时间:2023-08-25 16:39:06
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇初中物理模型法范例。如需获取更多原创内容,可随时联系我们的客服老师。
物理学所分析的、研究的实际问题往往很复杂,为了便于着手分析与研究,物理学中常常采用“简化”的方法,对实际问题进行科学抽象的处理,用一种能反映原物本质特性的理想物质(过程)或暇想结构,去描述实际的事物(过程)。这种理想物质(过程)或假想结构称之为“物理模型”。
每一个物理过程的处理,物理模型的建立,都离不开对物理问题的分析。教学中,通过对物理模型的设计思想及分析思路的教学,能培养学生对较复杂的物理问题进行具体分析,区分主要因素和次要因素,抓住问题的本质特征,正确运用科学抽象思维的方法去处理物理问题的能力,有助于学生思维品质的提高,有助于培养学生的创新思维。这是培养创新能力的主渠道。
建模过程中,要充分利用抽象思维和比较思维,区分主要因素、次要因素和无关因素,抓住本质的东西加以概括,建立物理模型,在教学中要注意建模过程的教学。如在连通器的教学中,可以让学生观察茶壶、锅炉水位计、乳牛自动喂水器等,设计表格:
引导学生分析、比较这些物体间的差异和共同点,找出它们的共性:上端开口、下部相连通,进一步抽象建立起连通器的物理模型。在研究简单机械时,可以举出多种生活中的工具或器械,如撬杠,核桃钳,镊子,启瓶器等,让学生使用这些工具体会分析比较它们在使用过程中的共同特点,就不难发现它们都具有共同的特征:1.坚硬,使用不变形,是一根硬棒;2.在力的作用下能绕着固定点转动;3.在长短、粗细、弯直等形状上没有一定要求。这样就抽象出“杠杆”这一物理模型。
使用物理模型解决问题时可以起到很多作用:
1.可使物理教学简单化
很多实际问题是复杂的很难研究的,如能将其转化成物理模型可使物理教学简单化,如做力的示意图时就找到力的作用点,沿力的方向画一条带箭头的线段来表示这个力,力的示意图就是典型的模型。分析物体受力时,可根据问题的需要忽略物体的形状和大小,把物体看做一个有质量的点,把这个点作为物体所受的所有力的作用点,从中较为方便地得出物体受力情况。
2.可以使教学形象直观
有些物理问题现象过程非常抽象,运用物理模型法可将问题变得直观形象。在研究磁场时为了描述磁体周围的磁场强弱和磁场特点我们就用磁感线这一模型来描述磁场,通过磁感线的疏密程度表示磁场的强弱。
3.使具体问题普遍化
关键词:初中物理 模型构建 形象化 重要性
中图分类号:G633.7 文献标识码: C 文章编号:1672-1578(2013)10-0143-01
近些年,随着经济和社会的快速发展,模型在人们的日程生活和学习中的地位越来越突出,尤其是在工程技术和科学研究方面。与学生们息息相关的当属物理模型的应用。众所周知,物理研究略带复杂性,要想将极为复杂的客观现象转变成为较为简单的物理学规律,就需要我们很好的运用物理模型,来实现物理研究的简化和形象化。考虑到构建物理模型在初中物理教学中扮演的重要角色,教学工作者在开展教学活动的过程中就需要注重对物理模型的构建,进而有效的提升物理教学效率。
1 在初中物理教学中构建物理模型的重要性
从某种程度上说在初中物理教学中注重物理模型的构建能够有效的增强学生的理解和接受新知识的能力[1]。比如,教学工作者在向学生们传授有关运动学中质点的知识点时,就可以建立其关于质点的结构模型,从而使学生们通过对质点模型的较为细致的认识和了解来打下后续有关质点运动、万有引力定律、物体的平动和转动、电学中的“点电荷”模型以及光学中的“点光源”模型等较为坚实的基础,还可以让学生们较为容易和顺畅的接受其传授的关于运动的新知识。在初中物理教学中构建物理模型还可以使得较为复杂的物理问题简单明了化,使抽象的问题变得形象生动,有效的突出问题的主要矛盾。此外,在初中物理教学中注重构建物理模型,还可以帮助学生提升思维能力和解题能力,进而有效的提升初中物理教学的教学效率。
2 较为常见的物理模型
通常情况下,物理模型可以说是物理思想的产物,是科学地进行物理思维并从事物理研究的一种方法。在初中物理教学中,学生们经常接触的物理模型主要包括以下几个方面:
2.1物理对象模型化
