欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

人工智能在教学的应用优选九篇

时间:2023-08-21 17:10:34

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇人工智能在教学的应用范例。如需获取更多原创内容,可随时联系我们的客服老师。

人工智能在教学的应用

第1篇

[关键词]人工智能;中学辅助教育;教育资源

[DOI]10.13939/ki.zgsc.2016.36.197

1 中学教育现状

教育乃立国之本,而中学教育乃是重中之重。一方面,中学生处于青春的成长期,各项综合素质逐渐完善中,中学教育意义和责任重大;另一方面,中学教育仍然是应试教育为主,仍然需要面对千军万马过独木桥的“中考”“高考”,中学教育很大程度左右了学生的未来。

目前的中学教育资源,分为公共教育资源――公办/民办学校教育,和社会教育资源――私人家教、补习班等,有如下两个特点。

1.1 学生得到的公共教育资源不足

学校班级结构的构成是:一名班主任教师,多名科任教师。在大多数学校中,无论是班主任教师,还是科任教师,均会承担其他班级的教学任务。可以看出,教师资源是非常有限的,加上“中考”“高考”的上线压力,教师往往会将有限的精力分散关注在所有的学生上,每个学生得到的公共教育资源并不多。

1.2 学生获取的社会教育资源不公

学生若在学校无法获取更多的教育资源,将不得不转向社会教育资源去求助。据统计,学生参与社会教育资源的成本在200元/小时,学习费用成本过高,进一步造成普通学生的社会教育资源也无法获取。

本文要探讨的,正是通过人工智能这一现代信息化技术,构建智能辅助学习系统,使中学生能够获取到更多、更公平的教育资源。

2 智能辅助学习

2.1 人工智能简介

人工智能(Artificial Intelligence)是计算机科学的一个分支,是一门研究运用计算机模拟和延伸人脑功能的综合性学科,能够对人的意识、思维等信息过程进行模拟。随着计算机科学技术的发展,特别是近年来大数据技术的成功应用,人工智能在越来越多的行业展现出蓬勃的冲击力。以谷歌围棋机器人“阿尔法”、微软助理机器人“小娜”等为代表的虚拟智能机器人,能像人那样思考,也具备超过常人的智能。

在国内,人工智能在教育领域的理论研究和教学实践表现得越来越活跃,尽管人工智能并不是为教育专门研发的,但是人工智能的不断发展,使得其在教育中的应用也越来越广泛,教育的智能化一直是教育界和教育技术领域的理想和目标。

2.2 智能辅助学习系统

智能辅助学习系统,其表现形式是能够为每个学生,配备一个虚拟教师。学生能够通过电子设备(如手机、计算机),与虚拟教师进行交流对话,咨询虚拟教师各学科的问题,并得到有效的学习辅助。

该智能辅助学习系统,具备以下几个特征。

2.2.1 虚拟教师跨学科能力

与传统的教师专一某一学科不同,虚拟教师并没有学科边界划分。只要学习系统研发出某一学科的学习算法,该虚拟教师就能够获取该门学科的能力。

2.2.2 虚拟教师深度自学习

虚拟教师的“智能”来源于三方面。一是学生基本信息档案,该档案涵盖了从小学教育开始的学科成绩、综合能力、爱好特长等,虚拟教师得到学生的人物画像。二是虚拟教师对学生的自学习,每一次双方的沟通交流,虚拟教师都能够不断更新发展学生的画像。三是虚拟教师对学校课堂内容的自学习,虚拟教师并不是独立于学校教育存在的,而是作为学习教育资源的一个补充,虚拟教师能够掌握课堂进展、作业部署、考试动态等信息。

2.2.3 接近自然语义的沟通

学生与虚拟教师之间,可以通过自然语义的语音和文字进行沟通,如 “今天数学作业第2题不会”“《荷塘月色》全文中心思想是什么”“Lets start a conversation”等。其他计算辅助手段为补充,如上传某道数学题图片,虚拟教师通过图形识别匹配,给出该题的解题思路和讲解。

2.3 优势分析

智能辅助学习系统,有三大核心优势。

一是“即学即问”,相比目前的学校教育和社会教育,学生在学习遇到困难时,只有有限的时间与教师交流,在智能辅助学习系统中学生将不受空间、时间限制,随时随地可以与虚拟教师互动,获取充足的教育资源。

二是“定制教学”,相比目前的教育形式,课堂上教师与学生是一对多的关系,教师不可能专为某个学生定制教学方案,在智能辅助学习系统虚拟教师与学生是一对一的关系,虚拟教师能够更了解学生,根据学生的具体情况制订最佳学习方案。

三是“受众广阔”,相比目前的公共教育资源紧缺、社会教育资源费用昂贵,智能辅助学习系统一旦推广,受众学生可无限增加,边际效应非常明显。并且计算机系统设计特有的水平扩展能力,能够随着学生人数的增加而增加,支撑广大的学生辅助学习。

2.4 前景预测

笔者比较看好人工智能在中学辅助教育中的落地前景,除了前文所述的人工智能技术发展,为中学教育带来的价值外,当前国家政策和社会环境也非常有利。

第一,未来10年国家政府和教育部门会大幅增加在教育信息化产业上的投入,随着《国家中长期教育改革和发展纲要(2010―2020年)》和《教育信息化十年发展规划(2011―2020年)》等相关规划相继出台,各级地方政府和教育部门都非常重视教育信息化产业的投入,人工智能+云计算是重中之重,人工智能技术的兴起必将教育信息化推向一个新的高度。

第二,教育信息化逐渐成为风口,根据前瞻产业研究《中国在线教育市场前景与投资战略规划分析报告》统计,2015年在线教育市场规模大约为479亿美元,而这一数字在2020年预计将增长到504亿美元。这个持续迅猛增长的市场正在吸引越来越多的创意和资本,教育领域中的人工智能也很快会成为热点,涉足其中的高科技公司也会越来越多。

3 结 论

本文通过智能辅助学习系统,探索了人工智能在中学辅助教育中的一个应用。虽然没有介绍具体的技术实现、系统研发,但对现状痛点、应用前景做了综合性分析概述,相信随着科学技术的持续发展、教育领域的融合开放,本文探索的这个应用将实现于市场,使广大中学生能够获取到更多、更公平的教育资源。

参考文献:

[1]何维贵.利用现代化教学手段打造高效课堂[J].广西教育(中等教育),2013(6).

[2]王斐.人工智能在中学教育教学中的应用现状分析[J].中国医学教育技术,2013(4).

第2篇

关键词:隐喻;认知功能;外语教学

一、隐喻的认知功能

对隐喻认知功能的研究最早可追溯至亚里士多德时代。亚氏把隐喻看做是一个概念对另一个概念的替换,并且指出,诗歌中隐喻的运用有一定的语境(Mahon,1999)。隐喻的认知功能在17和18世纪再次被Vico和Teasaoro提及,只是进入20世纪以后,隐喻的认知功能才被贬低,隐喻被当成了一种静态的形式逻辑的符号。例如Searle(1977)从语言学的观点出发,把隐喻仅仅看做是一种语用现象。为此,莱科夫和约翰逊一针见血地指出,“典型的看法都认为隐喻仅仅是一种语言特点,是语言的问题而不是思想或行为问题”(Lakoff & Johnson, 1980)。他们以《我们赖以生存的隐喻》一书大张旗鼓地提出了隐喻的认知功能,从而把对隐喻的认知功能的研究推向前所未有的高度。他们认为,隐喻的本质是通过甲事物来理解和体验乙事物,人的概念系统就是通过隐喻建构起来的,即所谓“我们的思想和行为本质上都是隐喻的” (Lakoff,1980)。自此,对隐喻的认知功能的研究逐渐发展起来。卡梅伦(1999)也指出,隐喻具有语言修辞功能、认知功能和语用功能。国内学者束定芳在《隐喻学研究》一书中,把隐喻功能划分为修辞功能、语言学功能、诗歌功能、认知功能、社会功能和文字游戏功能。其中隐喻的认知功能主要指隐喻是人类认识概念系统的基础和组织经验的工具,为人类认识世界提供了新的视角。一般认为,隐喻的认知机制主要体现为从源领域到目标域的映射,表现为人的思维中存在的系统的概念隐喻。在特定语境中,这种概念隐喻常常意味着信息的筛选和整合,而且根据Lakoff的“不变原则”,这种认知映射具有系统性特点,即源领域的结构系统映射到目标域时,原有的基本图式结构不变。

