欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

人工智能教学培训优选九篇

时间:2023-08-25 16:38:56

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇人工智能教学培训范例。如需获取更多原创内容,可随时联系我们的客服老师。

人工智能教学培训

第1篇

随着信息技术的不断发展,计算机科学渗透生活的各个领域,改变了人们的生活方式和学习方式。其中,人工智能作为计算机科学中迅猛发展的一部分,正在以其独特的魅力走进人们的视野。“人工智能”(Artificial Intelligence),顾名思义,即通过应用计算机来模拟人脑的信息接收、思考、判断以及决策等思维行为过程,进而扩展人脑的思维和行动,帮助人们高效智能化地解决特定问题。近年,人工智能在教育领域中发挥的作用越来越显著[1],其与众不同的特点决定了其在教育培训中的地位,将人工智能应用在农业知识培训中的可行性也成为教育界热议的新话题。

1我国农业发展背景和农业培训必要性分析

11我国农业发展背景

我国是传统的农业大国,农业对我国的经济发展具有极其重要的影响,一方面是由于我国人口基数大;另一方面是由于我国进出口贸易主要依靠农产品,农业发展成为影响我国经济发展最重要的因素之一。但由于各方面原因,我国农业发展还比较落后,尤其与发达国家的现代化农业相比,依旧有较大差距。

12开展农业知识培训的必要性

反思其他发达国家在?r业发展上实施过的举措,包括重视农业教育、科研和技术推广,注意提高劳动者素质;推广现代农业机械和高技术,重视农场管理;经营集约化、产业化;生产专业化;服务社会化;市场机制与政府扶持相结合;加强农业基础设施建设等,可以看出,我国在农业知识培训、素质教育、技术推广方面与发达国家差距明显。为发展我国农业,培养一批高素质、懂技术、会经营的农民以及一批愿意为农业发展做出自己贡献的高学历人才成为关键。农业的发展离不开农民的发展和进步,也离不开受过高等教育的精英人才的共同努力,而开展农业知识培训,则是为他们的发展奠定了一条夯实的道路。

2人工智能在教育中的应用与发展

近年来,伴随着人工智能在各行业的应用和发展,人工智能在教育领域中发挥的作用也越来越显著。例如,智能化的作业批改可以大大减轻教育工作者的沉重负担,在线学习等网络教学模式可以让人们更灵活地接受教育。从人工智能诞生伊始,其就与教育产生了密不可分的联系,延续发展至今,人工智能在教育领域中的应用主要包含以下几个方面。

21基于人工智能的计算机网络课程

计算机网络教育是对传统教育方式的一次革新,而人工智能对网络教育的渗透,又将其推向了新的发展高度。[2]学生可以自主地登录网络平台进行在线学习,根据智能导学系统制订学习计划,进行在线测试。例如近年来大为流行的MOOC课程,学生可以便捷地通过网络获取全球最高质量的教学资源,并可以量身打造自己的学习计划。

22基于人工智能的教师辅助系统

近十年来,智能传感器、语音识别、图像识别、深度学习、大数据等方面的蓬勃发展令信息的采集及处理越来越准确高效,这无疑使得人工智能与辅助教学系统的融合变得越来越深入。借助于语音识别、图像识别等技术,学生可以将学习过程中遇到的问题上传至系统,借助于数据库系统对信息准确的搜素和整合能力,实时地为学生提供答案或相关信息,答疑解惑。目前此类应用软件的应用广泛,例如小猿搜题、百度作业帮等。

23基于人工智能的教育数据库系统

随着信息化时代的到来,如何高效地搜集、分类和检索碎片化的教育信息和教学资源,无疑是一项巨大的挑战。为了更有效地分配和管理信息,在教育中引入智能化的数据库系统势在必行。现如今数据挖掘和深度学习的研究成果不断深入,依托知识库系统对教育信息的整合与构建,学生可以将已习得的零星的知识点进行扩充,由点至面的不断学习新知识;依托教育资源管理系统中来,教育管理工作者可以合理分配教学资源,让人们从爆炸式的高密度信息中解放出来,真正做到物为己用,因材施教。

3人工智能与农业知识培训的结合

新时代社会经济的发展为国家农业产业的发展翻开了新的篇章,如何加快社会主义农业现代化,促进农业转型,这为新时代的农业知识教育提出了新的要求。另外,近年来劳动力转型的趋势日益显著。随着农业劳动人口数量的减少,为了提高农业生产效率,需要有素质、懂知识的农民投入农业生产中来。因而,对于农业知识培训的革新作为农业现代化建设的重中之重,已被提上日程。

人工智能技术和教育领域融合的不断完善成熟,基于人工智能的农业知识培训正如雨后春笋般涌现,在农业教育培训领域崭露头角。

31人工智能应用于农业知识培训的优势

从我国农业发展的现状看,较之于发达国家,我国农业从业者的基数巨大但是整体受教育程度偏低,农业专业领域的知识匮乏,农业知识教育的推广不仅薄弱,而且效率低下。因此,伴随着信息化时代“互联网+”的新型教育模式对传统教模式的强有力革新,基于人工智能的农业知识培训展示了其强大的威力和优势,具体可以总结为如下两个方面。

311个性化教育针对性强

相比于课堂教学的传统模式,基于人工智能的网上在线教育模式能够为学生个性化地制订学习计划,灵活安排学习时间。这有力地解决了学生参加农业知识培训的时间成本问题,农业从业者可利用闲暇时间自主安排学习。另外,针对于培训者的当前知识水平和培训需求,培训平台可以个性化地安排教学相关领域的专业知识和操作技能。

312教育资源利用率高

我国当前的农业知识培训,教育教师需求数量和实际在岗教师资源极不匹配,具备丰富农业专业知识和农业生产经验的教师数量缺乏,这是导致农业知识培训推广速度缓慢的重要原因。而人工智能为这一问题的解决带来了福音,智能化的教学进程得以让教师从繁重的教学负担中解放。同时,基于网络的课程资源共享可以让先进的农业技术走进千家万户,让学生与优秀农业知识的距离不再遥远。

4平台开发的系统架构

基于人工智能技术,一个合理的农业知识培训平台能够像一个优秀的教师那样具备完备的农业专业知识和优良的教学技能知识,并且能够模拟及扩充教师的教学过程。除此之外,该培训平台还能够准确实时地与学生进行信息交互,有针对性地开展个性化教学,并可以自适应地完成教学效力评估和反馈,不断更新和完善教学内容和教学策略。基于以上分析,该开发平台的系统架构分为学生模型、教师模型、综合数据库模型和人机交互接口四个组成部分,结合下图对每一部分分别进行详细阐述。

41学生模型

学生模型应针对不同的学生,准确地评估学生当前的学习水平,对学生的学习背景、知识水平、知识架构进行诊断和评定,以便有针对性地制订教学方案,进而实施个性化教育。

另外,学生模型需要对学习过程中的学生的学习情况进行记录入库,对教育效果进行评定,从而诊断出当前教学计划是否合适,以便下述教师模型中对教学内容和教学策略的灵活调整。

42教师模型

教师是教学工作开展过程中的主体,一个合理的教师模型应该包括如下三个部分。

教师模型首先完成教学内容的选择,这要根据学生模型中对学生当前的学习水平的评定,并且针对学生既定的学习目标,并从下述知识库中调取对应的内容,为教学的开展做好准备。

在确定了教什么的问题之后,教室模型要确定如何教的问题,即选取合理的教学策略开展教学。教学方式的选择依附于学生模型,而又能根据学生学习情况记录进行反馈动态,不断完善和调整教学策略。

另外,在传统教学模式中,教师传授知识,并能为学生答疑解惑。当学生在学习过程中遇到问题和疑惑时,教师模型应该实时地提供信息支持,为学生提供针对性的帮助。因而教师模型要实现与人机交互接口的实时连接,在问题到来时控制模块驱动应答部分为学生答疑解惑。