初中物理课本中所涉及到的一些客观实体,例如,质点-在某些问题中的研究中需要舍弃物体的形状、大小、转动等性能,来强度它所处的位置以及质量的特性,仅通过一个有质量的点来描绘,实现对实际物体的简化。在物理问题的研究中,若是物体本身的大小可以不计的话就可以把其当做质点来看待。此外,与质点较相似的客观实体还包括刚体、点电荷、薄透镜、弹簧振子、单摆、理想气体、理想电流表、理想电压表等。
2.2物体所处的条件模型化
在进行有关带电粒子在电场中的运动的相关问题的研究时,由于粒子的重力比电场力小得多,因此可以忽略物理粒子的重力,这样就可以有效的简化问题。此外,力学中的光滑面;热学中的绝热容器、电学中的匀强电场、匀强磁场等,都可以将所涉及到的物体所处的条件理想化。
2.3物理状态以及物理过程的模型化
举例来说,力学所涉及到的自由落体运动、匀速直线运动、简谐运动、弹性碰撞;电学所涉及到的稳恒电流、等幅振荡;热学所涉及到的等温变化、等容变化、等压变化等均可以看做是物理过程以及物理状态的模型化。
2.4理想化实验
在进行相关实验的前提下,把握其主要矛盾,不计次要矛盾,按照逻辑推理法则,对相关物理过程进一步分析、推理,进而找到相关规律。
2.5物理中的数学模型
原则上,客观世界的一切规律均能够在数学中找到与之对应的表现形式。所以,在进行初中物理教学的过程中,构建物理模型时还需要不断的建造表现物理状态和物理过程规律的数学模型。考虑到物理模型作为客观实体的近似,将物理模型当做描述对象的数学模型,只可以作为客观实体的近似的定量描述。
3 物理模型在初中物理教学中的应用
3.1建立模型概念
教学工作者要帮助学生充分认识和了解建立模型概念的实质。概念主要是说客观事物的本质在人脑中的反映,客观事物的本质属性是抽象的、理性的。要想使客观事物在人脑中有深刻的反映,就需要把它和人脑中已有的事物联系起来,使之形象化、具体化。通常情况下,绝大多数的物理模型都是把理想化模型当做对象而发展起来的。实际上,建立概念模型主要是为了撇开和问题所涉及无关的因素和影响较小的次要因素。这种做法在很大程度上体现了抓主要因素,认清事物的本质,通过理想化的概念模型解决实际问题。
3.2认清条件模型,突出主要矛盾
条件模型主要是说把已知的物理条件模型化,放弃条件中的次要因素,抓住条件中的主要因素,为问题的讨论以及求解起到搭桥铺路、化难为易的作用。条件模型的建立,能使我们研究的问题得到很大简化。
4 构建物理模型的注意事项
在开展初中物理教学的过程中,要想通过构建物理模型来有效的提升初中物理教学的形象化,就必须注重对象引导和鼓励学生对物理模型的概念、使用物理模型的意识以及与其他解题方法的影响有所了解和掌握,此外,还需要配合以其他的教学方式来开展物理教学活动,进而使得物理课堂教学效率得到显著的改善。
5 结语
综上所述,鉴于构建物理模型在初中物理教学中所扮演的较为重要的角色,教学工作者在开展初中物理教学的过程中要高度重视物理有关物理模型概念以具体模型的教学[2]。此外,还需要注重向学生们传授有关建立物理模型的方法,进而有效的增强学生们建立和使用物理模型解决物理问题的意识,培养学生解决问题的能力,提升初中物理教学效率。
参考文献:
【关键词】物理模型初中物理教育初中物理教学简单性原理
模型在我们日常生活、工程技术和科学研究中经常见到,对我们的生产生活有很大帮助。物理学研究具有复杂性。怎样发现复杂多变的客观现象背后的基本规律呢?又如何简单的表达它们呢?人们有幸在漫长地实践活动中找到一些有效的方法,其中一个就是:在具体情况下忽略研究对象或过程的次要因素,抓住其本质特征,把复杂的研究对象或现象简化为较为理想化的模型,从而发现和表达物理规律。
既然物理模型是物理学研究的重要方法和手段,物理教育和教学中对物理模型的讲述和讲授就必不可少。建立物理模型就要忽略次要因素以简化客观对象,合理简化客观对象的过程就是建立物理模型的过程。根据简化过程和角度的不同,将物理模型分为以下五类:物理对象模型、物理条件模型、物理过程模型、理想化实验和数学模型。下面我们逐个加以说明。
(一)物理对象模型――直接将具体研究对象的某些次要因素忽略掉而建立的物理模型。这种模型应用最为广泛,在初中物理教材中有许多很好的例子。例如:质点、薄透镜、光线、弹簧振子、理想电流表、理想电压表、理想电源和分子模型。作为例子,我们详细分析质点。质点,就是忽略运动物体的大小和形状而把它看成的一个有质量的几何点。其条件是在所研究的问题中,实际物体的大小和形状对本问题的研究的影响小到可以忽略。这样以来,很多类型的运动的描述就得到化简。比如所有做直线运动的物体都可以看成质点。因为作直线运动的物体的每一个部分每时每刻都做同样的运动,所以就可以忽略其大小和形状,而只找这个物体上的一个点作为概括,当然这个点的质量等于物体本身的质量。这样,直线运动物体的运动轨迹就是一条直线,很容易想象、理解和刻画。很多具体例子都可以这么做,例如以最大速度行驶在笔直铁轨上的火车,沿着航空路线飞行的客机,从比萨斜塔上下落的铁球,等等。