二、外语教学中隐喻的应用研究回顾

卡梅伦较早地探讨了具有认知功能的隐喻的应用。她认为,隐喻首先是一种语言使用现象,语言的认知性与社会性相互作用产生了语言行为。因为语言是一个复杂的、动态的系统,语言资源只有在特定的语境中被应用、加工,才能达到互动的目的。作为语言学者,应当揭示种种语言行为的内在过程。因此,研究隐喻,要把隐喻的社会层面和认知层面都包括进来。在此基础上,卡梅伦建构了隐喻的应用框架:1)理论层面;2)加工层面;3)神经层面(Cameron, 1999)。近年来,第一层面主要研究隐喻的认定和分类,第二层面主要指隐喻在特定文化语境下的作用和解释,第三层面研究处理隐喻时的神经活动。国外对隐喻的认知功能的应用研究已逐渐扩展到很多领域,例如Gwyn(1999)有关隐喻的认知功能在医疗中的应用研究,Clarke (1999)对儿童话语中隐喻的分析,Forceville(2000)对广告中隐喻的认知作用的研究,等等。

相比之下,在外语教学领域里,有关隐喻认知功能的应用研究要少得多,仅有零星的研究散见在认知语言学著作里。在首届全国认知语言学研讨会上,庞继贤和丁展平(2002)曾撰文讨论过隐喻的应用语言学研究,尝试把卡梅伦的三个层面应用于外语教学。王寅(2004)提出了在外语教学中培养学生的隐喻能力的问题,蔡龙权(2005)也提出了把隐喻性表达作为一项外语交际能力的设想。但是隐喻的研究成果仍未在外语教学领域里引起足够的重视。国外的相关研究亦很少,且多为母语为英语的二语习得研究。例如Cameron(2003)对英语国家课堂中出现的隐喻的分析,Cortazzi(1999)对本族语教师与学生有关“教学”、“教师”等概念的隐喻性理解和表达的研究。另外,这些研究也都没有直接探讨外语教学和隐喻的关系。

鉴于此,本文拟在前人研究的基础上探讨隐喻在外语教学中的主要应用层面,分析外语教学中隐喻应用的可能性,以期为隐喻的认知功能在外语教学中的进一步应用探索路径。

三、隐喻的认知功能在外语教学中的应用

隐喻作为一种认知模式,出现在政治、经济等各类语篇中(孙厌舒,2004)。我们的外语教材中也有大量的隐喻。隐喻在外语教学中的作用不容忽视。

基于卡梅伦的应用框架理论,在中国文化语境下,隐喻在外语教学中的应用也可分为三个层面:1)语言层面;2)交际层面;3)文化层面。语言层面主要包括隐喻的认知功能在外语教学中对各种语言现象的提炼和组织的作用。隐喻在交际层面上的应用是培养学生语言能力的重要方面,也是外语教学中经常涉及的问题。文化层面上,隐喻的认知功能在外语教学中主要涉及到文化教学与语篇理解。

第3篇

关键词:人工智能;教育;应用;问题

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2012)03-0159-02

人工智能是研究如何构造智能机器(智能计算机)或智能系统,使其模拟、延伸、扩展人类智能的学科。随着人工智能的理论与技术在社会各个领域的广泛应用,其在教育领域内的应用也越来越受到重视,并取得了一定的研究成果。

一、人工智能教育应用的主要形式

人工智能在教育领域应用的最直接结果就是诞生了智能教学系统。智能教学系统是以计算机辅助教学为基础而兴起的,它是以学生为中心,以计算机为媒介,利用计算机模拟教学专家的思维过程而形成的开放式人机交互系统。目前,智能教学系统已成为人工智能在教育中应用的主要形式。智能教学系统主要是在知识表示、推理方法和自然语言理解等方面应用了人工智能原理。由于它综合了知识专家、教师与学生三者的活动,因此,与之相对应的,智能教学系统一般分成知识库、教学策略和学生模型三个基本模块,再加上一个自然语言智能接口。智能教学系统的功能具体来说有以下几条:了解每个学生的学习能力、认知特点和当前知识水平;能根据学生的不同特点选择适当的教学内容和教学方法,并可对学生进行有针对性的个别指导;允许学生用自然语言与“计算机导师”进行人机对话。智能教学系统的设计不仅要有计算机科学的知识,还需要有教育科学的理论指导。

二、人工智能在教育中应用的局限性分析

1.阻碍人工智能发展的关键因素。在人工智能的发展中,一直存在着对“计算机是否能代替人脑甚至超过人脑”的问题的讨论,实际上,以电子计算机为主要工具模拟人的某些思维活动而产生的人工智能是有局限的。①计算机处理问题的根本原理。要计算机解决某种问题,有三个基本的前提:必须把问题形式化;问题还必须是可计算的,即要有一定的算法;问题必须有合理的复杂度,即要避免指数爆炸。由于人的智能活动不能完全形式化,因此,机器就不能将人脑的智力活动全部复制出来。电子计算机最终只能把握0、1这两个开关代码,遇到不能形式化、不能找到算法或不能程序化的任务,计算机则难以执行。②人和机器之间的根本区别。智能模拟利用了人和机器的共性,即两者都是一个信息转换系统,但两者之间存在着不容忽视的本质区别。智能模拟与天然智能属于两种不同的进化系统,人类的智能是人类社会实践的产物,机器的智能是机械制造的结果。大脑和电脑的组织结构也不相同,两者属于两种不同的运动过程,前者是复杂的生理--心理过程,后者是机械--物理过程。智能模拟可以在局部上超过天然智能,但是,模拟的根本方法是功能模拟法,两个系统在结构和实际过程上是不一样的。智能模拟不具有人的思维的社会性,不具有主观世界。

2.人工智能在教育中应用的局限。就目前人工智能的发展水平以及人工智能本身的特点而言,它在教育中的应用也是有其局限性的。①与学生之间无法畅通交流。教育本质上是一种“交互”活动,而智能教学系统无法实现最充分、最真实的交互。目前自然语言理解的研究成果非常有限,远不能达到人人交流的要求。此外,就态度、品德、情感等教育问题而言,机器只能通过学生输入计算机的信息来判断其掌握和内化程度,而无法像人类教师通过自然状态的交流和观察来判断学生的真实情况,因此,“机器智能”很容易被蒙蔽“双眼”,无法做到像人与人之间那样自然畅通的交流。②决策和推理机制不完善。智能教学系统的关键智能所在是其决策和推理机制,即“教学策略”模块根据不同学生的具体情况通过推理做出灵活决策,这种决策基于学生模块提供的有关学生的知识水平、认知特点和学习风格,而这些不能完全被形式化。同时,随着教育理念的不断更新以及教学模式和教学方法的不断改进,系统所应用的教学策略模块用于评估和判断学生学习过程的能力是有限的。③人工智能并非适合所有的学习领域。根据加涅的学习结果分类,学习分为言语信息、智慧技能、认知策略、动作技能和态度五类。言语信息分为符号学习、事实学习和有组织的知识学习,这些属于可形式化内容,适用于智能教学系统;智慧技能分为辨别、具体概念、定义性概念、规则和高级规则,其中前四项属于可形式化内容,适用于智能教学系统,而高级规则属于复杂――形式化内容,部分内容不适用于智能教学系统;动作技能和态度领域的学习,在其认知成分中可以使用智能教学系统,但情感和行为成分等非形式化内容,则难以用智能教学系统来实现。因此,并不是所有的学习领域都适用于智能教学系统。智能教学系统在教育中应用的重点应放在认知领域中的符号学习、事实学习和有组织的知识学习、辨别、具体概念、定义性概念以及规则这些学习内容上。

三、人工智能教育应用的发展方向

近年来,随着计算机技术、网络技术、人工智能技术以及现代教育教学理论的发展,人工智能在教育中应用的发展呈现出以下几个趋势。

1.开始突破单一的个别化教学模式。长期以来,计算机辅助教学系统和智能教学系统都是强调个别化教学模式,这种模式在发挥学生的学习积极性、主动性和进行因人而异的指导等方面确实有许多优点。但是,随着认知学习理论研究的进展,人们发现在计算机辅助教学系统和智能教学系统中只强调个别化是不够的,在某些场合(例如问题求解)采用协作方式往往更能奏效。因此,近年来在智能教学系统中,协作型教学模式得到越来越多的重视和研究。

2.智能教学系统日益与超媒体技术相结合。超媒体系统具有良好的开发环境、灵活方便的用户界面以及图、文、声并茂的特点,而且其信息的组织方式与人类认知的联想记忆习惯相符,已成为目前一种最理想的信息载体和最有效的信息组织与信息管理技术,在许多领域尤其是教育领域有广阔的应用前景。把超媒体技术引入智能教学系统,从而发展成为智能超媒体辅助教学系统,可以大大改善计算机辅助教学系统的教学环境,激发学生的学习积极性,从而显著提高教学效果。

3.智能教学系统与网络的关系日益密切。网络的应用和普及为远程教育和终身教育提供了一个良好的空间。当前,智能教学与多媒体网络的结合成为人工智能在教育中应用的一个势不可挡的发展趋势。

4.传统人工智能与神经网络模糊决策机制相结合。传统人工智能从宏观角度开展认知模拟,可以部分地模拟人类的逻辑思维过程,而神经网络模糊决策机制从微观方面进行认知模拟,着力实现模仿人类右脑的模糊处理功能和整个大脑的并行化处理功能。今后将探索一种新的智能处理模型:把神经网络的模糊决策机制和符号专家系统的推理能力结合起来,利用多重知识源、多种模型进行复合协同处理。如果上述技术能够成熟运用,那将对人工智能的发展及其在教育中的应用起到决定性的作用。

参考文献:

[1]王士同.人工智能教程[M].北京:电子工业出版社,2001.

