运动步伐。最新款“大狗”可以承载40多千克的装备(约相当于其重量的30%),并能攀越35°的斜坡。“大狗”可自行沿简单路线行进,或通过远程遥控控制。据悉,未来的“大狗”-V3改进型每条腿上还将增加一个动力关节,使其以更快的速度攀越更陡的斜坡及地势更险峻的路段。

本刊点评:这款“机器狗”突破了以往人们对智能机器人行动缓慢的传统印象。它行动迅速、反应灵敏、动力和智能自动化程度很高,且非常结实耐用。虽然可能与实用阶段还有很大差距,但已经让世人看到了智能机器人的发展曙光。

■国际空中机器人大赛(IARC2012,亚太赛区) 将于2012年8月7~9日在北京航空航天大学新体育馆举行。国际无人机系统协会(Association for Unmanned Vehicles System International,AUVSI)于1991 年在佐治亚理工大学举办了首届国际空中机器人大赛(IARC),至今已走过21年的历程。为方便更多的大学参加比赛,2012年将设立亚太赛区,定在北京举行,与美国北达科他州的大福克斯赛区同步。两个赛区的比赛规则完全一致。IARC大赛至今已完成5代任务,每代任务相对独立,完成后进入下一代任务,2010年进入第6代任务,目前尚未完成,期待新的突破。有关比赛详情,可访问大赛官方网站:iarc.省略或亚太赛区网站:iarc.buaa.省略。

■2012年全国航空航天模型锦标赛 将于5月20~25日在河南省安阳市举行,将囊括自由飞、遥控及线操纵等各项目比赛。

■2012年全国青少年航海模型锦标赛与2012年全国航海模型锦标赛 初步拟定于8月在福建省厦门市举行。

■第十三届“我爱祖国海疆”全国青少年模型教育竞赛 分为选拔赛和全国总决赛。其中航海模型选拔赛将于2012年3~7月举行,全国总决赛拟定于8月初在福建省厦门市举行;建筑模型选拔赛将于2012年3~11月举行,全国总决赛拟于12月底择地举行。

■第十四届“飞向北京-飞向太空”全国青少年航空航天模型教育竞赛 分为选拔赛和全国总决赛。其中选拔赛将于2012年3~7月举行,全国总决赛拟定于8月中旬择地举行。

■第十七届“驾驭未来”全国青少年车辆模型教育竞赛 分为选拔赛和全国总决赛。其中选拔赛将于2012年3~11月举行,全国总决赛拟定于12月底择地举行。

■ 沈阳农民手工打造客机 2012年2月28日,辽宁沈阳市长白乡夏河村58岁的农民李京春(音)正在和家人手工打造一架客机。李京春是一名狂热的飞行爱好者,两年多来,他和家人已投入约4万元进行飞机制造。这架飞机长5米、翼展约4米、重达1吨,制作材料多数由买来的废弃钢材焊接而成。目前,这架“客机”已初见雏形并开始内饰装修。据李京春介绍,制作这架“客机”是为了圆儿时成为一名飞行员的梦想。

第8篇

进入火星大气层的“好奇”号飞行器,时速达到2.1万千米。展开巨大减速伞后,飞行器坠落时速降到320千米。接着再利用制动火箭,以每小时3.2千米的速度下降。最后以缆绳从飞行器上垂降放下庞大的探测车。当探测车顺利着陆后,飞行器随即飞离。从进入大气层到着陆,整个降落过程被工程团队称为“惊魂7分钟”。

在空中垂降探测车的想法听起来很疯狂,不过这是“轻放”如此庞大的探测车的最佳方式。“2001火星奥德赛”号卫星和火星勘测轨道飞行器构成的美国航空航天局太空通讯网会监控整个登陆过程。这样的登陆任务很难不令人紧张,而紧张可能需要借由花生来消除。美国航空航天局的任务指挥中心有一项传统,会在登陆前打开一包花生,然后传遍指挥中心。这一“幸运豆”的传统可以追溯到1964年的“徘徊者7”号月球近距离拍摄任务。火星任务的总监阿瑟,阿曼达表示:“我们有很多花生,通常任务总监会假定花生不会被消耗完。”