(二)物理条件模型――忽略研究对象所处条件的某些次要因素而形成的物理模型。在初中物理中有:光滑面、轻质杆、轻质滑轮、轻绳、轻质球、绝热容器、匀强电场和匀强磁场等。我们以轻质杆为例加以分析。比如简单机械里的杠杆,在初中阶段问题往往归结到力矩的平衡上来。即:动力×动力臂=阻力×阻力臂。动力和阻力都包括杆以外的物体对杠杆的作用力,还包括杆本身的重力。而杆重力的力臂在杆上的每一点都不同,这样除了杆的形状是几何规则的少数例子以外的绝大部分杠杆问题在初中阶段就没法解决。而轻质杆的引入正好解决了这一问题。轻质杆是忽略了自身重力的弹性杆。当外界物体对杠杆的力矩远远大于杆自身重力的力矩或者杆自身重力的力矩相互抵消时,就可以把杆当成轻质杆,杠杆受到的力矩只有外力矩,这样所有杠杆平衡问题都可以迎刃而解。
(三)物理过程模型――忽略物理过程中的某些次要因素建立的物理模型。在初中物理中有:匀速直线运动、稳恒电流等。这些物理模型都是把物理过程中的某个物理量的微小变化忽略掉,把这个物理量看成是恒定的。因为这些量的变化量与物理量本身相比太小了,以至于可以略去不计。这样不用考虑过程中物理量的复杂变化情况而只考虑恒定过程,分析问题就容易多了。
(四)理想化实验――在大量实验研究的基础上,经过逻辑推理,忽略次要因素,抓住主要特征,得到在理想条件下的物理现象和规律的科学研究方法就是理想实验。理想化方法是物理科学研究和物理学习中最基本、应用最广泛的方法。初中物理中就有一个非常著名的理想化实验:伽利略斜面实验。伽利略的斜面实验有许多,现在举其中的一个例子,同样的小球从同种材料同样高度的斜面上滑下来,在摩擦力依次减小的水平面上沿直线运动的路程依次增大。伽利略由此推知:小球在没有摩擦的水平面上永远做匀速直线运动(在理想条件下的物理现象)。牛顿又在此基础上建立了牛顿第一定律。无需多论,也足以见得理想实验的强大力量。
(五)数学模型――由数字、字母或其它数学符号组成的、描述现实对象数量规律的数学公式、图形或算法。初中物理中的数学模型主要有磁感线和电场线。磁感线(电场线)是形象的描述磁感应强度(电场强度)空间分布的几何线,是一种数学符号。而磁场和电场本身的性质对这些几何线做了一些规定,例如空间各点的电场强度是唯一的规定了电场线不相交。这样就使它们成为形象、简练而准确的描述磁场和电场的数学符号。
物理模型在初中物理教育与教学中起到举足轻重的作用,因此,在教学中我们就要重视对物理模型概念和具体模型(例如上文分析的模型)的讲述,重视对建立物理模型方法的讲授,重视对学生建立和应用物理模型意识的增强,重视对学生建立和应用物理模型能力的培养,让学生体验到成功建立和应用物理模型解决实际问题的快乐。
参考文献
[1]刘玉胜,物理模型在教学中的运用
【关键词】物理模型;初中物理教育;初中物理教学;简单性原理
模型在我们日常生活、工程技术和科学研究中经常见到,对我们的生产生活有很大帮助。物理学研究具有复杂性。怎样发现复杂多变的客观现象背后的基本规律呢?又如何简单的表达它们呢?人们有幸在漫长地实践活动中找到一些有效的方法,其中一个就是:在具体情况下忽略研究对象或过程的次要因素,抓住其本质特征,把复杂的研究对象或现象简化为较为理想化的模型,从而发现和表达物理规律。
既然物理模型是物理学研究的重要方法和手段,物理教育和教学中对物理模型的讲述和讲授就必不可少。建立物理模型就要忽略次要因素以简化客观对象,合理简化客观对象的过程就是建立物理模型的过程。根据简化过程和角度的不同,将物理模型分为以下五类:物理对象模型、物理条件模型、物理过程模型、理想化实验和数学模型。下面我们逐个加以说明。