[2]王永庆.人工智能原理与方法[M].西安:西安交通大学出版社,1998.

[3]何克抗.计算机辅助教育[M].北京:高等教育出版社,1997.

[4]徐鹏,王以宁.国内人工智能教育应用研究现状与反思[J].现代远距离教育,2009,(5):3-5.

第4篇

2016年1月,美国佐治亚理工学院计算机学院的教授AshokGoel,借助IBM的Watson人工智能系统创建了一个在线机器人JillWatson,并将其作为课程教学助理。其目的是帮助教师回答学生通过在线论坛提出的大量课程问题。通过几个月的反复调试,JillWatson的回答已经能够达到97%的正确率。现在,机器人助教已经可以直接与学生沟通,不需要真人助教的帮助。这项人工智能在教育中的使用,解决了AshokGoel教授的助教人数不够,难以及时回答学生提问的困境,增加了学生参与在线学习的兴趣,提高了在线学习的留存率。

这只是人工智能在教育领域的小试牛刀。虽然有专家预测在未来十年内不会看到人形机器人替代教师进入课堂,不过地平线报告2016年基础教育版和2107年高等教育版都预测未来五年内人工智能将会在教育行业普及。

教育行业已有的人工智能研究和应用

Woolf等人在2013年提出了人工智能在教育领域应努力解决“五大挑战”:①为每一个学习者提供虚拟导师:无处不在地支持用户建模、社会仿真和知识表达的整合。②解决21世纪技能:协助学习者自我定位、自我評估、团队合作等。③交互数据分析:对个人学习、社会环境、学习环境、个人兴趣等大量数据的汇集。④为全球课堂提供机会:增加全球教室的互联性与可访问性。⑤终身学习技术:让学习走出课堂,进入社会。

过去十年,一些研究者对人工智能在教育领域中的应用做了大量的探索。相关的研究成果包括:①跟踪学习者的思维步骤和解决问题的潜在目标结构(Anderson等,1995);②诊断误解和评估学习者的理解域(VanLehn,1988);③提供及时的指导、反馈和解释(Shute,2008);④促进高效学习的行为,如自我调节、自我监控和自我解释(Azevedo&Hadwin,2005);⑤以合适的难度水平和最适当的内容来规划学习活动(VanLehn,2006)。

这些研究,基本上使用到了人工智能的每一项技术——自然语言处理、不确定性推理、规划、认知模型、案例推理、机器学习等。“智能导师系统”就是基于这些研究和技术而开发的人工智能教育应用。类似的成熟产品包括Tabtor(hellothinkster.com)、CarnegieLearning(carnegielearning.com)和FrontRow(frontrowed.com)。2014年,加拿大西蒙弗雷泽大学的一项试验发现用智能导师系统的学习者比使用其他教学方法的学习者获得的成绩更高。

人工智能在教育行业的新发展

教育行业的三种类型(内容、平台和评估)的服务商都在经历着一场变革。内容出版商面临纸质印刷到数字出版和开放教育内容的挑战。学习平台正试图区分自适应、个性化和数据分析的功能。评估供应商则继续探寻从多项选择题测试转向更具创新性的问题类型。人工智能将为这三种类型教育服务商带来新的发展思路和契机,同时也惠及教育生态系统中的所有利益相关者。学生通过即时反馈和指导提高学习效率,教师将获得丰富的学习分析和个性化指导经验,父母能够低成本地为孩子改进职业前景,学校能够规模化提高教育质量,政府能够提供负担得起的教育。2017年,人工智能将在以下领域发挥其效益。

1.人工智能批改作业

批改作业和试卷是一件乏味的工作,这通常会占据教师大量的时间,而这些时间本可以更多地用于与学生互动、教学设计和专业发展。

目前,人工智能批改作业已经相当接近真人教师了,除了选择题、填空题外,作文的批改能力已经大幅提高。美国斯坦福大学已经成功开发出一种机器学习程序,能够批改8~10年级的作文。随着图像识别能力的大幅提高,手写答案的识别也接近可能。就连占有美国标准化考试60%市场份额的全球最大教育企业——培生公司也认为,人工智能已经可以出现在教室并提供足够可信的评估。据培生公司近期的报告IntelligenceUnleashed推测,人工智能软件所具有的广泛的、定制的反馈能够最终淘汰传统测试。

2.人工智能实现一对一辅导

自适应学习软件已经能为学生提供个性化学习支撑。据2011年VanLehn的一项研究发现,人工智能在某些特定主题和方法上比未经训练的导师更具有效性。进一步的研究发现,人工智能导师能在学生出错的具体步骤上给予实时干预,而不是就整个问题的答案给予反馈(Corbett&Anderson,2001;Shute,2008)。

自适应学习在拉美地区正在兴起。AndréUrani市政学校的学生使用人工智能软件Geekie观看在线课程(视频和练习)。Geekie为学生提供每一步的实时反馈,并随着学习的进展来传授更为精细的课程内容。

早在1984年,本杰明·布卢姆的研究就提出一对一辅导能带来更好的学习效果。而人工智能技术可以模拟一对一辅导,以更好地跟踪、适应和支持个体学习者。这将是人工智能在教育中更高层次的个性化学习应用。例如,比尔·盖茨看好的人工智能聊天机器人或个人虚拟导师,能在学生面临挑战时提供强有力的支持,随时随地回答学生的提问;还可以为学生订制学习方案和规划职业发展路径,并引导学生走向成功。更重要的是,人工智能可以匹配聊天机器人或虚拟导师的面孔和声音来满足学生个人喜好。对比网页界面的自适应学习系统,这才是真正做到了一人一导师。

3.人工智能关注学生情感

2016年地平线报告高等教育版把情感计算列为教育技术发展普及的重要方向。也就是说,人工智能不仅限于模拟人类传递知识,还能通过生物监测技术(皮肤电导、面部表情、姿势、声音等)来了解学生在学习中的情绪,适时调整教育方法和策略。例如,机器人导师捕捉到学生厌烦的面部表情时,就可以立即改变教学方式努力激发他们的兴趣。这种关注情感的人机交流为学生营造一个更真实的个性化学习环境,更好地维持了学习者的动机。美国匹兹堡大学开发的AttentiveLearner智能移动学习系统就能通过手势监测学生的思想是否集中。突尼斯苏斯国家工程学院的研究人员正在研究开发基于网络的人工智能教学系统。该系统能够识别学生在任何地方开展科学实验的面部表情,以优化远程虚拟实验室的教学过程。

进一步的研究发现,人工智能还可以关注学生的心理健康。当前已经有使用人工智能来为自闭症儿童提供有效支持的案例。例如,伦敦知识实验室在Topcliffe小学开展试验,让自闭症学生与半自动虚拟男孩安迪开展互动交流,研究人员发现患有自闭症的学生在社交能力方面有进步。

4.人工智能改进数字出版

教科书等课程材料并非总是完美,传统印刷出版让课程的修订变得过于缓慢。这不仅是生产工艺的问题,更主要的是纸质课程材料无法快速获取使用者的反饋来识别缺陷所在。而数字化出版在人工智能的支撑下能彻底改变这一现状。

人工智能可帮助使用者快速识别课程缺陷。大规模网络开放课程Coursera的提供者已经将这一想法付诸实践。当发现大量学生的作业提交了错误的答案时,系统会提示课程材料的缺陷,进而有助于弥补课程的不足。

另一项人工智能在数字化出版的应用是自动化组织和编写教材。这是基于深度学习系统能模仿人类的行为进行读和写。ScottR.Parfitt博士的内容技术公司CTI就依据这项技术帮助教师定制教科书——教师导入教学大纲,CTI的人工智能引擎能自动填充教科书的核心内容。

随着自然用户界面和自然语言处理在人工智能领域的成熟应用,课程材料的数字化出版也会有更新的形态——不再局限于书本或网页的形式,聊天机器人和虚拟导师将成为内容表达的更好的方式。

5.人工智能作为学生

多年的研究表明,教会别人才是更好的学习,即learning-by-teaching。美国斯坦福大学教育学教授DanielSchwartz正基于这一理念来开发新的人工智能产品。他联合了多个领域的专家一起开发了人工智能应用——贝蒂的大脑(Betty’sBrain),让学生来教贝蒂学习生物知识。试点研究发现,使用这一方法来学习的学生比其他学生成绩更好,且在科学推理上也更胜一筹。