43综合数据库模型

综合数据库模块为农业知识培训系统提供数据库支持,主要包括以下三个模块。

知识库模块中分类别地存放着农业领域的专业知识,包括文本、图像、自然语言、多媒体等多个类型的学习知识。一旦教师模型中完成了教学内容的选择,便由此模块中调取相对应的文件开展教学。

专家评估模块用于处理教学过程中的教学效果评价和经验总结,为教师模型中的各个环节的反馈和更新迭代提供数据支持。在一个完善的教学过程,教师需要根据学生的学习效果进行总结和反馈,以此指导下一步的教学内容和策略的更新。

为了对学生阶段性学习的效果进行评估,还需要引入测试考核模块对学生的成绩进行量化考核。测试考核模块中包含学生答题库和成绩测评库,准确检测出开展农业知识培?的作用与效果。

44人机交互接口

基于人工智能的农业知识培训的过程是学生和系统进行交流的过程,所以一个友好的人机接口是系统必不可少的组成部分。在这一模块中,友好的图形用户界面的设计能够帮助学生流畅地接收信息,提高学习效率。同时,借助于人工智能中对语音和图像信号的先进识别技术,人机交互接口可以智能化地接收分析和理解学生的自然语言信息和动作信息,进而为系统提供宝贵的输入信息。

第2篇

一、顶层设计,构建全方位、多层次、可操作的指导体系。

为了保障人工智能教育在我校真正落实和长期发展,学校将人工智能教育工作纳入到学校整体三年发展规划中,并作出明确要求。

为了让师生更加重视人工智能教育,促进学生全面发展,特修订了我校“五美”能行课程体系,将人工智能课程进行了重新定位和设计。

为了建设符合我校校情、学情的人工智能课程体系,学校成立了人工智能课程建设与实施的探索与研究项目管理团队,制定了项目计划书,从项目名称、项目团队、项目背景、项目创新点及解决问题、项目推进措施、项目完成期限等方面进行了具体规划。

二、支撑保障

完善软硬件设施和文化建设,为人工智能教育开展做好支撑和保障。除了四楼独立的人工智能实验室,我校还自主改造了五楼的创客教室和阅览室,扩宽了人工智能教育场所,尽全力满足学生人工智能上课需求。

学校高度重视人工智能教育,不断加大投入。在资金紧张的情况下依然给学生购买了小学生C++趣味编程书和人工智能超变战场的场地。

三、具体做法

1.基于校情和学情的人工智能课程设计

课程设置:开学之前,课程部整体规划,实行信息技术课两节联排。

人工智能课程开设内容安排:基于校情学情,本学期3-6年级全面铺开人工智能课程,3年级以信息技术基础知识、编程猫、乐高搭建基础入门为主;4年级AI神奇动物,5-6年AI变形工坊,是集搭建和编程于一体的人工智能课程体系。本学期信息技术类人工智能特色社团的开设:人工智能机器人社团、信息学奥C++社团、创意编程社团。

2.三位一体,三组联动推进人工智能课程的开发与实践。三组是:项目组、教研组和集备组。具体做法是:

项目组的做法:根据人工智能项目管理计划书的内容和要求,3月初进行项目工作总结和4月份计划汇报,5月份进行了中期汇报。进一步梳理人工智能校本课程的内容,促进人工智能课程实施与落地,进行了生本AI人工智能校本课程的开发与研究,重点对课程目标和课程内容进行了设计和探索。

教研组的做法:1.参加区首次信息技术教研活动,明确方向和工作重点。组织信息技术教师按时参加区里首次信息技术教研活动,并将区里的要求传达给每一位信息技术老师,为接下来的工作做好铺垫指明方向。2. 教研组内进行磨课,四年级潘倩老师执教了四年级AI神奇动物—敏捷的蛇;徐娜老执教了五年级AI神奇变形工坊—设计“地雷”,课后及时听评课,提出优点与不足,并进一步改进完善。

集备组活动:各年级备课组利用双周周二上午时间进行集备,研究本周的上课内容、梳理课堂具体流程及教学设计。

3.加强教师培养力度,积极组织教师参加人工智能培训和学习。学校鼓励教师进行小课题的研究,提升教学专业素养。2019年区级小课题《小学人工智能课程体系、教学策略和教学评价的研究》顺利结题。2020年区级小课题《奎文区人工智能教育专项课题--小学人工智能教育教学策略及评价方法的研究》立项。

4.为了拓宽视野,为人工智能教育的发展进一步指明方向。落实请进来:邀请区教研室专家进校为学校人工智能开展情况进行诊断;邀请优必选指导老师入校指导人工智能课程,并进行赛事辅导和培训。

5.为了给学生的学习搭建更广阔的平台,丰富学生的课余文化生活,促进学生信息素养的提升。以赛促学,积极组织学生参加各级各类比赛。

四、取得成效

1.学校层面:以人工智能教育为契机近年来,我校的信息化、数字化、智能化水平不断提升,互联网+教育、智慧校园工作取得了巨大的进步,学校获得省市区多项荣誉。

第3篇

关键词:应用型本科院校;人工智能;电子信息工程;专业建设

一研究背景

在发达国家,应用型本科院校一直占有很大的比重。在我国,应用型本科院校也逐渐成为高等教育大众化的主力军,对我国高等教育系统未来发展越来越重要的作用。金陵科技学院作为教育部应用科技大学改革试点战略研究单位、中国应用技术大学(学院)联盟创始单位,也正在积极地去探究相关的应用型专业建设模式。电子信息工程专业作为学校的一门深度涉软专业,也要紧跟南京城市软件建设发展方向,这对应用型电子信息工程专业培养既是机遇又是挑战。随着社会的不断发展和科学技术的不断进步,电子信息工程的应用也越来越广泛,对人们的生活产生了非常大的影响。,不但改变着人们获取信息、存储信息和管理信息的方式,而且为人们进行信息的获取、存储和管理提供了新的途径和方法,目前,各行业大都需要电子信息工程专业人才,而且薪金很高。2015年5月8日,备受瞩目的《中国制造2025》由国务院正式下发,这是我国实施制造强国战略第一个十年的行动纲领。该规划二个突出特点是,将"加快新一代信息通信技术与制造业的深度融合"作为贯彻始终的主题,提出坚持自主研发和开放合作并举,加快建立现代电子信息产业体系,为推动信息化与工业化深度融合、实现制造业由大变强、建设网络强国提供强有力的基础支撑。在今年,随着国家“两会”的盛大召开,人工智能首次被提升到国家发展战略高度,人工智能技术的重大突破将带来新一轮科技革命和产业革命,大力发展人工智能技术是中国经济转型升级的重要动力。电子信息技术的巨大成功和进步,使人工智能可以深层次、多维度地参与到各个行业各个领域中,使科技的进步快速融入到跨界合作中。比如,电子信息技术的成熟,使人工智能可以深度服务于医疗卫生事业、配合甚至取代医生进行精确的手术治疗。在无人驾驶领域,无人驾驶汽车、无人驾驶飞机、无人驾驶舰船都已经陆续投入使用;在军事领域,人工智能的运用更是已经炉火纯青,俄罗斯与美国的人工智能作战部队和相关系统,已经在反恐作战中屡立战功,威力无比,作战效能与性价比远远超越人类士兵。由此可看出,人工智能在电子信息技术大发展的当下,终于在应用层面开始发光发热,现出巨大的生命力和后续无穷无尽的成长潜力,人工智能在各行各业的广泛应用,是国家经济结构战略性调整、产能升级改造、产业结构优化、核心技术创新获得成功的关键。随着BAT、华为、大疆无人机等高科技企业在人工智能应用和开发上的不断探索,刺激更多人才和资本向人工智能商业应用领域涌入。目前,基于人工智能学习背景下,软硬件相关知识过硬的电子信息类专业人才已经成为社会上最为紧缺的人才,薪水待遇很高。