1. 物理对象模型――直接将具体研究对象的某些次要因素忽略掉而建立的物理模型 这种模型应用最为广泛,在初中物理教材中有许多很好的例子。例如:质点、薄透镜、光线、弹簧振子、理想电流表、理想电压表、理想电源和分子模型。作为例子,我们详细分析质点。质点,就是忽略运动物体的大小和形状而把它看成的一个有质量的几何点。其条件是在所研究的问题中,实际物体的大小和形状对本问题的研究的影响小到可以忽略。这样以来,很多类型的运动的描述就得到化简。比如所有做直线运动的物体都可以看成质点。因为作直线运动的物体的每一个部分每时每刻都做同样的运动,所以就可以忽略其大小和形状,而只找这个物体上的一个点作为概括,当然这个点的质量等于物体本身的质量。这样,直线运动物体的运动轨迹就是一条直线,很容易想象、理解和刻画。很多具体例子都可以这么做,例如以最大速度行驶在笔直铁轨上的火车,沿着航空路线飞行的客机,从比萨斜塔上下落的铁球,等等。
2. 物理条件模型――忽略研究对象所处条件的某些次要因素而形成的物理模型 在初中物理中有:光滑面、轻质杆、轻质滑轮、轻绳、轻质球、绝热容器、匀强电场和匀强磁场等。我们以轻质杆为例加以分析。比如简单机械里的杠杆,在初中阶段问题往往归结到力矩的平衡上来。即:动力×动力臂=阻力×阻力臂。动力和阻力都包括杆以外的物体对杠杆的作用力,还包括杆本身的重力。而杆重力的力臂在杆上的每一点都不同,这样除了杆的形状是几何规则的少数例子以外的绝大部分杠杆问题在初中阶段就没法解决。而轻质杆的引入正好解决了这一问题。轻质杆是忽略了自身重力的弹性杆。当外界物体对杠杆的力矩远远大于杆自身重力的力矩或者杆自身重力的力矩相互抵消时,就可以把杆当成轻质杆,杠杆受到的力矩只有外力矩,这样所有杠杆平衡问题都可以迎刃而解。
3. 物理过程模型――忽略物理过程中的某些次要因素建立的物理模型 在初中物理中有:匀速直线运动、稳恒电流等。这些物理模型都是把物理过程中的某个物理量的微小变化忽略掉,把这个物理量看成是恒定的。因为这些量的变化量与物理量本身相比太小了,以至于可以略去不计。这样不用考虑过程中物理量的复杂变化情况而只考虑恒定过程,分析问题就容易多了。
4. 理想化实验――在大量实验研究的基础上,经过逻辑推理,忽略次要因素,抓住主要特征,得到在理想条件下的物理现象和规律的科学研究方法就是理想实验 理想化方法是物理科学研究和物理学习中最基本、应用最广泛的方法。初中物理中就有一个非常著名的理想化实验:伽利略斜面实验。伽利略的斜面实验有许多,现在举其中的一个例子,同样的小球从同种材料同样高度的斜面上滑下来,在摩擦力依次减小的水平面上沿直线运动的路程依次增大。伽利略由此推知:小球在没有摩擦的水平面上永远做匀速直线运动(在理想条件下的物理现象)。牛顿又在此基础上建立了牛顿第一定律。无需多论,也足以见得理想实验的强大力量。
5. 数学模型――由数字、字母或其它数学符号组成的、描述现实对象数量规律的数学公式、图形或算法 初中物理中的数学模型主要有磁感线和电场线。磁感线(电场线)是形象的描述磁感应强度(电场强度)空间分布的几何线,是一种数学符号。而磁场和电场本身的性质对这些几何线做了一些规定,例如空间各点的电场强度是唯一的规定了电场线不相交。这样就使它们成为形象、简练而准确的描述磁场和电场的数学符号。
【关键词】物理模型 初中物理 重要作用
【中图分类号】G632 【文献标识码】A 【文章编号】1674-4810(2015)13-0130-01
模型在我们的日常生活中、工程技术和科学研究中经常见到,它对我们的生产生活具有很大的帮助。而物理模型就是将复杂问题转换为简单问题,通过画图形式直观表达知识的过程。学生可以通过物理模型的学习对疑难问题进行解答,突出物理问题的重要部分,为学生清晰地建立物理图像,更直观地解决问题,让复杂的物理问题简单化。这样不仅降低了难度,同时也帮助学生建立了信心,培养了学生的逻辑思维能力。
一 初中物理简述
初中物理是义务教育的基础学科,也是中考的必考科目。物理模型在初中物理教学中占据着主导地位,随着课程的改革,物理问题研究的不断加深,学生学习物理变得困难。因此,部分学生因为物理的难度渐渐失去了兴趣,导致总体成绩不高,物理教育得不到完善,教育教学不能满足现在的教学需求。物理作为一门自然科学课程,比较难学,不能单凭死记硬背,要有自己的一套学习方法和学习技巧,不能因为物理的难度而放弃这门学科的学习。从目前初中物理的教学模式来看,教师对物理概念比较重视,还是局限于传统的教学理念。部分教师在物理教学过程中,把物理概念当成教学重点,让学生死记硬背物理概念,导致学生很难理解物理概念的真正意义,从而对物理学习失去兴趣。针对物理学科,我们要制订合适学生自己的学习计划,首先应独立做题,了解物理过程;其次应认真听讲并做好相关记录;最后应主动向别人学习。当然,仅凭课堂上老师的讲解是远远不够的,课后要针对老师讲解的内容加以复习,尤其是疑点难点,必须加深理解,这样才能学好物理,产生对物理学习的欲望。