类似的研究和开发还有瑞典隆德大学的TimeElf和美国卡内基梅隆大学的SimStudent,这两个人工智能产品也是基于learning-by-teaching而开发,让学生在教会机器人知识的过程中深化对知识的理解。

另外,人工智能还推动其他教育方法和技术更好实现。如让虚拟现实学习环境更具沉浸感;给学生带来更多动手实践的机会;提供基于丰富学习分析的仿真和游戏化学习场景等。

第5篇

随着信息技术的不断发展,计算机科学渗透生活的各个领域,改变了人们的生活方式和学习方式。其中,人工智能作为计算机科学中迅猛发展的一部分,正在以其独特的魅力走进人们的视野。“人工智能”(Artificial Intelligence),顾名思义,即通过应用计算机来模拟人脑的信息接收、思考、判断以及决策等思维行为过程,进而扩展人脑的思维和行动,帮助人们高效智能化地解决特定问题。近年,人工智能在教育领域中发挥的作用越来越显著[1],其与众不同的特点决定了其在教育培训中的地位,将人工智能应用在农业知识培训中的可行性也成为教育界热议的新话题。

1我国农业发展背景和农业培训必要性分析

11我国农业发展背景

我国是传统的农业大国,农业对我国的经济发展具有极其重要的影响,一方面是由于我国人口基数大;另一方面是由于我国进出口贸易主要依靠农产品,农业发展成为影响我国经济发展最重要的因素之一。但由于各方面原因,我国农业发展还比较落后,尤其与发达国家的现代化农业相比,依旧有较大差距。

12开展农业知识培训的必要性

反思其他发达国家在?r业发展上实施过的举措,包括重视农业教育、科研和技术推广,注意提高劳动者素质;推广现代农业机械和高技术,重视农场管理;经营集约化、产业化;生产专业化;服务社会化;市场机制与政府扶持相结合;加强农业基础设施建设等,可以看出,我国在农业知识培训、素质教育、技术推广方面与发达国家差距明显。为发展我国农业,培养一批高素质、懂技术、会经营的农民以及一批愿意为农业发展做出自己贡献的高学历人才成为关键。农业的发展离不开农民的发展和进步,也离不开受过高等教育的精英人才的共同努力,而开展农业知识培训,则是为他们的发展奠定了一条夯实的道路。

2人工智能在教育中的应用与发展

近年来,伴随着人工智能在各行业的应用和发展,人工智能在教育领域中发挥的作用也越来越显著。例如,智能化的作业批改可以大大减轻教育工作者的沉重负担,在线学习等网络教学模式可以让人们更灵活地接受教育。从人工智能诞生伊始,其就与教育产生了密不可分的联系,延续发展至今,人工智能在教育领域中的应用主要包含以下几个方面。

21基于人工智能的计算机网络课程

计算机网络教育是对传统教育方式的一次革新,而人工智能对网络教育的渗透,又将其推向了新的发展高度。[2]学生可以自主地登录网络平台进行在线学习,根据智能导学系统制订学习计划,进行在线测试。例如近年来大为流行的MOOC课程,学生可以便捷地通过网络获取全球最高质量的教学资源,并可以量身打造自己的学习计划。

22基于人工智能的教师辅助系统

近十年来,智能传感器、语音识别、图像识别、深度学习、大数据等方面的蓬勃发展令信息的采集及处理越来越准确高效,这无疑使得人工智能与辅助教学系统的融合变得越来越深入。借助于语音识别、图像识别等技术,学生可以将学习过程中遇到的问题上传至系统,借助于数据库系统对信息准确的搜素和整合能力,实时地为学生提供答案或相关信息,答疑解惑。目前此类应用软件的应用广泛,例如小猿搜题、百度作业帮等。

23基于人工智能的教育数据库系统

随着信息化时代的到来,如何高效地搜集、分类和检索碎片化的教育信息和教学资源,无疑是一项巨大的挑战。为了更有效地分配和管理信息,在教育中引入智能化的数据库系统势在必行。现如今数据挖掘和深度学习的研究成果不断深入,依托知识库系统对教育信息的整合与构建,学生可以将已习得的零星的知识点进行扩充,由点至面的不断学习新知识;依托教育资源管理系统中来,教育管理工作者可以合理分配教学资源,让人们从爆炸式的高密度信息中解放出来,真正做到物为己用,因材施教。

3人工智能与农业知识培训的结合

新时代社会经济的发展为国家农业产业的发展翻开了新的篇章,如何加快社会主义农业现代化,促进农业转型,这为新时代的农业知识教育提出了新的要求。另外,近年来劳动力转型的趋势日益显著。随着农业劳动人口数量的减少,为了提高农业生产效率,需要有素质、懂知识的农民投入农业生产中来。因而,对于农业知识培训的革新作为农业现代化建设的重中之重,已被提上日程。

人工智能技术和教育领域融合的不断完善成熟,基于人工智能的农业知识培训正如雨后春笋般涌现,在农业教育培训领域崭露头角。

31人工智能应用于农业知识培训的优势

从我国农业发展的现状看,较之于发达国家,我国农业从业者的基数巨大但是整体受教育程度偏低,农业专业领域的知识匮乏,农业知识教育的推广不仅薄弱,而且效率低下。因此,伴随着信息化时代“互联网+”的新型教育模式对传统教模式的强有力革新,基于人工智能的农业知识培训展示了其强大的威力和优势,具体可以总结为如下两个方面。

311个性化教育针对性强

相比于课堂教学的传统模式,基于人工智能的网上在线教育模式能够为学生个性化地制订学习计划,灵活安排学习时间。这有力地解决了学生参加农业知识培训的时间成本问题,农业从业者可利用闲暇时间自主安排学习。另外,针对于培训者的当前知识水平和培训需求,培训平台可以个性化地安排教学相关领域的专业知识和操作技能。

312教育资源利用率高

我国当前的农业知识培训,教育教师需求数量和实际在岗教师资源极不匹配,具备丰富农业专业知识和农业生产经验的教师数量缺乏,这是导致农业知识培训推广速度缓慢的重要原因。而人工智能为这一问题的解决带来了福音,智能化的教学进程得以让教师从繁重的教学负担中解放。同时,基于网络的课程资源共享可以让先进的农业技术走进千家万户,让学生与优秀农业知识的距离不再遥远。

4平台开发的系统架构

基于人工智能技术,一个合理的农业知识培训平台能够像一个优秀的教师那样具备完备的农业专业知识和优良的教学技能知识,并且能够模拟及扩充教师的教学过程。除此之外,该培训平台还能够准确实时地与学生进行信息交互,有针对性地开展个性化教学,并可以自适应地完成教学效力评估和反馈,不断更新和完善教学内容和教学策略。基于以上分析,该开发平台的系统架构分为学生模型、教师模型、综合数据库模型和人机交互接口四个组成部分,结合下图对每一部分分别进行详细阐述。

41学生模型

学生模型应针对不同的学生,准确地评估学生当前的学习水平,对学生的学习背景、知识水平、知识架构进行诊断和评定,以便有针对性地制订教学方案,进而实施个性化教育。

另外,学生模型需要对学习过程中的学生的学习情况进行记录入库,对教育效果进行评定,从而诊断出当前教学计划是否合适,以便下述教师模型中对教学内容和教学策略的灵活调整。

42教师模型

教师是教学工作开展过程中的主体,一个合理的教师模型应该包括如下三个部分。

教师模型首先完成教学内容的选择,这要根据学生模型中对学生当前的学习水平的评定,并且针对学生既定的学习目标,并从下述知识库中调取对应的内容,为教学的开展做好准备。

在确定了教什么的问题之后,教室模型要确定如何教的问题,即选取合理的教学策略开展教学。教学方式的选择依附于学生模型,而又能根据学生学习情况记录进行反馈动态,不断完善和调整教学策略。

另外,在传统教学模式中,教师传授知识,并能为学生答疑解惑。当学生在学习过程中遇到问题和疑惑时,教师模型应该实时地提供信息支持,为学生提供针对性的帮助。因而教师模型要实现与人机交互接口的实时连接,在问题到来时控制模块驱动应答部分为学生答疑解惑。

43综合数据库模型

综合数据库模块为农业知识培训系统提供数据库支持,主要包括以下三个模块。

知识库模块中分类别地存放着农业领域的专业知识,包括文本、图像、自然语言、多媒体等多个类型的学习知识。一旦教师模型中完成了教学内容的选择,便由此模块中调取相对应的文件开展教学。

专家评估模块用于处理教学过程中的教学效果评价和经验总结,为教师模型中的各个环节的反馈和更新迭代提供数据支持。在一个完善的教学过程,教师需要根据学生的学习效果进行总结和反馈,以此指导下一步的教学内容和策略的更新。