航行8个月半,2.5亿千米的旅程,这位“大男孩”平安到达目的地后,得向地球上焦急的美国航空航天局任务指挥中心报平安。不过,这通长途电话却不简单。

地球和火星的距离为2.5亿千米,即使以接近光速的无线电波,在两星球间传递信息也需要13分钟。这意味着“好奇”号发生状况13分钟后,位于地球的指挥中心才会接到消息,再花13分钟才能将指令送达火星上的“好奇”号。对于在地球上收听实时广播的我们来说,非常难想象这有多困扰。因此,“好奇”号具备一定的自动反应能力,能实时应付在火星上遇到的状况。

另一个大问题是,火星和地球都会自转,要是“好奇”号在火星上的位置背对地球,便无法顺利将电波信号直线传送到地球。对此,两部先前由美国航空航天局发射,环绕在火星轨道上“2001火星奥德赛”号卫星和火星勘测轨道飞行器就派上用场了。

第9篇

关键词:低膨胀高温合金;发展;Fe-Ni-Co;性能;因瓦效应;时效硬化;分析

中图分类号:D993.4 文献标识码:A 文章编号:

现代低膨胀高温合金发展,是以因瓦效应以及时效硬化的发现为基础的,在上世纪70年代,随着国内航空航天事业的快速发展以及社会经济发展中能源危机的日益严重,逐渐为低膨胀高温合金在航空航天领域中的应用以及发展进步,提供了重要的契机。在低膨胀高温合金的发展历程中,最早出现的商用Fe-Ni-Co系列合金,在通过使用Nb以及Ti进行强化,去除Al并加入Si等一系列成分变化后,对于原有的商用合金材料的应力加速晶界氧化脆性进行明显改善后,使得低膨胀高温合金在航天航空领域中的应用得到大量的突破。后来,为了改善低膨胀高温合金的抗氧化以及裂纹扩展速率等性能,又进行了相关的新合金系研究,形成了以Inconel 783合金为主的Fe-Ni-Co-Al-Cr系合金与以Haynes242合金为主的Ni-Mo-Cr系合金的研究主流,使得低膨胀高温合金能够在750度的高温环境中仍能够实现完全的抗氧化功能和作用。

1、低膨胀高温合金的发展分析与概述

1.1 低膨胀高温合金的发展基础分析

在现代低膨胀高温合金的发展历程中,低膨胀高温合金的发展是以“因瓦效应”以及“时效硬化”现象的发现为发展基础的。在19世纪90年代后期,法国的一位研究学者发现Fe-Ni合金中的Ni成分含量在合金所有成分含量的36%左右时,合金的热膨胀系数会出现最低值情况,促成了因瓦合金的提出,它为低膨胀高温合金的发展奠定了一定的发展基础。随后,在对于低膨胀高温合金的发展研究中,由于精密仪器仪表行业以及电真空玻璃封装行业的发展需求,低膨胀高温合金以及定膨胀高温合金的的研究发展取得了较为突破性的发展与进步提升,在这一时期也先后出现了Fe-Ni系以及Fe-Ni-Co系、Fe-Ni-Cr系、Fe-Cr系等低膨胀以及定膨胀合金,也就是在低膨胀合金的这一发展过程与阶段时期,时效硬化现象被发现并研究提出,使得现代低膨胀合金发展的两大基础条件全部具备,并使得低膨胀高温合金随着时代的发展随之逐渐的发展起来。在现代低膨胀高温合金发展的两大基础条件中,时效硬化现象的发现提出,不仅使低膨胀高温合金的热稳定性能得到了显著的改善,并且也为低膨胀合金在航空航天中的应用创造了可能性。