二 物理模型的基本内涵
物理模型,就是利用图像进行疑难问题的解析,让学生很快地解决物理问题。物理模型具有一定的作用,主要表现在以下几个方面:(1)把复杂的问题变得简单化。(2)依据教学内容制作相关模型。(3)利用物理模型做出科学预言。物理模型主要由两个部分组成:直接模型与间接模型。直接模型是指通过对物理情景的描述,很快地在脑海中浮现出清晰的图像。例如习题中的点、小球以及木块等作为研究对象。间接模型是指对描述的物理情景不能直观地在大脑中得以呈现,通过自身的想象力与逻辑思维形成的抽象图形。显而易见,间接模型和直接模型相比较,要比直接模型难得多。然而在物理教学中,大多都是以间接模型为核心,通过物理情景的描述以及学生的想象力,找出正确的研究对象、物理过程等因素,针对这些抽象的事物,进行抽象的研究。因此,我们要培养学生的物理模型化能力,必须正确选择研究对象,根据题中的情景描述,清晰地建立正确的物理模型,这样在物理学习中,一些疑点难点能快捷地解决,同时也降低了物理学习的难度,让学生更轻松地学习物理,产生对物理学习的求知欲,实现物理教学目标。
三 物理模型在初中物理教学中的作用
物理模型在初中物理教学中有着举足轻重的作用。在物理学习中,不要把物理概念当成重点,要实际结合物理模型来学习。通过物理模型的学习,不仅降低了物理学习的难度,让复杂的问题转化为简单的问题,让疑点难点得以解决。针对一些抽象事物,我们以画图形式清晰地在学生的脑海中浮现。不仅拓展了学生丰富的想象力,同时也培养了学生学习物理的逻辑思维。比如:教师在讲解八年级下册第六章第三节物质的密度一课时,教师可以创设相关教学情境,让学生的头脑中出现直接模型的观念,以这样的形式开展情境教学,通过观察和学生亲自体验,让学生觉得亲切自然,从而激发学生的求知欲望。或者利用简单、有趣的模型口诀吸引学生的注意力,这节有关密度的口诀可以是:实验测密度,质量比体积,等量替换法,密度就可知。通过将物理模型运用到初中物理课堂的方法,不仅培养了学生的观察能力和创造能力,还能培养学生的逻辑思维能力。让学生有效地学习物理,对物理学习产生热情,提高物理成绩的同时达到物理教学目的。
四 结束语
过程模型;理想化实验;数学模
型
〔中图分类号〕 G633.7
〔文献标识码〕 A
〔文章编号〕 1004―0463(2014)
24―0058―01
物理模型是物理学研究的重要方法和手段,物理教育和教学中对物理模型的讲授是必不可少的。建立物理模型就要忽略次要因素以简化客观对象。合理简化客观对象的过程就是建立物理模型的过程,根据简化过程和角度的不同,可以将物理模型分为以下五类:物理对象模型、物理条件模型、物理过程模型、理想化实验和数学模型。下面,笔者就对这五种模型作详细阐述。
一、 物理对象模型
这种模型是直接将具体研究对象的某些次要因素忽略掉而建立的,它的应用最为广泛。例如,质点就是忽略运动物体的大小和形状,而把它看成一个有质量的几何点,其条件是在所研究的问题中,实际物体的大小和形状对本问题研究的影响小到可以忽略不计。这样以来,很多类型的运动描述就得到化简。比如所有做直线运动物体都可以看成质点。因为做直线运动的物体的每一个部分每时每刻都做同样的运动,所以就可以忽略其大小和形状,只需要找这个物体上的一个点进行概括,当然这个点的质量等于物体本身的质量。这样,直线运动物体的运动轨迹就是一条直线,很容易想象、理解和刻画。
二、 物理条件模型
这种模型是忽略研究对象所处条件的某些次要因素而形成的,以轻质杆为例加以分析。比如杠杆,在初中阶段,问题往往归结到力矩的平衡上来,即动力×动力臂=阻力×阻力臂。动力和阻力都包括杠杆以外的物体对杠杆的作用力,还包括杠杆本身的重力。而杠杆重力的力臂在杠杆上的每一点都不同,这样除了杠杆的形状是几何规则的少数例子以外的绝大部分杠杆问题在初中阶段就没法解决。而轻质杆的引入正好解决了这一问题。轻质杆是忽略了自身重力的弹性杆,当外界物体对杠杆的力矩远远大于杠杆自身重力的力矩或者与杠杆自身重力的力矩相互抵消时,就可以把杠杆当成轻质杆,杠杆受到的力矩只有外力矩,这样所有杠杆平衡问题都可以迎刃而解。
三、 物理过程模型