为了对学生阶段性学习的效果进行评估,还需要引入测试考核模块对学生的成绩进行量化考核。测试考核模块中包含学生答题库和成绩测评库,准确检测出开展农业知识培?的作用与效果。

44人机交互接口

基于人工智能的农业知识培训的过程是学生和系统进行交流的过程,所以一个友好的人机接口是系统必不可少的组成部分。在这一模块中,友好的图形用户界面的设计能够帮助学生流畅地接收信息,提高学习效率。同时,借助于人工智能中对语音和图像信号的先进识别技术,人机交互接口可以智能化地接收分析和理解学生的自然语言信息和动作信息,进而为系统提供宝贵的输入信息。

第6篇

【关键词】人工智能;计算机;辅助教学;应用

计算机辅助教学是一种新兴的教学手段,帮助课堂进入到一种更加智能化和现代化的环境与条件中,将传统的教学模式和方法与多媒体和网络结合起来,为学生营造更好更有趣的教学氛围。但是由于技术的不成熟以及经验的不充分,导致其依旧存在问题和不足。

1计算机辅助教学开展现状和发展困境

1.1缺少开放包容的特性

近年来,计算机辅助教学的开发和应用已取得了一些较好的成绩,但由于我国计算机网络工程和相关领域的技术革新起步较晚,对于计算机教学的发展与改革依旧存在较多的不足和缺陷。首先是在开放包容性上的缺失。这一缺失的原因主要来自于两个方面,第一个方面是思想上的落后和闭塞,人们对于计算机辅助教学的态度依旧存在负面和抵触的情绪,这是由于害怕计算机的加入让课堂和教学秩序失控,所以并没有充分开发和展现出计算机在教学中的优势。第二个方面是技术层面上的限制,我国对于计算机辅助教学的课件和软件技术都只是按照一种最传统和安全的方式进行,缺少探索和冒险的精神、开放和包容的态度[1]。

1.2缺少人机交互的能力

计算机辅助教学过程中,计算机不仅仅是一个信息的载体,更应该将其当作课堂的一份子,能够充分参与到整个课堂的活动和教学工作中。但是大多数的智慧课堂在使用计算机时,仅仅利用其多媒体的播放功能,教学的主体和主要角色依旧是教师,只是把课本和板书照搬到了多媒体课件中。教学的内容仍然是枯燥和单一的,学生依旧带有一种被强迫的学习心理。这种教学缺乏人机之间的交互,机器不能自主获取学生学习的状态和对知识的掌握情况,学生也无法通过计算机主动地得到反馈和解答,让人机之间仅仅是流程化的配合和交流。在这种刻板的学习模式下,甚至会让一部分学生丧失学习的乐趣和兴趣。

1.3缺少课程教学的特点

不同的课程有着不同的教学重点和偏向,这就对教师的教学工作提出了更高的要求,计算机的加入,本来应该能够为教师提供一个新的教学方向和思路,但是由于计算机的便捷性导致一部分教师产生偷懒和敷衍的教学心态,在教学过程中全程使用多媒体播放课件,丧失了课程自身的特性和特质。尤其是一些对实践能力要求较高的课程,教师过度使用计算机只会导致教学趣味性的流失。

1.4缺少师生互动的乐趣

教师作为课堂教学的主要角色,不仅仅是要把知识以一种通俗外化的形式传递给学生,更是应该做学生心理特征的发掘者、学生学习习惯的纠正者和帮助者。教师的鼓励和赞许都会对学生起到重要作用。但是计算机辅助教学之后,教师将更多的精力放到了如何制作精美的教学课件上,而忽略了与学生之间最直接的感情和语言交流,丧失师生互动的乐趣。

1.5缺少有序的教学策略

教学策略是保证一节课是否能够有序开展和进行的重要条件与因素。但是计算机参与和设计的教学环节,只是一个程式化的展示,在课堂上会遇到多种多变的教学情况,一旦在某一个环节出现问题,就有可能导致计算机设计的教学步骤全部打乱,陷入一种无序的状态中[2]。1.6缺少灵活的智能性能计算机技术的开发和应用在我国已经逐渐形成了一套完善和成熟的体系,但是计算机在教学中的应用与引进时间并不长,导致当前多数计算机辅助下的课堂并不具备充分的灵活和智能性,大部分的教学工作和考核评价工作依旧是由教师人工完成,对于不同学生的学习状态掌握也有所偏差。

2人工智能在计算机辅助教学中的应用

2.1建立知识库

人工智能在计算机辅助教学中应用的主要原则,就是将深度学习与认知学的理论知识作为整个程序模块设计开发的基础,通过建立一个知识库,将收集到的知识案例进行分类,训练机器进行自动识别,从而提取和分析出不同学生在不同的知识中所表现出来的学习能力与掌握熟练程度,进而可以有针对性和有选择性地进行复习与巩固,达到机器代替部分人工教学、缓解教师压力的目的。第一步就需要进行知识库的建立,主要包括了专家决策的核心系统对所输入的知识进行判断与筛选调取。同时知识库还可以实现共享的功能,对知识进行简化与提炼,做到精益求精。知识库的搭建应该要尽量简单和易修改[3]。

2.2打造专家模块

在建立了知识库之后,就需要围绕人工智能教学的主要目的进行专家模块的打造,专家模块存在的意义在于能够将其比喻为整个学习系统中的推理机。在需要和使用的情况下,由专家模块自动随机地生成问题,并且可以通过知识库的相关内容调取形成答案并充分解释。其次,专家模块的另一个作用就在于能够帮助评价和考核学生的学习情况,实现一种更加公正透明的评价过程。在进行专家模块打造时,通常使用的是两种方法,一种是固定算法,即根据题库的问题模板,循规蹈矩、规规范范地进行问题的设立和解答的编写。而另一种就是启发策略,这种专家模块更多的是引导学生通过简单和有限的提示信息,自己推理摸索找寻正确的答案和解决方案。除此之外,专家模块还可以自动匹配,依据学生能力分配问题。

2.3建立学生模块

与专家模块相互配合相互辅助的就是学生模块。学生模块的本质其实也属于专家系统,模块内部所存储和容纳的是学生的不同学习习惯和学习行为特征。这个模块建立的目的主要是两个,一个是为了让学生在学习的过程中可能出现的错误习惯和方法被快速识别,并且能够通过机器语言进行记忆与编译,从而建立一个比较完整和全面的错误类型数据库,进而深层分析找到错误的原因。第二个目的就是为了帮助学生对错误学习行为和习惯进行解释,从更加深层次的角度挖掘学生由于知识理论掌握不充分而导致错误的原因。学生模式的建立一般依靠的就是人工智能的自我学习和接受训练让系统能够建立起模型对学生的学习习惯进行模拟。这样在上一步打造的专家模型就可以为学生模型提供一个对比的样本,专家模型的两种运算和教学方式可以分别评估学生的学习能力和学习错误[4]。

2.4优化教学模块

教学模块是人工智能在计算机辅助教学模式中必不可少的一个环节,教学模块的内容是基于传统教学设计和规划之上的。在计算机与人进行交互的过程中,教学策略主要是由教学的不同分支来体现,能够达到较好的发散性和综合性的效果。但是其不足的地方也比较明显,那就是只能按照某一类型或者某一个的教学方法进行,系统不能快速地根据不同内容识别和选择最适合最有效率的教学模式。具体的应用和实现过程就是将专家模块和学生模块的内容进行连接和合并,将专家模块生成的问题及答案与学生模块中上传和学习到的进行对比,选择覆盖或者是分析提取,能够比较客观地发现学生学习中存在的理解性偏差和实践性错误。之后再将结果传回到知识库中,调用相关的知识内容,形成一个完整的反馈链,帮助教师做出教学决策,调整教学进度和教学规划。但是这个模块的设计也应该充分考虑到诸多情况和因素,因此在条件判断时应加入更多的循环。

2.5开发智能接口模块

人工智能在计算机辅助教学模式中的应用和融合最后一步就是要开发出一个稳定和高效能的智能接口模块,主要作用是为了连接学生和计算机之间的信息交换和沟通,即进行信息的输入与传出。在接收到学生传递的学习信号后,接口模块要及时调动起教学模块、专家模块和学生模块,把信息传递给不同模块处理,之后再由教学模块所作出的教学决策和结果论证信息输出反馈给人,实现了机器语言与人类语言之间的转化。一个能够正常运转并且具备较高实用性和参考性的教学系统,一定融汇了思想教学、策略和心理学等多方面的因素和知识内容体系,所以智能接口模块的设计与开发,一定要全面考虑这些成分,开发出更加灵活多变的接口模块[5]。

3结语

人工智能在近年来获得了快速的发展和进步,成为我国当前各个行业领域之内炙手可热的先进技术。对于计算机辅助教学的开展和改革来说,人工智能的融入与应用有着重要的价值与意义。

参考文献

[1]张镒麟.关于计算机辅助教学中人工智能技术的应用研究[J].当代旅游,2019(1):239.