二需要解决的关键问题

作为应用型本科院校,如何将“人工智能”新概念融入到电子信息工程专业建设中,根据社会发展的需求,校企紧密结合,培养出复合型的,应用型的社会紧缺人才,是需要去解决的关键问题。1.像当年互联网的崛起一样,人工智能真正的发展才刚刚兴起,相关的概念及定义还不完全定型,如何把握好未来人工智能的发展方向,有针对性地在传统的电子信息工程课程计划中规划与人工智能息息相关的课程,比如人工智能原理,机器学习,深度学习等课程,将两者有机融合,在人才培养上面临较大的挑战。2.人工智能是一门综合了控制论、信息论、计算机科学、神经生理学、心理学、语言学、哲学等多门学科的崭新概念。如果要将“人工智能”融入到电子信息工程专业建设中,就不仅需要学生学好如模拟电子技术,数字电子技术,数字信号处理,单片机技术,C/C++程序设计等传统的课程,打好基础,还需要加强在数据挖掘,神经网络等以数学为基础的课程方面的建设,扎实学生的数学物理基础。这对学生的学习能力要求更高,老师的教学水平也提出更高的要求。因此,如何加强此方面的师资专业培训,是一个该课题需要解决的关键问题。3.一个专业人才的培养,不仅需要优秀的师资力量以及良好的学风,还需要有相关的硬件实验平台作为支撑。如何根据“人工智能”新概念,针对性地新建一些诸如智能传感器实验室,人体特征识别实验室,机器人实验室等,把电子信息工程专业中的电子器件技术,信号处理技术等应用于人脸识别,智能家居,机器人等热门领域,根据学生的兴趣爱好因材施教,提高学生的动手能力,也是该课题需要去解决的一个关键问题。

三研究内容

本文以“人工智能”新概念下的电子信息工程专业教学及实践模式为研究内容,重点研究如何将人工智能相关的理论及实验课程建设融入到传统的电子信息工程专业培养方案中,做到无缝结合,在培养模式上需要有一定的理论创新,以更好地适应人工智能类的高新电子信息技术企业对相关应用型人才的要求。目前拟以现有电子信息工程专业的课程体系和专业方向为基础,形成以“人工智能”为导向的应用型电子信息工程特色专业建设,在未来的专业发展规划中,逐渐形成物联网、智能家居、机器人,无人机,人脸识别,语音交互,智能驾驶等不同的专业方向,增加学生的就业面,提高学生的就业层次,加强学生的就业竞争力。主要具体体现在以下几个方面:

(一)实践教学的形式多样

可采用以“学生兴趣爱好”为依据的引导式教学实践模式,在扎实学生数学物理等理论的基础上,将最新的人工智能概念贯穿在电子信息工程专业课程体系中,通过不同的应用型实验项目拓宽学生的知识面,提高学生的主动学习能力,动手实践能力,创新能力以及独立开展研究的能力,将课堂教学、校内实验和校外企业实习三者相互结合,鼓励学生参加诸如全国大学生电子设计大赛,全国大学生智能设计竞赛,中美创客大赛等赛事,以确保培养出高素质的应用型专业人才。同时,让学生从大二开始就自选课题、进实验室、根据兴趣爱好组建不同研究方向的实验团队,并为学生按照不同的研究方向配备专业教师,以此让学生融入到教师的科研工作中去,形成所谓的本科生导师制制度,由相应的导师全程指导,开展科学研究,培养学生的科技创新能力和动手实践能力。

(二)注重提高教师的教学及科研水平

在努力提高学生学习能力的同时,注重提高应用型电子信息工程专业教师的教学及科研水平,使其能够很好地将“人工智能”新概念用于电子信息工程专业的教学中,指导学生参加相关的各种竞赛,提高教师团队的实践能力及技术水平。通过海内外招聘和内部强化培养(教师博士化、教师双师化、教师国际化)等举措,加强师资团队建设;通过鼓励教师积极开设MOOC课程,参加教师技能大赛以及国内外教学培训,从多方面提高教师的教学水平。

(三)建立完善的校企合作制度,为学生提供相应的实习基地

企业工程师可以参与相关的人才培养方案修订和部分的教学实践工作。这种合作制度既可以提高教师的科研应用水平,也可以为学生提供就业机会,增强学生的实践创新能力。

(四)注重课程大纲修改,实验室平台建设

以改革传统的电子信息工程专业的培养模式为目标,总结在“人工智能”新概念下教学及实践的相关经验,形成一个有鲜明特色的电子信息工程专业培育模式。应用型本科院校电子信息工程专业人才未来的发展战略和改革方向,应重点考察“人工智能”新概念下专业人才培养模式的优缺点。重点关注“人工智能”新概念下的教学及实践课程大纲修订、教师教学及科研能力培训体系构建、实验室软硬件平台建设、校企合作培养模式探讨及校外实习基金建设等工作。

四结语

本文探讨和研究了“人工智能”新概念下应用型电子信息工程专业培养模式,结合金陵科技学院电子信息工程专业的发展情况,对原有的专业培养模式做了一定的理论创新,引入了“人工智能”新概念,从理论和实践教学,学生学习能力和教师教研技能培养,校企合作办学,实验室建设等方面进行了一系列的探讨。

参考文献

[1]姚俊.电子信息工程专业人才培养模式研究[J].山东社会科学2016(S1):357-358.

[2]叶全意,徐志国,吴杰,等.应用型本科院校电子信息类专业大学生科技创新能力培养[J].教育教学论坛,2016(46):93-94.

第4篇

关键词:林业院校;人工智能;课程教学

1背景

近年来,随着“互联网+”的快速普及,互联网跨界融合创新模式进入林业领域,利用移动互联网、物联网、大数据、云计算等技术推动信息化与林业深度融合,开启了智慧林业的大门。我国林业信息化、智能化建设逐步走上了有序、快步发展的轨道,取得了重要的进展。

2011―2013年,国家林业局先后开展了中国林业信息化体制机制研究和中国智慧林业发展规划研究,在此基础上出台了《国家林业局关于进一步加快林业信息化发展的指导意见》和《中国智慧林业发展指导意见》。2012―2013年,在深入研究的基础上,林业局编制了《中国林业物联网发展框架设计》,2016年3月正式了《“互联网+”林业行动计划》。

国家林业局制定的《中国智慧林业发展指导意见》指出,信息化、智能化在林业中的应用已经从零散的点的应用发展到融合的、全面的创新应用。随着现代信息技术的逐步应用,能实现林业资源的实时、动态监测和管理,更透彻地感知生态环境状况、遏制生态危机,更深入地监测预警事件、支撑生态行动、预防生态灾害。

人工智能是计算机科学中涉及研究、设计和应用智能机器的一个重要分支。国际上,人工智能的研究已取得长足的进展;在国内,也呈现出极好的发展势头,人工智能已得到迅速的传播与发展,并促进了其他学科的发展。我国已有数以万计的科技人员和大学师生从事不同层次的人工智能的研究与学习,人工智能已成为一个受到广泛重视并有着广阔应用潜能的庞大的、交叉的前沿学科。特别是经过近几十年的发展,智能技术及其应用已经成为各行业创新的重要生长点,其广泛的应用前景日趋明显,如智能机器人、智能化机器、智能化电器、智能化楼宇、智能化社区、智能化物流等,对人类生活的方方面面产生了重要的影响。

近年来,人工智能已经在智慧林业相关领域中得到了广泛应用,例如,在智能机器人的应用方面,已经有大量的嫁接机器人、水果采摘机器人、农药喷洒机器人、果实分检机器人等投入使用;在专家系统的应用方面,森林病虫害诊断专家系统、病虫预测预报专家系统、林产品生产管理专家系统、专家咨询和人员培训专家系统等也得到了广泛应用。