这种模型是忽略物理过程中的某些次要因素建立的。在初中物理中有:匀速直线运动、稳恒电流等。这些物理模型都是把物理过程中的某个物理量的微小变化忽略掉,把这个物理量看成是恒定的。因为这些量的变化量与物理量本身相比太小了,以至于可以忽略不计。这样不用考虑过程中物理量的复杂变化情况,而只考虑恒定过程,分析问题就容易多了。
四、 理想化实验
在大量实验研究的基础上,经过逻辑推理,忽略次要因素,抓住主要特征,得到在理想条件下的物理现象和规律的科学研究方法就是理想实验。理想化方法是物理科学研究和物理学习中最基本、应用最广泛的方法。初中物理中就有一个非常著名的理想化实验:伽利略斜面实验。伽利略的斜面实验有许多,现在列举其中的一个例子。同样的小球从同种材料同样高度的斜面上滑下来,在摩擦力依次减小的水平面上沿直线运动的路程依次增大。伽利略由此推知:小球在没有摩擦的水平面上永远做匀速直线运动(在理想条件下的物理现象)。牛顿又在此基础上建立了牛顿第一定律。无需多论,也足以见得理想实验应用的广泛和其重要性。
五、 数学模型
论文关键词:初中物理
科学方法是连接知识和能力的纽带。“掌握一种科学方法胜过解答十个问题。”对研究方法的学习和考查体现着一种新的教学理念,同学们只有真正掌握了研究方法,才能有效解决实际问题,真正提高自己的创新意识和能力。
《新课程标准》要求,在突出科学探究内容的同时,重视研究方法的指导,使学生在进行科学探究、学习物理知识的过程中,逐渐拓宽视野,初步领悟到科学研究方法的真谛。因此初中物理论文初中物理论文,考查研究物理问题的方法,成为当前和今后中考的热点。
初中物理常用的研究方法有:控制变量法、等效替代法、转换法、推理法、模型法、类比法等。
一、控制变量法
所谓控制变量法,就是在研究和解决问题的过程中,对影响事物变化规律的因素和条件加以人为控制,只改变某个变量的大小,而保证其它的变量不变,最终解决所研究的问题。控制变量法是中学物理中最常用的方法,也是中考出题最多的方法。
在初中物理课本中,应用这种方法的实验有:
理想斜面实验、探究力与运动的关系、探究影响滑动摩擦力大小的因素、探究影响压力的作用效果的因素、探究影响液体压强大小的因素、探究影响浮力大小的因素、蒸发的快慢与哪些因素有关、探究影响滑轮组的机械效率的因素、探究影响动能大小的因素、探究影响重力势能大小的因素、探究影响导体电阻大小的因素、验证欧姆定律、探究影响电流做功多少的因素、探究影响电流的热效应的因素、探究影响电磁铁磁性强弱的因素、比热容概念的引入等
二、等效替代法
在物理实验中有许多物理特征、过程和物理量要想直接观察和测量很困难,这时往往把所需观测的变量换成其它间接的可观察和测量的变量进行研究,这种研究方法就是等效法。
等效替代法是常用的科学思维方法。等效是指不同的物理现象、模型、过程等在物理意义、作用效果或物理规律方面是相同的。它们之间可以相互替代,而保证结论不变。等效的方法是指面对一个较为复杂的问题,提出一个简单的方案或设想,而使它们的效果完全相同,从而将问题化难为易,求得解决。
初中物理课本中应用这种方法的有:
1、探究平面镜成像特点时用另一支蜡烛在玻璃板后面去等效像2、等效电路 3、串并联总电阻 4、多个分力与合力等效 5、物体的重心等论文参考文献格式。
三、转换法
对于不易研究或不好直接研究的物理问题,而是通过研究其表现出来的现象、效应、作用效果间接研究问题的方法叫转换法。
初中物理中应用了这种方法的有:
1.研究物体内能与温度的关系(我们无法直接感知内能的变化,只能转换成测出温度的改变来说明内能的变化);
2.在研究电热与电流、电阻的关系时,将电热的多少转换成温度计液柱上升的高度;
3.我们在研究电功与什么因素有关的时候,将电功转换成砝码上升的高度;
4.在我们回答动能与什么因素有关时,我们将动能转化为小木块在平面上被推动的距离,距离越远则动能越大。
5.证明声音是由振动产生的,敲击音叉后放入水中,水花四溅。
注意:等效法与转换法很相似,它们的区别是“等效替代法” 中相互替代的两个量种类相同,大小相等 ,而“转换法”中的两个物理量有因果关系,并且性质往往发生了改变如
转换法: 电流大小用灯泡亮度体现; 磁场的强弱用小磁针偏转的幅度体现
等效替代法: 分力相叠加是合力 ;小石块体积用排开水的体积代替
四、理想模型法
实际现象和过程一般都十分复杂,涉及到众多因素,采用模型方法可起到简化和纯化的作用.忽略次要因素,从复杂事物中抽象出理想模型,合理近似的反应所研究事物的本质特征,这种研究问题的方法叫理想模型法.