[2]刘荫.人工智能在计算机网络技术中的应用研究[J].科学与信息化,2019(2):20-21.

[3]孙玉梅,赵骏,王美春,等.基于人工智能技术的《单片机原理及应用》课程CAI软件研制[J].教育教学论坛,2016(45):268-270.

[4]张园.人工智能技术在计算机辅助教学中的应用研究[J].科技资讯,2007(34):108-109.

第7篇

关键词:教学改革;人工智能;游戏设计;游戏编程

人工智能(Artificial Intelligence,AI)是计算机科学的一个分支,是研究、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学[1]。人工智能技术研究领域包括机器人、模式识别、自然语言处理、机器学习、数据挖掘、人工神经网络和专家系统等[2],其最为广泛的应用之一就是游戏设计[3]。游戏设计虽然涉及多门学科,但其作为应用并没有形成一门单独的理论[4-5]。由于游戏存在较大的市场以及其作为人工智能的一个重要应用,国外已有多所大学开设了游戏设计课程。如卡内基梅隆大学(Carnegie Mellon University)于1999年设立了娱乐科技硕士学位,并开设了相关课程;南加州大学(The University of Southern California)设立了为期3年的互动媒体艺术(fine arts in interactive media)硕士学位课程,并于大学部设立电子游戏设计(video-game design)副修课程。该校也为美国军队创作训练士兵的电子游戏,透过战斗情境模拟来进行沙盘演练。麻省理工学院(Massachusetts Institute of Technology)提供多种电子游戏设计相关课程,并研发将电玩游戏纳入教室教学的方法。斯坦福大学(Stanford University)提供电子游戏设计史及包含最佳电子游戏竞赛奖的计算机绘图课程。华盛顿艺术学院(The Art Institute of Washington)为亚特兰大艺术学院的分校,提供授予学士学位的视觉及游戏程序设计课程。在初期的艺术与设计重点培训后,学生将学习立体动画相关技术。国内也有多所高校开设了游戏设计的相关课程,如北京邮电大学,首都师范大学等,为了适应市场许多培训机构也开设了游戏设计课程,但培训机构将课程的重点放在了实际的编辑代码中而过少的关注理论。中南大学开设人工智能课程已有20多年的历史,在教学实践中,中南大学智能系统与智能软件研究所的教师们在教学科研方面取得了许多令人振奋的成果。在良好的环境中,人工智能与游戏编程课程应运而生[6-7]。

1教学目标与要求

中南大学人工智能与游戏设计课程主要面向智能方向4年级学生,在4年级第一学期开设。学习该门课程之前需要具备人工智能以及计算机编程方面的课程知识,并且需要一定的计算机图形学的相关知识基础。

此门课程的学习使学生了解游戏设计与虚拟现实的基本概念和术语及其基本设计方法,理解人工智能在游戏中的相关应用,熟悉游戏设计中编程以及建模技术,为学生将来利用人工智能技术以及游戏设计技术奠定必要的知识基础。除此之外向学生介绍计算机游戏的基本原理和最新进展,包括计算机游戏动画的最新概况、游戏程序设计概览、2D游戏的基本编程技术、3D游戏动画的基本编程技术、3D游戏场景的组织与绘制、游戏中的高级图形技术、游戏中的音频编程、游戏中的人机界面技术、人工智能在游戏动画中的应用,纹理贴图、基于图像的绘制和加速算法等。

基于该教学目标,本课程有两个重点内容,其分别是人工智能技术如何在游戏设计中的应用,以及游戏编程的相关技术。对于人工智能技术在游戏设计中的应用这一内容,主要采用理论结合实际的理念,将学生已具备的人工智能理论知识与游戏设计的具体应用联系起来,使学生一方面能体会人工智能的基础理论,另一方面使学生能够将其所学用于实践,避免理论与实践脱节。游戏编程内容主要从设计模式入手,然后依托多媒体平台对学生进行讲授设计以及编程方面的相关知识。

围绕这个教学目标,我们安排了28个学时的课堂教学,4个学时的实验,总共32个学时的课程。接下来针对课堂教学、实验设计、考核方式这几个方面分别展开讨论。

2课堂教学设计

本课程采用培训学校模式与大学理论教育折中的方式进行讲授,本节将着重对28个学时的课堂教学内容分别介绍。

1) 游戏程序设计概论与计算机图形学基础。

该部分内容可以分为以下两部分。

(1) 计算机游戏简介与游戏设计概论(2课时)。

(2) 计算机图形学基础(2课时)。

概论部分主要介绍计算机游戏的基本概念、特点以及目前国际上该领域的研究和应用情况。图形学部分主要是介绍计算机图形学的相关理论基础,目的是让没有学过计算机图形学的学生有一定了解,由于考虑到智能专业也开设计算机图形学的相关选修课,因此,本部分内容只是对之前学习的相关知识的复习,目的是为后续的程序设计课程打好相应的理论基础。

本次课程是正门课程的开篇之讲,一方面,教师要开宗明义,让学生明确何为计算机游戏,并对计算机游戏有大致的了解,为后续课程学习起铺垫作用;另一方面,为增强学生学习兴趣,必须介绍计算机游戏的类型以及各种知识与其的关联。

2) 游戏编程技术。

如上所述,游戏编程是本门课程的一个重点内容,游戏编程可以分为如下几个部分。

(1)Windows编程基础(2课时)。

(2)DirectX编程基础(2课时)。

(3)2D游戏的基本编程(2课时)。

(4)3D游戏场景的组织和绘制(2课时)。

(5)3D动画的基本编程技术(2课时)。

(6)游戏中的人机界面技术(2课时)。

对于Windows编程基础,其主要内容是Windows操作系统的发展史、Win32程序的基本结构、消息循环与处理、Windows窗口、GDI接口、集成开发环境(IDE)。

DirectX编程[8]基础的主要内容是DirectX开发包的历史及其框架、介绍每一个组件的功能、DirectX开发包的安装以及与IDE连接的配置。

2D游戏基本编程的主要内容是游戏的基本流程和体系结构、游戏开发的基本理念及方法、游戏引擎简介、游戏的调试与测试。

3D游戏场景的组织与绘制的主要内容是3D场景的组织与管理、游戏场景的几何优化、3D场景的快速可见性判断与消隐、地形场景的绘制与漫游、3D游戏场景中的碰撞检测。

3D动画的基本编程技术的主要内容是3D动画技术概述、Direct3D开发包的使用、关键帧动画技术、基于动作捕捉的动画技术、脚本驱动的动画技术。

游戏中的人机界面技术主要内容是游戏的可玩性与人机界面、用户界面设计基础。

游戏程序设计部分内容主要是让学生了解和掌握面向Windows平台的游戏编程的技能。现在绝大部分游戏和娱乐都是基于Windows平台,因此掌握Windows平台的设计模式与编程方法是必须的。又因为DirectX软件开发包是微软公司面向Windows平台开发的一套专门应用于游戏开发的API,因此了解其原理以及掌握其技术能够提高学生的游戏开发能力。

3) 人工智能在游戏中的应用。

如今的游戏应用了大量的人工智能技术,本门课程将从以下几个方面介绍人工智能技术在游戏中的应用。

(1)遗传算法(6学时)。

(2)神经网络(6学时)。

遗传算法主要内容是遗传算法的概念及其相关研究、杂交操作、变异操作、适应性函数选择、遗传算法优化的算子、创建和处理矢量图形。

神经网络主要内容是神经网络概述、适应性函数、环境探测、有监督的学习、演化神经网络的拓扑。

该部分内容主要是介绍如何将人工智能中的理论用计算机语言实现,并介绍如何在游戏设计中应用这些理论。这部分内容是本门课程一个核心内容,通过学习学生们能够认识到人工智能在游戏设计中的重要性,并提高应用能力。

3实验设计与课程设计

由于该门课程为选修课,因此课时较少,除课堂课时之外只剩下4个学时的实验课时。我们针对这4个课时的实验进行了重点设计,其主要内容是引导学生熟悉Visual Studio .Net 2008集成开发环境、安装与配置DirectX 软件开发包、使用有限状态机设计状态驱动智能体,设计2D图形驱动引擎。

虽然课时很短,但学生能够实际动手操作,熟悉游戏编程的相关开发工具与开发包,另外,学生学习兴趣提高了,学习内容从枯燥的抽象概念、理论变成实际的事例。此外,学生还可以在课下完成任务,继续钻研新的理论应用。