随着人工智能在智慧林业中的广泛应用,涉林企业和事业单位对智能型林业高技术人才的需求也在不断加大。为了适应市场对智能型人才的需求,自2003年起,国内诸多林业高等院校在计算机科学与技术专业本科阶段、林业相关专业的研究生阶段陆续开设人工智能课程,同时不断加大人工智能课程的比重,因此,人工智能课程教学对于林业院校显得越来越重要。

2林业院校人工智能课程教学现状

林业院校开设人工智能课程的专业不多,但有不断增加的趋势。以中南林业科技大学为例,该校计算机科学与技术本科专业自2003年起就开设了人工智能课程,所用教材一直是蔡自兴教授主编的《人工智能及其应用》;另外,面向部分专业的硕士和博士研究生开设了人工智能相关课程,如农业硕士的农业信息化领域研究生开设了人工智能技术,森林经理和森林培育两个专业的博士研究生开设了人工智能与专家系统。

针对计算机科学与技术本科专业,人工智能课程主要使用蔡自兴教授主编的《人工智能及其应用》教材施教,但由于课时数仅有32学时,关于人工智能的一些高级应用,如神经网络、专家系统、机器学习等,采用专题的形式组织教学。该专业没有设置实验学时,仅在理论课堂上演示了一些仿真软件,如BP神经网络仿真环境。

针对农业硕士的农业信息化领域研究生和森林经理及森林培育两个专业的博士研究生,教学计划安排的学时数为40学时,没有指定教材,仅给学生列了蔡自兴教授的《人工智能及其应用――研究生用书》等几本参考教材。课堂主要以专题的形式组织教学,每一讲除了相关的理论以外,还介绍一些工程实践应用的例子,让研究生能够了解这些人工智能算法如何在实际中得到具体应用。

3林业院校人工智能课程教学存在的问题

全国各高等院校的人工智能课程教学都或多或少地存在一些问题,林业院校更有区别于其他类型院校的显著特征,而且林业院校开设该课程教学相对较晚,因此林业院校的人工智能课程教学存在更多的问题。

(1)师资短缺。在林业院校,林学相关专业开设该课程往往由林学相关专业的教师主讲。这些非计算机相关专业的教师虽然曾从事过人工智能个别算法或领域研究,但不具备全面的人工智能相关专业知识,在讲授不熟悉的人工智能知识点时显得力不从心。

(2)教学内容专业性不强。人工智能是计算机科学的一个分支学科,一般的人工智能教材都比较适合计算机相关专业的学生使用,但是农业信息化、森林经理、森林培育等专业的学生不管是专业基础还是行业应用背景均与计算机类专业学生不同,如果我们仍然按普通的教材施教,教学内容就缺乏林科特色,显得专业性不强,无法吸引学生的听课兴趣。

(3)教学难度过大。林业院校涉林专业的学生一般只有计算机文化基础、C语言等简单的计算机课程基础,缺乏算法思想。而人工智能课程涉及很多高级、复杂的算法,不论从算法思想,还是从算法实现和算法应用,对非计算机类专业学生来说难度过大。因此,在教学内容和教学要求上要做一些取舍。

除此之外,还存在诸如缺少实验环节、教学手段单一、教学案例缺乏等其他普遍性问题。

4林业院校人工智能课程教学改革建议

通过分析林业院校人工智能课程教学存在的问题,结合自己近十余年来从事人工智能教学的经验,我们提出了一些改革建议。

(1)推行专题式教学,解决师资缺乏的问题。在师资缺乏的情况下,由一名教师完成整个人工智能课程教学比较困难,同时,可能有多名教师分别在人工智能的不同方面进行过深入研究。因此,可以将该课程按章节分成各个不同的模块,每一个模块设一个专题,如神经网络专题、专家系统专题、机器学习专题等,再由多名教师分别承担自己熟悉的专题进行讲授。这样既可以解决一位教师的知识不足,又可以让各位教师结合自己的科研将每一个熟悉的专题讲授得更加详细、更加有趣。

(2)教学内容与涉林专业紧密结合,解决专业性不强的问题。事实上,人工智能的各领域应用在林业行业都能找到对应的应用实例。例如,林果采摘机器人就是机器人在林业中的应用;林火识别和林木病虫害监测就是模式识别在林业中的应用;林火蔓延预测可以用到隐马尔科夫模型;PAID50专家系统平台就是专家系统在农林业中的应用典范等。因此,在教学过程中,我们可以考虑将人工智能知识与林业应用结合进行讲解,这样学生更容易接受也更乐意接受。更进一步,如果能够结合这些林业应用编写一本《人工智能及其林业应用》教材,将会更加适合涉林专业的学生学习这门课程。

(3)应用计算机仿真软件解决教学内容难度大的问题。非计算机类专业的学生计算机基础较差,编程能力不强,算法训练不足,对各种人工智能高级算法难以理解,更难以编程实现。针对这个实际问题,我们可以主动提供一些相关算法的计算机仿真软件,在课堂上通过演示这些仿真软件,让学生直观地理解算法,甚至能够通过仿真软件应用这些算法解决本专业相关的问题。例如可以开发如图1和图2所示的BP神经网络算法仿真软件,通过该仿真可以把神经网络的结构、训练时的权值偏差变化、训练过程中总误差的变化等信息完全呈现在学生面前,学生通过这个仿真过程就不难理解BP神经网络算法,甚至可以使用这个仿真软件来解决本专业相关的一些问题。

第5篇

高度智能化的培训时代

即将来临

人工智能的演进可以从两个角度来看――做得更快,做得更好。自动化本身带来的是更少的人力投入,以及更高的生产质量。人工智能结合自动化领域带来的结果可以理解为“做得更快”,让过去流程中不能够自动判断的复杂情形,得以借助人工智能进行快速准确的判断,并进行有效的执行和输出。

人类在学习与归纳之后,通过高水平的复杂思考过程可以得到一个决策或者预测,该决策或预测的水平表征了某个人在复杂问题上的认知与处理能力。问题越复杂,需要采集与处理的信息越庞大,人类的认知与决策就越会趋于瘫痪。而人工智能在计算能力大幅提升的今天,让几十年前就被发明的算法在高性能计算下重获新生。过去只有科技巨头才能涉足的高深领域,现在的初创团队也可以使用高性能计算与开源架构,以小规模数据集进行深度学习。

前景:高度智能化

人工智能领域的发展,将为培训行业提供更多高度智能化的前景,体现在三个方面。

第一,考试当中,不仅可以对客观题进行标准评价,也可以对主观开放式问题进行机器学习,形成一套评价体系。

第二,基于NLP(神经语言程序学)技术的语言识别体系,可以对音频、视频进行更复杂的理解和评价,评估员工技能,而不仅仅是通过考试来检测知识掌握情况。

第三,针对用户学习信号的深度学习,推荐精准的学习路径,让学员看到时间投入和绩效改变的强相关关系。

实践:实现教学模式的突破性创新

关于培训领域的互联网产品与服务,过去很长一段时间,产品形态还是集中于给学员播放在线视频或者Flas。所有厂商做出的努力都是在录制视频,而甲方都在采购大量的在线课件。如果我们善加利用人工智能在语音识别、语义理解领域的突破,那么也许能够在教学模式上实现重大创新。

在人工智能领域,UMU作了诸多尝试和努力,率先推出了基于人工智能的学习新模式。其创新点在于,通过对语音语义的理解和机器学习,鼓励学员对同样的知识体系进行输出训练;通过输出过程的智能评价体系,学员能够评估自己的学习进度,也帮助老师省去一一辅导的时间,并能够给老师提供快速直接的建议和统计性反馈。这种教学模式的突破性创新,为大家带来了耳目一新的学习体验和实际的学习效果。

除此之外,如果一名新员工加入公司,能够围绕自己的岗位,在机器学习的引导下不断以“打怪升级”的方式完成对公司产品、技术和工作要求的学习,且每次学习过程都是有目的性和指引性的,那么他会进入一个更加快速的成长通道――人工智能指引下的学习路径图。UMU可以利用机器学习技术帮助某家企业构建知识图谱(knowledge graph),平台上的内容越多,学员使用得越频繁,该企业就越能够在这个过程中通过机器学习找到知识点之间的关联性和依赖关系,从而给学员一个非常有效的推荐。