在初中物理课本中,应用这种方法的有
1.光线(光线是看不见的,我们使用一条看得见的实线来表示,就将问题简化利用了理想化模型)
2.磁感线
3.电路图是实物电路的模型
4.力的示意图或力的图示是实际物体和作用力的模型。
5.实验室常用手摇交流发电机及挂图来研究交流发电机的原理和工作过程
6.研究连通器原理时用到液片模型。
7.研究肉眼观察不到的原子结构时建立原子核式结构模研究肉眼观察不到的原子结构时建立原子核式结构模型。
五、科学推理法
推理法是根据已知物理现象和规律,通过想象和推理对未知的现象做出科学的推理和预见.推理法是在观察实验的基础上,忽略次要因素初中物理论文初中物理论文,进行合理的推理,得出结论,达到认识事物本质的目的。理想实验是研究物理规律的一种重要的思想方法,它以大量的可靠的事实为基础,以真实的实验为原形,通过合理的推理得出物理规律.
在初中物理课本中,应用这种方法的有
1、声音不能在真空中传播用推理法得出
2、研究物体运动状态与力的关系时,推理得出惯性定律。
六.类比法
类比法是指将两个相似的事物做对比,从已知对象具有的某种性质推出未知对象具有相应性质的方法.类比法在物理中有广泛的应用。所谓类比,实际上是一种从特殊到特殊或从一般到一般的推理。它是根据两个(或两类)对象之间在某些方面的相同或相似而推出它们在其他方面也可能相同或相似的一种逻辑思维。在物理教学中,类比方法可以帮助理解较复杂的实验和较难的物理知识。
在初中物理课本中,应用这种方法的有
1、用水流类比电流 2、用水压类比电压 3、用水波类比声波 4、用太阳系的结构类比原子的结构。
总之,大家要养成良好思维习惯,在解决问题时要尝试运用各种物理研究方法,不断提高科学素质,这既是中考热点也是以实现课程改革的目标。
一、初、高中物理教学的梯度差异分析
初中物理教学是以观察、实验为基础,使学生了解力学、热学、声学、光学、电学和原子物理学的初步知识以及实际应用;高中物理教学则是采用观察实验、抽象思维和数学方法相结合,对物理现象进行模型抽象和数学化描述,要求通过抽象概括、想象假说、逻辑推理来揭示物理现象的本质和变化规律。初中物理教学以直观教学为主,而高中较多的是在抽象的基础上进行概括,在学生的思维活动中呈现的是经过抽象概括的物理模型。
初中物理内容少,问题简单,讲解例题和练习多,课后学生只要背背概念、公式,考试就很容易了。而高中物理各部分知识相互联系,对学生运用数学分析解决物理问题的能力提出了较高要求。
二、如何搞好初、高中物理教学的衔接
1.重视教材与教法研究。高中物理教师不单是研究高中的物理教材,还要研究初中物理教材,了解初中物理教学方法和教材结构,知道初中学生学过哪些知识,掌握到什么水平以及获取这些知识的途径,在此基础上根据高中物理教材和学生状况分析、研究高中教学难点,设置合理的教学层次、实施适当的教学方法,降低“阶差”,保护学生物理学习的积极性,使学生树立起学好物理的信心。
2.坚持循序渐进原则。高中物理教学大纲指出,教学中应注意循序渐进,知识要逐步扩展和加深,能力要逐步提高。高中教学应以初中知识为教学的出发点逐步扩展和加深;教材的呈现要难易适当,要根据学生知识的逐渐积累和能力的不断提高,让教学内容在不同阶段重复出现,逐渐扩大范围和增加难度。
3.透析物理概念和规律。 首先要加强基本概念和基本规律的教学,要重视概念和规律的建立过程,让学生知道它们的由来。其次弄清每一个概念的内涵和外延及来龙去脉,使学生在掌握物理规律的表达形式的同时,明确公式中各物理量的意义和单位、规律的适用条件及注意事项。
1 高中与初中物理教学的梯度