我们针对本门课程实验课时少的缺点,特别设定了一个课程设计环节。课程设计并不占用实验课时,而是要求学生利用课外的时间,自由组合,以团队的模式完成相应的设计要求。

课程设计主要内容是要求学生完成一个项目设计,该项目设计主要是要求学生使用相关的集成开发环境和开发包,利用一个人工智能技术编写出一个小的游戏软件,并给出设计报告。考虑到学生的实际能力,开发与报告以小组的形式进行设计开发,设计团队由3~5人自由组合,具体分工必须在报告中体现,报告要求不少于4000字,以软件开发文档的形式提交,报告中不仅有游戏软件的需求分析文档、设计文档和测试文档,还必须包括游戏的内容设计,即游戏的情节创意或功能设计。设计题目以及游戏类型由学生自选,图形界面可以是3D也可以是2D,开发包可以使用Direct3D也可是Windows自带的GDI。

4考核方式及其安排

考核一个方面是检测学生学习的状况,另一个方面是为了通过考核方式,提高学生的实践动手能力。基于这个原因,我们将整个考核分为3个模块。

1) 期末考试(开卷),占总成绩的50%。

2) 项目设计,占总成绩的35%。

3) 实验,占总成绩的15%。

期末考试采用开卷形式,主要目的在于检测学生通过课程学习,对知识点的掌握程度,以及运用知识点解决问题的能力。其占总成绩比例的一半。虽然期末考试为开卷,但考核的知识点无法直接从教材中直接找到,需要学生实际运用能力和解题手段才能完成答题。精心设计的开卷试题,可以使学生对虚拟现实知识体系进行一个系统的回顾,同时,它也是对教学的补充。

课程设计需要学生有很强的自主性,认真完成将使学生受益匪浅,敷衍了事不仅学生没有得到锻炼,教学目的也难以达成。课程设计以小组的形式有优势也有劣势,好处在于学生可以根据自身能力对应团队中的角色,例如,某同学编程能力强,他可以作为程序设计与开发人员;另一同学数学好,或理论方面出色,他就可以担任算法设计的工作;某些同学有创意,他则可以担任游戏情节设计的工作,等等。这样做分工明确,每个人都能够根据自己的实际需求和情况得到锻炼。劣势在于,如果团队同学能力重点都一样,就会出现分工不清,而最大的问题就是团队合作会导致某些同学出现依赖思想,最终导致整个团队只有一个人完成整个项目,甚至导致项目无法完成的情况。对此,我们应当强调每一个学生都要积极主动参与到课程设计中来,发挥自己的主观能动性,协作完成项目。

5结语

本文探讨了人工智能与游戏设计教学目标与任务、课堂教学、实验设计、考核方式,希望能够给其他相关教学工作者以参考和启发,共同促进其完善与提高。

由于人工智能与游戏设计这门课程是中南大学新开的一门课程,在许多方面存在考虑不周或欠缺的情况,需要向兄弟单位多学习并且多在教学实践中摸索与提高。本门课程是以中南大学智能系统与智能软件研究所为依托,它具有很好的研究基础与良好的实验平台,并能够将这门课程融会贯通,使学生理解人工智能与游戏开发设计的基本理念,并培养学生实际应用技能。

参考文献:

[1] 杨刚,黄心渊. 虚拟现实技术课程的教学设计与讨论[J]. 计算机教育,2008(2):1-3.

[2] 蔡自兴,徐光v. 人工智能及其应用[M]. 3版. 北京:清华大学出版社,2003.

[3] 刘锴. 应用型院校的虚拟现实技术课程教学探讨[J]. 电脑知识与技术,2009,23(5):6486-6487.

[4] 刘明昆. 三维游戏设计师宝典:Virtools开发工具篇[M]. 成都:四川出版集团,2005.

[5] 王一剑. 人工智能在游戏开发中的应用[M]. 上海:同济大学软件学院,2008.

[6] 于金霞,汤永利. 人工智能课程教学改革及实践探讨[J]. 教学园地,2009(5):91-118.

[7] 蔡自兴,肖晓明,蒙祖强,等. 树立精品意识搞好人工智能课程建设[J]. 中国大学教学,2004(1):28-29.

[8] Microsoft. DirectX Software Development Kit[EB/OL]. [2010-7-20]. /downloads/details.aspx.

Design in Artificial Intelligent and Game Programming Courses

LI Yi

(Institute of Information Science and Engineering, Central South University, Changsha 410083, China)

第8篇

关键词:航天类专业 人工智能 教学探索

中图分类号:G64 文献标识码:A 文章编号:1674-098X(2014)10(b)-0155-02

面对航天科技迅猛发展,现代军备技术快速提升,培养具有专业性的高素质航天类人才,是我国航天科技发展的战略选择,也是航天重点高校面向并有效服务航天事业的历史责任。航天类本科生的教育形式也需要突破传统的方式,着重多样性、前沿性、工程性,因此,该专业的各门课程教育都应该结合专业特点,探索新的教学模式。

人工智能自1956年诞生50多年以来,引起众多科研机构、政府和企业的空前关注,已成为一门具有日臻完善的理论基础、日益广泛的应用领域和广泛交叉的前沿学科。由于航天领域的特殊要求,人工智能在其发展中发挥着不可替代的重要作用,各发达国家都相继开展了人工智能与航天技术相结合的研究,致力于实现可重构的、具有容错能力的、智能的飞行系统和管理系统。因此,“人工智能”作为航天类专业的一门特色选修课,应结合专业特点展开更具有实用性和创新性的教学。

1 人工智能课程特点

一方面,“人工智能”是一门多学科交叉的综合学科,它涉及计算机科学、数学、心理学、认知科学等众多领域,具有知识点多、涉及面广、内容抽象、不易理解、理论性强等特点,使得该课程的教学具有较大的灵活度和较高的难度。另一方面,“人工智能”是一门正在发展中的学科,具有较强的前沿性,计算机科学、信息科学、生物科学等相关学科的发展不断的提出了许多新的研究目标和研究课题,使得人工智能的技术和算法也需要不断更新,这在很大程度上增加了“人工智能”课程的教学难度。

2 航天类专业特点

首先,航天类专业具有较强的工程性。在专业的教学改革中有统一的特点,即强调要体现航天工程技术的综合性、系统性, 注重培养复合型人才。其次,航天类专业具有一定的前沿性。因为航天飞行器作为现代高科技和多种学科技术综合应用的结晶,应及时把现代先进科技融入到了专业基础和专业类的课程教学中, 专业知识更新快成为又一特点;另外,航天类专业应注重实践性教育。尊重个性和兴趣,强调动手能力,实验室对学生开放,要求学生自主地设计完成实验,强调对学生设计理念和创造能力的培养。最后,航天类专业应重视产学合作。产学合作的目的在于推动学校与航天产业的持续全面合作,造就一支科学技术研究和工程实践兼备的教师队伍。

3 教学模式的探索

3.1 教材的选择

人工智能作为一门新兴的学科,其理论与方法都还在不断的发展与完善中。就目前来看,关于人工智能的定义和范围都没有一个统一的标准,不同的教材所介绍的内容也不尽相同。在教材选用方面,需要综合考虑专业特点和学生的知识背景。本课程主要针对航天类专业高年级本科生,该类学生具有一定的数学、计算机、信息论、通信理论等基础知识,对航天应用的基本需求有初步的了解,因此,“人工智能”课程难度应该控制在中级,可以较深入的介绍人工智能的基础算法和应用案例。

中南大学蔡自兴教授积累了多年的教学与科研经验,借鉴了国内外其他专家和作者的最新研究成果,吸取了国内和国外人工智能领域学术书籍的长处,于1987年编写了“人工智能及其应用”一书,该书根据人工智能学科的新发展不断修订,推出四个版本。本课程采用“人工智能及其应用(第4版)”,其中大部分内容适合本科生学习。另外,本课程还给学生提供其他一些参考书目,如N.J.Nilsson 的“Artificial Intelligence:A New Synthesis.Morgan Kanfmann”等经典教材。

3.2 课堂教学形式的探索

“人工智能”课程内容较抽象,概念较为繁多,若采用单一的课堂讲授的方式,学生容易概念混淆、理解不透,逐渐产生厌倦情绪,导致教学效果差。本文探索不同的课堂教学手段,根据不同内容采用不同的教学手段,有利于学生对课程内容的理解与吸收。另外,考虑到航天类的专业特点,突出课程内容的工程应用,增加研究性质的教学内容与形式,有利于培养学生的创新能力和实践能力。

(1)课件采用图文并茂的PPT。综合利用文字、图像、声音、视频等多种媒体表示方法,在介绍原理和概念时采用精辟的文字,介绍算法流程时采用图像,介绍算法应用时采用视频。在PPT中适当利用不同的字体、颜色或动画来突出重点,细化流程,引导学生的思路,便于集中注意力接受重点内容。