设备与内容奠定VR培训的根基

如果我们期待虚拟现实更快速地进入千家万户,成为工作与生活的必备场景,那么可以从移动互联网的发展模式着眼,进行思考与预测。

中国的移动互联网产业近年来的发展速度明显领先于全球。推动移动互联网产业成熟的关键要素包括三点:设备、网络、产业。对于虚拟现实的发展现状分析亦可从这三点出发。

・设备:智能手机按年升级换代,100美元可以买到足够好的智能手机,而且有诸多选择。

・网络:家庭宽带持续降费提速,手机从3G到4G网络的大规模普及,现在连地下车库、城市郊区都彻底普及了高速移动网络,让人们时刻保持连接。过去的网速限制一旦去除,很多场景发生巨变。曾经人们要下载高清电影观看,现在很多人直接用手机、电脑或者使用“电视盒子”连接电视观看在线高清节目。

・产业:移动应用与游戏的开发者,以及在线内容的生产者数量激增,是整个产业发展的基石。

设备待成熟

虚拟现实设备的成熟度还处于非常早期的水平,其相关设备还需要大规模普及。我们期待高性能低成本的虚拟现实设备像智能手机一样快速进入工作生活领域,成为人人必备的设备之一。

早期的电脑上万元一台,网费也不便宜,所以大家去网吧使用电脑上网,实现资产的“分时复用”。现在上海、北京、香港等地都出现了大规模的虚拟现实体验馆,而这些场馆消失之时,也是虚拟现实真正普及之日。

网络待稳定

虚拟现实对数据吞吐水平提出了更高的要求。全球与国内的互联网还处在“弱连接”的水平,网速和稳定性有较大的波动,还需要进一步升级网络连接及传输速度,这样才能从本地内容扩展到在线与实时高清内容。

产业待开发

由于虚拟现实设备保有量非常有限,所以相应的软件与内容的开发者数量也很有限。今年下半年,虚拟现实领域创业的项目投资遇冷,也给整个产业开发者泼了凉水。

企业培训中的VR实践

令人振奋的一面是VR拍摄设备百花齐放,千元级高清全景视频拍摄设备给内容生产打下了扎实的基础。一般来说便携式的VR拍摄设备有两套体系,一套是以GoPro为主的拍摄制作体系,一套是以三星为主的拍摄制作体系。

对于企业培训来说,通过VR拍摄设备就可以录制特定工作场景的全景视频,形成支持VR设备观看的培训内容。这样对于需要动手实操的复杂工作场景,特别是短期内不能被机械臂所替代的工作场景,就更需要先进的培训模式以提升工作水准;对于危险的或者试错成本高的工作场景,VR内容也可以帮助企业节约在岗培训的预算,提升学习速度,降低综合学习成本。

UMU将在明年第一季度推出虚拟现实领域的一站式解决方案,可以帮助企业以千元级别的投资来拍摄全景虚拟现实教学视频,学员只需要把自己的手机插入基于Cardboard模式的头显,就可以体验沉浸式的学习过程,届时在《培训》杂志2017年会展上有全面展示。

君子善假于物

当大数据这个概念诞生后,大家都希望抓住大数据的产业升级机会,让自己也更加富有洞见。当我们仔细审视很多以“大数据”为关键词的产品时,往往感觉与过去的做法并无不同。“大数据”在不少广告中更像是“大口号”,只要做了数据分析,就成了“大数据”产品。

第6篇

关键词:信管专业 人工智能 案例教学法

1.引言

信息管理与信息系统专业是管理科学与工程学科的一个重要组成部分,是由信息技术、管理科学和系统科学交叉形成的前沿学科,它运用管理学、运筹学、系统科学和经济学的知识和方法,通过以计算机为基础的信息系统实现各种管理活动和信息处理业务。该专业培养的人才在信息化建设中主要承担信息系统运行管理和伴随企业成长而不断更新信息系统的使命,人才的就业岗位归属于各种组织(企业)的信息中心或管理行政部门。在信息系统中,人工智能知识和技术的应用随处可见:专家系统、智能监控、智能信息检索、组合优化、分布式计算、智能管理和智能决策等。

人工智能课程是一门研究运用计算机模拟并延伸人脑功能,综合逻辑学和认知科学的综合性学科,其研究领域广泛,如自然语言理解、模式识别、机器学习、数据挖掘、智能检索、机器人技术、人工神经网络等都走在了信息技术的前沿,有许多研究成果不仅在工业、商业和军事上使用,而且不同程度地进入了人们的生活、学习和工作中,并对人类的发展产生了重要影响。在信息管理专业中教授人工智能课程的过程,与计算机专业的研究型教学不同,根据课程专业特色更应强调人工智能方法在实际信息管理系统中的应用。由于课程内容涉及大量抽象知识和复杂算法,信管专业学生往往在听课过程中不能及时消化,甚至认为难以理解而影响学习积极性,本文将在经济管理类课程中使用的案例教学法引入到人工智能课程教学中。

2.人工智能课程中的案例教学方法应用

案例教学是20世纪初由哈佛大学创造的围绕一定培训的目的把实际中真实的情景加以典型化处理,形成供学生思考分析和决断的教学形式,通过独立研究和相互讨论的方式,提高学生的分析问题和解决问题能力的一种方法。案例教学方法具有明确的目的性、较强的综合性、突出实践性、学生主体性、过程动态性、结果多元化等特点。在人工智能课程中,结合案例教学方法,对学生学习理解抽象知识有很大作用。

2.1“智能”概念中的案例选择

兴趣是最好的老师,在学生刚刚进入新课程学习时,能否有效激发其学习兴趣,将直接关系到整个课程的教学过程顺利与否,学生是否发挥学习主动性和对课程知识的掌握程度的高低。因此,在第一章中引出“人工智能”的基本概念时,我选择每位同学在儿时的玩具――魔方,将魔方恢复过程转化为在人工智能搜索原理平台上的启发式搜索模型,令学生从儿时简单地无序转动魔方的玩法中,体会到魔方模型在搜索运算过程中应该考虑到的问题:衍生出来的节点应尽可能少,又要保持魔方各面在旋转中颜色属性的相应变换。同时辅以视频和实物的演示,使学生对人工智能课程有了初步认识,并对问题建模和搜索策略产生浓厚的兴趣。

2.2“知识表示”中案例选择

知识表示是人工智能研究内容的基础部分,涉及状态空间表示法、问题规约法、谓词逻辑法、产生式法、语义网络法和框架表示法,为了充分发挥学生的联想能力,案例选择语义网络法的图形表示案例。语义网络是一种采用网络形式表示人类知识的方法。在语义网络知识表示中,结点一般划分为实例结点和类结点两种类型。结点之间带有标识的有向弧表示结点之间的语义联系,是语义网络组织知识的关键。在“连接词在语义网络的表示方法”内容中,选择带有蕴含关系的命题:“如果车库起火,那么用CO2或沙来灭火。”的案例,首先构造简单的语义网络,抽取出蕴含连接词前件“车库起火”和结论“用CO2或沙来灭火”两个命题。再抽取出前件命题事件结点“起火”和地点“车库”;结论命题事件结点“灭火”和事件工具属性“CO2”和“沙”,且两工具间是“或”的关系。学生可以在课堂上及时地应用刚学到的知识表示出此语义网络,我在此基础上扩展,对具体事件进行联想,可以得到失火事件的实例联系后的复杂语义网络。再辅以其他负责命题的语义网络表示练习题,让学生体会理解并及时掌握语义网络知识表示法。