初中物理教学是以观察、实验为基础,使学生了解力学、热学、声学、光学、电学和原子物理学的初步知识以及实际应用;高中物理教学则是采用观察实验、抽象思维和数学方法相结合,对物理现象进行模型抽象和数学化描述,要求通过抽象概括、想象假说、逻辑推理来揭示物理现象的本质和变化规律。初中物理教学以直观教学为主,在学生的思维活动中呈现的是一个个具体的物理形象和现象,所以初中学生物理知识的获得是建立在形象思维的基础之上;而高中较多地是在抽象的基础上进行概括,在学生的思维活动中呈现的是经过抽象概括的物理模型。由于初中物理内容少,问题简单,讲解例题和练习多,课后学生只要背背概念、公式,考试就很容易了。而高中物理内容多而且难度大,各部分知识相互联系,有的学生仍采用初中的那一套方法对待高中的物理学习,结果是学了一大堆公式,虽然背得很熟,但一用起来就不知从何下手,学生感到物理深奥难懂,从而心理上造成对物理的恐惧。高中物理对学生运用数学分析解决物理问题的能力提出了较高要求,在教学内容上更多地涉及到数学知识,物理规律的数学表达式明显加多加深,例如:匀变速直线运动公式常用的就有10个之多,每个公式涉及到四个物理量,其中三个为矢量,并且各公式有不同的适用范围,学生在解题常常感到无所适从;开始用图象表达物理规律,描述物理过程;矢量进入物理规律的表达式。
2 如何搞好初、高中物理教学的衔接
2.1 重视教材与教法研究。高中物理教师不单是研究高中的物理教材,还要研究初中物理教材,了解初中物理教学方法和教材结构,知道初中学生学过哪些知识,掌握到什么水平以及获取这些知识的途径,在此基础上根据高中物理教材和学生状况分析、研究高中教学难点,设置合理的教学层次、实施适当的教学方法,降低"阶差",保护学生物理学习的积极性,使学生树立起学好物理的信心。
2.2 坚持循序渐进原则。高中物理教学大纲所指出,教学中应注意循序渐进,知识要逐步扩展和加深,能力要逐步提高。高中教学应以初中知识为教学的出发点逐步扩展和加深;教材的呈现要难易适当,要根据学生知识的逐渐积累和能力的不断提高,让教学内容在不同阶段重复出现,逐渐扩大范围和增加难度。
2.3 透析物理概念和规律。使学生掌握完整的基础知识,培养学生物理思维能力,能力是在获得和运用知识的过程中逐步培养起来的。首先要加强基本概念和基本规律的教学,要重视概念和规律的建立过程,让学生知道它们的由来;其次弄清每一个概念的内涵和外延及来龙去脉,要使学生掌握物理规律的表达形式的同时,明确公式中各物理量的意义和单位,规律的适用条件及注意事项。
2.4 物理模型的建立。高中物理教学中常用的研究方法是确定研究对象,对研究对象进行简化建立物理模型,在一定范围内研究物理模型,分析总结得出规律,讨论规律的适用范围及条件。建立物理模型是培养抽象思维能力、建立形象思维的重要途径,要通过对物理概念和规律建立过程的讲解,使学生领会这种研究物理问题的方法;通过规律的应用培养学生建立和应用物理模型的能力,以实现知识的迁移。
物理模型建立的重要途径是物理习题讲解,习题讲解要注意解题思路和解题方法的指导,有计划地逐步提高学生分析解决物理问题的能力。讲解习题时,要把重点放在物理过程的分析,并把物理过程图景化,让学生建立正确的物理模型,形成清晰的物理过程。物理习题做示意图是将抽象变形象、抽象变具体,建立物理模型的重要手段,要求学生审题时一边读题一边画图,养成良好的习惯。解题过程中,要培养学生应用数学知识解答物理问题的能力,学生解题时的难点是把物理过程转化为抽象的数学问题,再回到物理问题中来,教学中要帮助学生闯过这一难关。
2.5 学习习惯培养。教育家叶圣陶先生指出:“教育的本旨原来如此,养成能力,养成习惯”,培养学生良好的学习习惯是教育的一个重要目的,也是培养学生能力、实现教学目标的重要保证。如何培养良好的学习习惯,首先是要培养学生独立思考的习惯,独立思考是学好知识的前提,学生经过独立思考,就能很好地消化所学知识,才能真正想清其中的道理,从而更好地掌握它。其次培养学生自学能力,使其具有终身学习的能力,阅读是提高自学能力的重要途径,阅读是对学生进行智育的重要手段,阅读物理教材不能一扫而过,而应潜心研读,边读边思考,挖掘提炼、对重要内容反复推敲,对重要概念和规律要在理解的基础上熟练记忆,养成遇到问题能够独立思考以及通过阅读教材、查阅有关书籍和资料的习惯。