(2)适当增加课堂讨论与练习。对于人工智能的一些基本问题,可以引导学生进行调研和讨论,来深化课程内容的了解,并提高学生的学习兴趣;对于重要的算法和理论,可以增加课堂练习,让学生实际动手进行公式的推导或演算,并在练习中分析学生对问题的理解程度,有针对性的增加讲解或指导。

(3)适当采用类比的讲解方式。对人工智能的不同学派,不同方方法,以及方法的不同应用,广泛的采用类比的形式进行讲解,不仅可以复习已学习的内容,也利于对新内容的理解。并且,通过对不同内容的比较总结相似点、区分不同点,可以避免概念的混淆,清晰的掌握课程内容。

(4)增加研究性教学。研究性教学强调通过问题来进行学习,有必要将实际应用案例或者授课教师的科研项目融入日常的教学工作中去,用“启发式”、“案例式”教学激发学生“自主学习”能力。

3.3 课程内容的探索

一方面,鉴于本科生知识结构还不够完善,“人工智能”课程的内容要控制在适应本科生学科基础的中等难度;另一方面,鉴于航天类专业的特点,课程内容应更注重与航天应用相结合的内容,并且在课程中增加具体应用的介绍。具体的课程内容如表1所示。

3.4 考核形式的改革

“人工智能”课程注重学生创新能力和实践能力的培养,传统的试卷形式不能全面的反应学生的学习效果,因此,应采用课堂表现和课程报告相结合的方式进行综合考核。

一方面,重视学生提出问题、分析问题和解决问题的能力,对学生课堂讨论与练习的表现进行考核评分,作为总成绩的参考;另一方面,注重学生课题调研和实践的能力,采取提交课程论文的形式进行考核。正确引导学生根据个人兴趣、课程内容、可行性、实践难度进行合理选题,并根据所选题目进行文献查阅和总结,完成调研报告或算法实现报告。结合者两个方面进行最终成绩的评定,综合衡量学生问题分析能力、论文写作能力和创新实践能力。

4 结语

航天类专业的本科生教学需针对专业特点有的放矢,该专业的课程教育都应该趋向于前沿性、专业性和实用性。本文的“人工智能”课程教学改革方案不仅考虑到该课程属于前沿叉学科的特点,也综合考虑了航天类专业的特点。为了使课程教学更好地服务于学生,本文提出的改革方案打破传统的教学模式,将课堂理论讲解、课堂讨论、课后调研、项目实践等相结合,充分调动学生的学习兴趣和积极性,提高学生的创新能力,有利于培养真正符合航天领域所需要的综合型高级人才。

参考文献

[1] 王甲海,印鉴,凌应标.创新型人工智能教学改革与实践[J].计算机教育,2010(15):136-138,148.

[2] 刘兴林.大学本科人工智能教学改革与实践[J].福建电脑,2010(8):198-199.

[3] 怀丽波.32课时《人工智能基础》课程教学的几点思考[J].华章,2013(34):193-194.

[4] 纪霞,李龙澍.本科人工智能教学研究[J].科教文汇(上旬刊),2013(6):91-92.

[5] 肖春景,李建伏,杨慧.《人工智能》课程教学方法改革的探索与实践[J].现代计算机(专业版),2013(26):32-34.

[6] 熊德兰,李梅莲,鄢靖丰.人工智能中实践教学的探讨[J].宿州学院学报,2008(1):146-148.

[7] 张伟峰.本科高年级人工智能教学的几点思考[J].计算机教育,2009(11):139-141.

第9篇

【关键词】计算机 人工智能技术 系统

人工智能(Artificial Intelligence)是研究使计算机模拟人的学习、推理、思考、规划等思维过程和智能行为的学科,用过对计算机实现智能的原理的研究,制造出类似于人脑智能的计算机,使计算机实现更高层次的应用。随着信息技术的发展和网络的广泛普及,人们教育观念正在悄然改变,新型的教育模式正在成形,计算机网络远程教育迅速发展,然而由于计算机网络远程教育发展尚不成熟,实际应用过程中存在诸多问题,而人工智能的引入,则使计算机网络教育水平提升到一个全新的发展台阶,并展现了其广阔的发展前景[1]。

一、人工智能技术概况

人工智能是通过研究人的智慧机理和思维过程,利用计算机体现和模拟人的智能行为。人工智能自其正式提出至今短短几十年内取得飞速的发展,已经成为一种成熟的工具。由于人工智能的效用堪比人的智慧,在进行信息分析处理时可以采取语音识别,实现人机对话,所以其应用范围自其发展以来逐步向诸多领域扩展,如医学、建筑学、地质学、机械等,而其研究课题也不断深入,如专家系统、机器人、自然语言处理系统、博弈等。人工智能具有理解经验并从中学习、辨别模糊或互相矛盾的信息、快速而成功地对新环境做出反应、在解决问题时使用推理进行有效的推导、能处理复杂的情况、应用知识控制环境等诸多能力。人工智能是一个知识信息系统,知识在人工智能中占据重要的地位,计算机的智能只有通过对知识的发现、储存、学习、推理和决策才能展现出来。人工智能主要有以下优势:首先,由于知识储存与计算机系统中,为人们知识传播和复制带来了极大的便利,计算机网络技术的发展,使知识的传播和复制突破时间和空间的限制,为人们带来无限的知识共享。其次,人工智能系统拓展了知识信息获取渠道,同时在某些任务处理的质量和速度上,人工智能展现的能力惊人的能力,远非人类所能及[2]。

二、人工智能技术在计算机网络教育中的应用

(一)智能决策支持系统

智能决策支持系统(IntelligentDecision Support System)是由决策支持系统与人工智能结合的产物,在网络教育领域的应用展现出广阔的发展前景。智能决策支持系统在数字图书馆中的应用,则使得决策目标和进行问题的识别更加明确,帮助决策者建立起完善的决策模型,提供多种备选方案,同时对各种备选方案进行选择、优化、比较、分析,从而使决策者的决策更加准确、有效[3]。

(二)智能教学专家系统

智能教学专家系统ITES(Intelligent Teaching Expert System)是传统CAI系统转向的主要方向,是一种开放式交互教学系统,通过智能教学专家系统利用计算机对专家教授教学思维的模拟,从而为教学提供一个良好的智能环境。一方面,学生可以通过智能专家系统获取知识,另一方面,智能教学专家系统能根据学生的具体实际情况(包括知识储备、能力、学习方式等)进行知识传授,从而使教学效果大大提升。在智能教学专家系统中,智能计算机辅助教学占据重要地位,具有以下智能:首先,自动生成各种问题和练习,并在教学内容理解的基础上,形成问题解决方案,同时还能自动生成和理解自然语言;其次,能根据学生的自身实际情况,对学生的学习内容和教学进度进行合理调整,并对教学内容具有解释咨询的能力;再次,能对学生的错误进行判断,评价学生学习行为,并帮助学生纠正错误,同时使自身教学策略得到完善。

(三)智能导学系统

智能导学系统(Intelligent Induct-learning System)是现代继续安吉网络教育系统的重要组成部分,是实现计算机网络教育项目的保障。通过智能导学系统,能为学生提供一个良好的学习环境,并能快速地获取其所需要的各种资源,从而使学习者获得学习的全方位服务,进而达到学习的成功。智能Agent技术的智能导学系统,可根据学生的具体情况制定符合学生实际的导学策略,并为学生提供个性化、针对性的服务。在这种导学策略下,系统不仅能自动生成各种问题和解决方案,并且能合理规划、调整学习内容和进度,同时能针对信息反馈内容及时修正导学策略,使导学策略更加合理科学[4]。除了上述3各种系统在计算教学中的应用,还有智能仿真技术(Intelligent Simulation Technology)、智能硬件网络IHN(Intelligent Hardware Network)、智能网络组卷系统INES (Intelligent Network Examine System)、智能信息检索引擎 (Intelligence Information Retrieval Engine)等系统在计算机网络教学中应用,这些人工智能在计算机网络教学中的应用,共同推进了计算机网络教学的发展。

三、结语

计算机网络教育中加强对人工智能技术的引入,使我国现代计算机网络教育呈现蓬勃发展的态势,通过多种智能系统的应用,使计算机网络教育的学习环境得到极大的改善,计算机网络教育的时空制约进一步突破,大大延伸了计算机网络教育的服务领域。随着人工智能技术在计算机网络教育中应用的深入研究和发展,未来计算机网络教育的个性化将会更加突出,远程教育也将实现更好的发展。

参考文献:

[1]潘瑞玲,余轮.具有Agent功能的远程教育系统的设计[J]. 福州大学学报(自然科学版). 2012(03):105-106.

[2]何丕廉,苏成君,郝祯亮.网上虚拟教室中笔记系统的设计与实现[J]. 计算机工程与应用. 2011(18):239-241.

相关文章
相关期刊