2.3“专家系统”中案例选择

专家系统是一类包含知识和推理的智能计算机程序,是可以根据人们在专业领域内的知识、经验和技术求解问题并做出决策的计算机软件系统。专家系统已广泛应用于医疗诊断、地质勘探、石油化工、军事、文化教育等各方面。在讲授此部分内容时,选择“营养配餐系统”给学生演示,同时辅以讲解,邀请学生参与系统操作,让他们为自己量身设计一套科学营养的菜单,在完成任务的过程中,掌握专家系统的基本结构与工作原理;了解专家系统正向、反向推理和不精确推理的基本原理;了解专家系统解释机制的基本概念。在案例教学后,利用Visual Prolog工具,完成简单的专家系统的设计。

3.结语

本文介绍了在信息管理专业中人工智能课程的教学内容,运用案例教学方法对课程中抽象内容讲解并激发学生学习兴趣,在案例教学过程中注意和学生的互动,将他们带入到学习环境中,诱发他们的发散联想思维,同时又参与到案例的应用中。实践证明,将案例式的教学方法引入到非计算机专业的人工智能课程中,能取得良好的教学效果。

参考文献

第7篇

关键词:智能科学与技术;知识结构;应用型人才;人才培养;知识型能力本位教育

中图分类号:G64文献标识码:A

文章编号:1009-3044(2020)25-0153-03

1引言

智能科学与技术主要包含智能科学和智能技术两部分内容[1]:智能科学是以人如何认知和学习为研究对象,探索智能机器的实现机理和方法;智能技术则是将这种方法应用于人造系统,使之具有一定的智能或学习能力,让机器系统为人类工作。目前,在本科专业目录中,智能科学与技术专业是计算机类之下的特设专业,在现有的人工智能专业群中,除了新设的人工智能专业外(2019年全国共有35所高校获首批人工智能新专业建设资格),智能科学与技术专业与全球范围大力推进与快速发展的人工智能关系最密切,契合度最高。一方面,智能科学与技术的专业发展和人才培养将为人工智能技术提供理论支撑、技术推进和人才支持,另一方面,人工智能产业现状和未来发展趋势直接影响着智能科学与技术的专业发展和人才需求。

2人工智能时代对人才的需求

站在国家战略的高度来看,人工智能将成为新一轮产业变革的核心驱动力,可以实现社会生产力的整体跃升,因此人工智能将成为引领未来的战略性技术,世界主要发达国家都把发展人工智能作为提升国家竞争力、维护国家安全的重大战略。

随着人工智能时代的到来,许多企业对具有智能科学与技术专业背景的人才有着巨大的需求。首先,IT企业纷纷涉足智能科学领域,提高产品智能水平;其次,许多传统制造业也在转型,从劳动密集型到知识密集型,进一步提升到智能制造型,并逐渐具备高精尖装备制造能力;此外,医疗、通讯、交通等行业也对智能科技人才有着迫切的需要。人工智能对各行各业的影响,充分体现了智能科技的高速发展,对人才数量和素质要求也越来越高。

从人才的金字塔型分布来看,智能科学与技术领域不仅需要高端学术型人才,更需要接地气、重实践的应用型人才。随着“中国智造”的不断推进,智能科学与技术领域已由顶层设计和关键技术突破向生产、应用、装配、服务等环节延伸,迫切需求大批专业技术精、实践能力强、操作流程熟的应用型人才。2019年,人力资源和社会保障部、国家市场监管总局、国家统计局向社会了13个新职业信息,包括人工智能工程技术人员、物联网工程技术人员、大数据工程技术人员等,这也从另外一个侧面说明人工智能等技术推动了产业结构的升级,催生了相关专业技术类新职业,可形成相对稳定的从业人群。

3应用型人才培养模式分析

《中国制造2025》以推进智能制造为主攻方向,强调健全多层次人才培养体系,提到强化职业教育和技能培训,引导一批普通本科高等学校向应用技术类高等学校转型,建立一批实训基地,开展现代学徒制试点示范,形成一支门类齐全、技艺精湛的技术技能人才队伍。

通常而言,人才类型分为三类[2]:学术型人才、应用型人才、技能型人才。实际上从现代职业教育的发展和社会需求来看,应用型人才和技能型人才的界限相对模糊,可统称为应用型人才,即把成熟的技术和理论应用到实际的生产、生活中的技术技能型人才。从国家的层面来看,为了适应人工智能时展,人才需求数量基数最多、缺口最大的就是应用型人才,这也对众多高校培养人才的导向产生重大影响。这里我们重点讨论智能科学与技术应用型本科人才的培养,可从职能、知识结构、能力结构、行业(产业)导向四个方面来分析。

3.1职能

智能科学与技术应用型人才是培养面向各类智能科学与技术的工程设计、开发及应用,掌握各类现代智能系统设计、研发、集成应用、检测与维修、运行与管理等技术,具有扎实理论基础、较强工程实践和创新能力的高素质应用型工程技术人才。

3.2知识结构

智能科学与技术专业充分体现了跨学科的特点,其知识结构包含了三个并行的基础领域:电子信息、控制工程、计算机,也蕴含了电子信息工程、控制科学与工程、计算机科学与技术等学科的交叉和融合,体现了智能感知与模式识别、智能系统设计与制造、智能信息处理三个方面的专业内涵。

(1)智能感知与模式识别

属于电子信息与计算机交叉领域,主要定位在机器视觉与模式识别。包括三维建模与仿真、图像处理与分析、图像理解与识别、机器视觉、模式识别、神经网络、深度学习等。主要课程包括:电子技术基础、信号系统与数字信号处理、数字图像处理、模式识别等。

(2)智能系统设计与制造

属于控制工程领域,包括自动控制、无人系统与工程、精密传感器设计与应用等。主要课程包括:机械基础、工程力学、自动控制原理、传感器与测试技术、计算机控制技术、机电系统分析与设计等。

(3)智能信息处理

属于计算机领域,包括交通大数据、汽车与道路安全大数据等的分析与处理、信息处理与知识挖掘、信息可视化等。主要课程包括:智能科学技术导论、计算机程序设计、微机原理与接口技术、数据结构与算法、嵌入式系统设计等。

3.3能力结构

智能科学与技术应用型人才培养着眼于人工智能工程应用,要求学生具有运用计算机及相关软硬件工具进行大数据的采集、存储、处理、分析、应用的能力;具备智能系统的设计、开发、集成、运行与管理的能力;注重培养学生综合运用所学的智能科学与技术专业的基础理论和知识,分析并解决工程实际问题的能力,其能力结构可以借鉴能力本位教育(CompetencyBasedEducation,简称CBE)模式[3]。

CBE是国际上较流行的一种应用型人才培养模式,主要代表国家为加拿大和美国。该模式以能力为人才培养的目标和评价标准,一切教学活动均围绕综合职业能力的培养展开,CBE人才培养模式主要有以下三方面的特色:能力导向的教学目标;模块化的课程结构;能力为基准的目标评价体系。该模式所培养的本科应用型人才具有较强的专业综合能力和职业能力[4],在一定时期得到社会的广泛认可,但是单纯的CBE模式并不能完全适应人工智能时代对人才培养的需求,这是由于目前许多职业岗位在人工智能的冲击下,其形式和内容均会产生动态变化,要求现阶段的人才培养具有延伸性和前瞻性,既要兼顾眼前,也要考虑应对智能化浪潮,打好基础,提高自学习能力。因此,智能科学与技术应用型人才培养有一定岗位针对性,但并不是完全固化岗位内容及层次、固化知识属性,必须强化自我学习能力,才能实现能力可持续增长,岗位的向上流动性以及知识和经验的进化,才能真正适应人工智能时展的需求。

自我学习能力的形成与提高往往源于知识结构的构建[5]。为了塑造更合适的能力结构,需要CBE模式与知识结构的相辅相成,有鉴于此,将这种新型人才培养模式称之为知识型能力本位教育(Knowledge&CompetencyBasedEducation,简称KCBE)模式,这也意味着在人才培养过程中,将知识结构与能力结构放在并重的地位,既着眼于预期能力的培养,也必须让学生筑牢学科专业基础,在走向社会以后,在知识引擎的作用下,通过自我学习,具备并提升适应未来的、新的智能化岗位需求的能力。