1.2 商用Fe-Ni-Co系低膨胀高温合金的发展

在上世纪70年代,航空航天事业的迅速发展以及能源危机的日益加重,最终促成了商用低膨胀高温合金的出现产生。在航空航天领域发展中,应用低膨胀高温合金作为薄壁静子结构部件,比如机匣以及外环,或者是封严环、隔热环等,进行航空航天的生产制造应用,不仅具有生产制造控制部件间隙简单易行,并且能够减少航空航天机械设备的发动机零部件数量,降低发动机的重量以及生产制造成本,提高生产制造飞机的性能。随着商用低膨胀高温合金的出现,上世纪70年代初期,美国某公司推出了第一种商用低膨胀高温合金,主要是以Nb以及Ti、Al时效强化的Fe-Ni-Co基合金,这种低膨胀高温合金具有与Inconel 783系合金相近的优良抗拉强度,但是该类型商用低膨胀高温合金的热膨胀系数在Inconel 783系合金的热膨胀系数一半左右,能够应用于600度的高温环境中。在70年代中期,人们对于商用低膨胀高温合金进行了工艺以及成分上的研究探索,实现了添加Cr以及Hf、B成分,或者是降低合金中的Al含量来提高合金的应力加速晶界氧化脆性。随后,在80年代初期,对于低膨胀高温合金的发展研究中,又出现了第三代低膨胀高温合金,也就是Incoloy 909/CTX-909系合金,这类低膨胀高温合金在原有合金的基础上提高了对于Si的含量,最终形成该系列低膨胀高温合金,使合金的强度以及韧性、抗应力加速晶界氧化脆性、低膨胀系数等得到了良好改善。

1.3 抗氧化低膨胀高温合金的发展

在上世纪90年代,航空航天制造发展中,为了提高飞机发动机的效率,同时提高飞机发动机部件的工作温度,对于应用于航空航天领域飞机制造生产的低膨胀合金材料,也就提出了抗氧化以及高强度、低膨胀的要求,从而促进了抗氧化低膨胀高温合金的研究发展与应用实现。对于抗氧化低膨胀高温合金的发展研究,主要集中在对于Fe-Co-Ni系合金成分的调整研究以及对于Ni-Mo-Cr系低定膨胀系数合金的研究上,从这两个研究思路出发,在上世纪80年代末90年代初以及90年代中期,分别对于低膨胀高温合金有了新的研究与发展突破,实现了抗氧化性能好以及组织稳定、塑性损失小,工作温度可达到750度的低膨胀高温合金研究提出与应用实现。根据这一发展研究与应用趋势,低膨胀高温合金未来将集中于向抗氧化高强度低膨胀高温合金的研究与发展应用方向发展。

2、低膨胀高温合金在航空航天业的应用

在我国的航空以及航天事业发展中,都有对于低膨胀高温合金的应用实现,但是,两个领域中对于低膨胀高温合金的应用侧重点却有不同。首先,在航空领域以及行业应用中,由于低膨胀高温合金本身具有高强度以及低膨胀等性能特点,使得该类型的合金材料在进行航空设备发动机的转动部件与静止部件生产制造应用中,能够严格的进行生产制造部件间间隙与公差的控制,从而提高航空设备发动机能量的输出以及燃油效率,并且高强度的合金材料降低了飞机发动机的重量,使得低膨胀高温合金材料在燃气轮机以及蒸汽涡轮的密封环以及外环、隔热环、轴。机匣、叶片等结构部件制造中广泛应用。比如,CFM-56以及F101等发动机中都大量使用了低膨胀高温合金材料。而在航天领域中,低膨胀高温合金由于其特殊性能特征,在航天飞机的主发动机制造中,也被考虑应用。

3、结束语

总之,低膨胀高温合金是一种具有特殊和突出性能材料,在航天航空领域中有广泛应用,进行低膨胀高温合金材料的分析,有利于促进应用和发展,具有积极作用。

参考文献

[1]贾新云,赵宇新.长期时效对低膨胀高温合金GH783组织与性能的影响[J].航空材料学报.2006(4).

[2]郭绍庆,李晓红,袁鸿,毛唯,颜鸣皋.低膨胀高温合金焊缝金属凝固行为的模拟预测[J].航空材料学报.2004(6).

[3]孙雅茹,孙文儒,孙晓峰,郭守仁,刘正,胡壮麒.P的分布形态对一种低膨胀高温合金持久性能的影响[J].材料研究学报.2008(3).

[4]贾新云,赵宇新,张绍维.热处理对GH783合金组织与性能的影响[J].材料工程.2006(1).

相关文章
相关期刊