3.4行业(产业)导向

从智能科学与技术专业的角度,培养的应用型人才以“智能化应用”为就业大方向,具体而言,包括:

(1)智能感知与模式识别领域

主要从事电子信息的获取、传输、处理、分析、应用等领域的研究、设计及应用,包括图像处理、机器视觉、工业视频检测与识别、视频监控、传感器设计及应用等。

(2)智能系统设计与制造领域

主要从事智能装备、智能制造、智能管理、智能服务等领域的设计、制造及应用,包括智能工厂、智能车间、智能生产线、智能物流、以及智能运营与服务等。

(3)智能信息处理领域

主要从事计算机数据处理、分析、理解、管理、以及服务等领域的研究、设计及应用,包括数据存储与管理、数据分析与预测、交通大数据分析应用、道路与汽车安全大数据分析、智能交通、智能电力、智能家居、智慧城市等。

涉及的产业领域主要包括智能制造,如工业互联网系统集成应用,研发智能产品及智能互联产品等。其他的领域还包括智能农业、智能物流、智能金融、智能商务等。

产业需求带动人才培养,人才培养在满足产业需求的同时推动技术进步,而技术进步又引燃了新的产业需求。产业需求与人才培养的相互作用,呈现出螺旋式上升的发展态势,这在人工智能相关产业与智能科学与技术应用型本科人才培养之间表现的得尤为突出。

4KCBE模式人才培养的主要措施和途径

智能科学与技术专业应用型本科人才的培养模式一定是和人才需求、学校定位相適应的。培养应用型人才,应注重学生实践能力,从教学体系建设体现“应用”二字,其核心环节是实践教学。结合上述的KCBE培养模式,知识结构在能力培养过程中也占有非常重要的地位,因此在能力培养方面,知识和实践作为两大要素,不能偏废任何一方,必须齐头并进,既要固基础,也要重实践。

(1)筑牢智能科学与技术专业知识基础,构建与智能化应用相关的知识体系

在本科的低年级阶段,应注重公共基础课,特别是数学和力学课程,还应充分了解智能科学与技术专业的内涵,让学生对所学专业有一个比较全面的认识。在本科中高年级阶段,重点强化专业基础,包括电子技术基础、自动控制原理、传感器与测试技术、微机原理与接口技术、数据结构与算法等。归纳地说,应该筑牢数理基础、计算机基础、机电基础和控制基础,因此对原理课程需要强化,这样对很多工作机理、来龙去脉的理解才能深刻。

(2)增强智能科学与技术专业的实践环节,构建以能力培养为重心的教学体系

按照KCBE模式,校企合作是强化实践的一种重要形式[6]。学校根据人工智能企业实际情况灵活设置实践课程内容,根据企业发展趋势及时调整课程体系以避免教学内容与企业需求相脱离。人工智能企业还可以参与学校教学目标和教学计划的制定,并为学校实践教学提供各方面支持,从而提高人才培养的针对性。

第8篇

关键词:大学计算机基础;教学改革;人工智能;智慧课堂

云计算、大数据、人工智能新兴领域的崛起,推动信息技术全面渗透于人们的生产生活中。信息技术的核心在于计算机技术和通信技术。然而,虽然目前各个高校都开设了计算机基础课程,但是其教学却存在着诸多问题,导致该课程无法达到预期的教学效果。教育部在2012年《教育信息化十年发展规划(2011-2020年)》,其中指明“以教育信息化带动教育现代化,促进教育的创新与变革”[2]。因此,本文以华中师范大学计算机基础课程教学为例,深入阐述了传统计算机基础课程教学的弊端,提出了在当前人工智能如火如荼的时代背景下,如何应用人工智能相关技术对传统的计算机基础教学进行改革的具体方案。该方案以创建网络智慧课堂教学模式改革为主体,辅以教学观念、知识体系和课程考核方式改革,以期对高校的计算机基础课程教学有所裨益。

1传统教学的缺陷

⑴课程的教学地位没有引起足够的重视一些高校为计算机基础课程分配较少的学时(少于48学时),甚至有的专业将此课程设置为选修课。这种设置降低了该课程在教师和学生心目中的位置,导致了对该课程的忽视。同时,不少老师因为学时不够,时间紧迫,仅仅讲述与考试相关的内容,不考的一概不讲。这导致学生的眼界受限,知识和能力受限,无法培养其全面综合的计算机素质。还有的专业没有将这门课给专业的计算机学院的老师讲授,而是随意安排授课人员。没有经过系统专业训练的教师缺乏足够的知识储备,很难讲好这一门看似简单的课程。⑵课程教学内容的制定与当今时代对于信息化人才的需求脱节一些高校的现状是计算机基础的课程教材知识陈旧[3]、质量堪忧,教材总是无法跟上知识更新的步伐,例如都2019年了还在讲Office2010。有的高校由于缺乏对课程的重视,没有对教材优中选优,而是基于利益的考虑,优先选择自己院系编写的教材。其教材内容是七拼八凑,没有整体性、逻辑性和连贯性,更不用说前瞻性。这样的教材,无疑对学生的学习设置了巨大的屏障。除此以外,一些院校的课程教学知识体系不够明确和完善,教学大纲的制定不够科学。从教学大纲中制定的学时分配来说,常常偏重实用性[4],常用计算机软件操作占据了大部分的课时。这会让教师在授课时轻理论而重操作,如此培养学生,非常不利于其计算思维的形成,对后续其他计算机相关课程的学习也是很大的伤害。⑶教学模式过于传统,信息化水平较低从教学方式上来说,传统的教学模式以教师课堂授课为中心,是以教师为主体的教学模式[5]。在这种模式下,教师仍然主要以填鸭式教学为主[6],无法通过课堂教学发现学生的个性化特点,并进行有针对性的教学。另外,虽然计算机基础课程一般都配备了实验课时,但是实验课常常是采用教师布置上机任务、学生做完抽样检查的模式。这对于大课堂来说,教师的任务繁重,无法搜集到每一个学生的任务完成情况,无法清晰地掌握学生学习的实际情况和薄弱环节。而且,该课程缺乏相应的研讨课时,很难让学生对其所学知识进行深入思考和探究,以增强思辨能力和对课程的学习兴趣。⑷课程考核方式不够公平合理从考核方式上来说,该课程普遍采用“平时成绩”+“期末考试”的加权方式对学生成绩进行评定。平时成绩多由考勤分所得,期末考试多采用机考模式。这种考核方式过于单一化、机械化,无法对学生进行全方位的评价。很多学生来到教室打考勤,但可能根本没听讲,而是在睡觉或者玩手机。期末机考的公平合理性也是存在着很多的漏洞。例如机考的试题库可以十年不变,分值的分配和难度的掌握都没有经过系统的考量。甚至有的考试系统不够稳定和安全,频频爆出Bug,严重影响了考试结果的真实性。

2新人工智能环境下对计算机基础课程改革的具体方案

2012年开始,在随着卷积神经网络技术在视觉处理方面的应用取得巨大的成功之后,人工智能到达了有史以来的第三个爆发期。目前,深度学习技术在AlphaGo、无人驾驶汽车、机器翻译、智能助理、机器人、推荐系统等领域的发展如火如荼。与此同时,人工智能技术在教育领域方面的应用已经兴起。人工智能的教学产品也已有先例,例如基于MOOC平台研发的教学机器人MOOCBuddy等等。基于人工智能的教育是融合云计算、物联网、大数据、VR、区块链等新兴技术的增强型数字教育[2].在当前人工智能的大时代背景下,针对传统计算机基础的种种弊端,我们提出了如下教学改革方案。⑴改变教学理念,确立计算机基础课程的重要地位计算机基础作为高校的一门公共课,实则应当作为各个专业的学生后续的学习、科研的必修之课程。因此,高等学校应从源头上确立该课程的重要地位,将该课程纳入必修课范畴,并给与更充分合理的课时分配。除教学课时、实验课时之外,需要为该课程增加一定的研讨课时。任课老师必须是来自于计算机专业的人才。同时,定时举办关于该课程的教学培训、教学研讨会和教学比赛,改变教师的教学理念,从源头上给予该课程足够的重视。⑵优化教学内容,重新制定课程的教学知识体系教材是教师教学的主要依据,也是学生获得系统性知识的主要来源。因此,教材对于教学的重要性不言而喻。教材的选取需要优中择优,必要的时候可以根据自身院校的情况自己编写,力求使用好的教材使教学事半功倍。在选定优质教材的基础上,制定更加合理的教学大纲,优化计算机基础课程的教学知识体系,突出计算机学科入门相关基础理论知识的重要地位。对现有的过时内容进行更新,例如操作系统以Windows10的操作取代Windows7,Office这部分使用Office2019版本取代2010的版本,同时增加关于算法入门知识、程序设计入门知识以及人工智能、区块链等前沿知识单元的介绍。以华中师范大学为例,我们在图1中给出了该校计算机基础课程的教学知识体系结构图。⑶充分利用现代化的教学工具和人工智能技术,构建智慧课堂,改变传统教学模式现代化的教学应当转变以教师为核心的教学模式,更加突出学生的主体性地位。因此,在人工智能、物联网、大数据等技术和蓬勃发展的情形下,应当改变传统的课堂教学形式,充分利用现代化信息技术,将传统课堂教学和网络课堂教学模式相结合,构建智慧课堂。融合课堂教学身临其境的效果与网络课堂自主性强且方便师生交流的特点,通过师生之间多层次、立体化的互动,达到提升教学效果的目的。同时,建立功能强大、完善的学生实验平台,基于不同专业学生的不同特点和不同需求,进行个性化的作业设置。针对教师布置的实验任务和学生的完成情况,结合在线网络教学系统,通过传感器及网络数据,搜集学生的学习行为数据,并且使用人工智能算法进行智能分析,使教师对当前的学生的学习情况一目了然,并能引导学生对重点、难点的巩固和掌握。研讨课以学生为主体,按照所选课题进行分组调研、分组讨论,刺激学生的学习兴趣,培养其思辨能力。研讨内容最终可以课程论文的形式上交至课程共享平台,由教师和同学共同给出评分。这里,仍以华中师范大学为例,我们将在线教学系统、实验课平台、研讨课共享平台等集成为一个基于人工智能技术的网络智慧教学综合平台系统。该系统主要包括用户管理、在线教学、课堂互动、作业管理、考试管理、BBS系统、智能分析和平台管理8个模块,其主要功能如图2所示。该系统采用C/S模式,系统的服务器选用Linux服务器,同时开发基于PC机的和手机端的客户端系统,方便学生和教师随时选用、更加灵活。在线教学模块中的智能学习助理功能,能够根据历史用户的学习行为和当前用户的学习行为,自动地识别学习内容中的难点以及当前学生的难点内容,有针对性地对学生进行知识点强化。课堂互动模块中,通过可穿戴式传感器搜集学生的学习行为,用于后续智能分析模块中对学生的学习态度和学习行为进行智能分析。在线作业评价模块包括机器评价和教师评价两个功能。机器评价是系统为学生作业(客观题、主观题)自动评分,其中主观题的评分也是使用人工智能技术来实现。教师评分时可以参考机器评分,减少教师工作量。同时,教师评分为机器评分提供机器学习的经验数据,促进机器评分更加智能。智能分析模块能够依据学生的在线课程学习模块、课堂学习模块、作业管理模块等搜集到的学习行为数据进行综合分析,促使教师深入了解学生的学习情况和个性化特点,提升教学的针对性,并且有助于后续对学生进行全面、综合的分析和成绩评定。所有系统模块中使用到的智能分析技术包括基本的统计分析、以及各类机器学习算法(k-means,NaveBayes,SupportVectorMachine,DeepLearning等等)。⑷改变传统成绩考核的方式在“教学”+“实验”+“研讨课”课程结构以及网络智慧教学综合平台的辅助之下,学生的成绩评定更加全面化、多元化、公平化、自动化[7]。平时成绩中,除了教学综合平台的“课堂签到”次数之外,还增加更多丰富多元化的考察信息,如:学生的课堂讨论、在线课程学习和考核结果、平时作业完成情况,以及智能分析模块中辅助分析的学习态度、学习能力、平时成绩预测。期末上机考试系统也是智慧课堂综合平台的一个子模块,是精心设计的稳定、安全、功能强大的子系统,方便教师每一年更新试题库,修改bug。试题库中的每一套试卷都应当经过科学的考卷质量分析,使其难度、覆盖范围在一个均衡、合理的范围。最后,教师通过对各类平时成绩指标以及期末考试成绩加权,给出最终的学习成绩。通过规范、合理、公平、全面的考核体系,获得对学生公平、完善的评价机制,激励学生并刺激教学良性运转。

3结束语

第9篇

人工智能在培训行业的应用,除非已经进化到像电影《黑客帝国》中的场景一样,可将所需知识直接下载至脑中,否则,还是得回归学习的本质。人工智能无法替代人类学习,学习是个性化的,并且还要经历内化的过程,才能最终完成。然而,这并不代表人工智能在培训行业没有用武之地,恰恰相反,“智能化”学习技术的发展正为培训行业注入一股新动能,而其中有些应用值得重点关注。

辅助系统

在学习环境中,与传统学习管理平台注重管理与记录不同的是,智能化辅助系统会提供给学习者(learner)个性化的反馈。学习者参加完测验后,可以更好地了解自己的弱项,进一步获取相关的学习资源及后续所建议的学习路径。智能化辅助系统扮演了助教的角色,有效指导并促进学习者的学习。在工作环境中,智能化辅助系统可以依照角色或流程等属性,即时提供给任务执行者(performer)个性化且适量的内容,扮演了教练的角色,加速问题解决并提升工作成效。

课程规划

想像一下,你所经历的学习与工作都留下了记录,你曾经去过哪儿、看过什么、读过什么,都被记录分析。之后通过电脑演算模型,人工智能就可以根据你的程度与需求,为你匹配相关的资源,选取真正对你有用的内容,提供多元与个性化的学习历程(learning experience),从而摒弃以往齐头并进式的课程规划。

内容资源

通过学习元件(learning objects)或知识元件(knowledge objects)在元数据(meta data)的标签,内容资源可以具备学习者能力、角色、工作场景及业务流程等属性。之后,结合智能推荐引擎,内容便可以依照单一或多元属性呈现,作为获取知识的来源被自动推送给学习者,或者作为问题解决的资料来源被推送给任务执行者。

精确搜索

语言可能是模棱两可的,通过建立知识图谱(knowledge graph),学习者可以快速缩小搜索范围。智能化搜索也可以更好地理解学习者搜索的信息,总结出与搜索话题相关的内容。由于知识图谱构建了一个与搜索结果相关的完整知识体系,所以学习者往往会获得意想不到的发现。在搜索中,学习者可能会了解到某个新的知识或新的联系,从而进行一系列全新的搜索与学习。

数据分析

学习无处不在,当学习或者历程记录可以通过xAPI这类学习技术标准,来收集多元数据的时候,学习数据就不会只停留在以往SCORM课件阅读的纪录模式,而是可以实现学习历程数据的集中。过去单纯的学习记录也可以上升到预警及预测的层次,甚至通过数据收集与深度分析,提供学习者如何建构所学内容的意义、如何形成理解、以及学习过程中所做决策的报告,这对教学设计会有莫大的帮助。

项目运营

相关文章
相关期刊