时间:2023-08-27 15:02:46
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇人工智能教学策略范例。如需获取更多原创内容,可随时联系我们的客服老师。
关键词:人工智能;智能化计算机辅助教学;专家系统;知识库
中图分类号:TP18文献标识码:A文章编号:1009-3044(2007)12-21667-02
The Application of Artificial Intelligence in Education
HU Ji-li,YIN Yun-xia
( Anhui University of Traditional Chinese Medicine, Hefei 230038,China)
Abstract:As a result of the interpenetration of older branches into each other, scientific theories and their application of Artificial Intelligence have expanded into nearly all the areas of human activity. This paper introduces the application of Artificial Intelligence in education, especially deals with Intelligence Computer Aided Instruction based on the artificial Intelligence.
Key words:Artificial Intelligence;CAI;expert system;knowledge base
1 引言
人工智能作为当今世界三大尖端技术(空间技术、能源技术和人工智能技术)之一,是计算机科学的一个分支,它的目标是构造能表现出一定智能行为的。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识、心理学和哲学、机器学习、计算机视觉等。总的说来,人工智能的目的就是让计算机这台机器能够像人一样思考。人工智能的研究更多的是结合具体领域进行的,主要研究领域有专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、博弈、智能决定支持系统和人工神经网络。它总的来说是面向应用的,随着人工智能的诞生和发展, 人们开始把计算机用于教学领域。同时, 自七十年代以来, 有教学能力的专家系统得到研制。人工智能技术与专家系统的成就, 促使人们把问题求解、知识表示这些技术引入计算机辅助教学(CAI) , 这便是智能型计算机辅助教学(CAI)。
近几十年来, 随着人工智能技术的日渐成熟, 它的一些研究成果被陆续应用到教学领域, 推进了教育发展改革和教学现代化进程。人工智能在教学系统的重要性也已形成共识。
2 人工智能在教育中的作用
目前在教育技术中涉及到AI的主要有以下领域:
2.1 知识的表示与访问
基于人工智能的知识表示是以知识为对象,以计算机的软硬件和计算机科学及人工智能和专家系统技术为工具,以哲学、心理学和逻辑学等为方法和指导,将知识表达成计算机可以直接处理的“知识库”,使用“计算机的智能”来模拟人类专家或“人类智能”,对知识进行快速、精确、自动、科学的处理。它不属于通常的“数据管理或信息管理”的“数据”层次,而是属于“知识处理”或“知识”的智能化层次。其主要内容是对于知识进行形式化的表示、自动化的推理,智能化的教学或创造。计算机辅助教育是其中重要的组成部分。
2.2 符号计算
符号计算包括数值计算、符号计算和函数作图。其代表软件是Mathematica,当该软件在1988年第一次,对科技及很多其他领域的计算机使用方式产生了深刻的影响。Mathematica 1.0时,商业周报将其列入当年最重要的十大新产品名单。这标志着现代科技计算的开始。Mathematica也被大量地用于教育:有成百上千的课程,从高中课程到研究生课程用它作基础。随着各种学生版的,Mathematica也已成为全世界各种不同专业学生的重要工具。
2.3 对学生错误的自动诊断
采用人工智能技术,使得教学过程中系统可以自动诊断学生的学习水平,不仅能发现学生的错误,而且能指出学生错误的根源,从而做出有针对性的辅导或学习建议。而且根据学生的特点自动选择教学内容,自动调整教学进度,自动选择教学策略与方法。
2.4 实现智能性超媒体教学系统
超媒体系统有理想的教学环境,容易激发学生的学习兴趣和学习主动性,但不能保证达到预期的学习目的,而且由于不了解所要教的对象,所以不能做到有针对性的指导,不能因材施教。智能辅助教学系统正好与此相反。将二者结合起来,就可实现性能互补,从而研究制出新一代高性能的智能超媒体教学系统。
3 人工智能应用于教育的新方向:ICAI
3.1 传统CAI的不足
传统的CAI由于其集成性、交互性、多媒体性等特点,在教学中可以极大地激发学生的学习动机,提高教师的教学效率和学生的学习效率。但在使用过程中,CAI的一些弱点也逐渐暴露出来。主要表现有:
(1)缺乏人机交互能力
现有CAI 大多以光盘作为信息的载体, 将教材中的内容以多媒体的形式展现出来, 教学信息是按预置的教学流程机械式地提供给学生的, 学生接受起来很被动。而且在课堂教学中, 一般也只能通过教师按预定的课件流程进行操作, 无论学生还是教师都不能很好地参与教与学的过程, 因此人机交互没有很好地实现。
(2)缺乏教师与学生的互动
现有的CAI 课件在学生自学、进行操作使用时,如何学习都是学生自己的事。教师不能完全了解学生的情况,学生在碰到问题时,也不能向教师求助,师生之间是互相封闭的,软件所起的积极效果大打折扣。同时由于缺乏网络支持,现有的绝大多数CAI 课件是在单机环境下运行的,它们无法利用网络的优势使知识内容快速更新,也更无法提供便捷的学习讨论空间、随时随地的师生交流方式以及远程教学实现的条件。
(3)缺乏智能性
要想面对不同情况的学生进行不同程度的教学过程, 使学生的学习变为主动, 并能由系统自动地提供助学信息而有选择地学习,要想使教师的教学能积极地参与进去并根据系统提供的信息按照学生的认知模型为其准备最适合的学习内容, 给予不同方式的教学模式与方法, 没有智能性的CAI 课件系统, 是很难实现以上目的并达到良好教学效果的。由此可见,现有的CAI 随着人们要求的提高, 已经不能尽如人意。因此以智能CAI 为代表的新的计算机辅助教学系统将是教师在教育技术上需要不断探求、努力实现的发展方向索。
3.2 ICAI-人工智能与多媒体技术的结合
为了克服传统CAI的缺点,需要在知识表示、推理方法和自然语言理解等方面应用人工智能原理。因此很多专家提出了智能计算机辅助教学(ICAI),智能计算机辅助教学(Intelligence Computer Assisted Instruction-ICAI)以认知学为理论基础。将人工智能技术应用于CAI,是智能化的CAI。在ICAI系统中,允许学生与计算机进行较自由的对话,学生的应答不限于数字或简单的短语。系统能够判定学生应答的正确程度,并给予适当的反馈,而不是简单地说“对”或“错”。ICAI的宗旨在于利用现有计算机技术实现较好的人工智能,模仿人类的交互方式、思维习惯及情绪流动,修饰和掩盖计算机的缺陷。
3.3 ICAI的优点
(1)将教学内容与教学策略分开,根据学生的认知模型提供的信息,通过智能系统的搜索与推理,动态生成适合于个别化教学的内容与策略。
(2)通过智能诊断机制判断学生的学习水平,分析学生产生错误的原因,同时向学生提出更改建议、以及进一步学习内容的建议。
(3)通过对全体学生出现的错误分布统计,智能诊断机制将向教师提供教学重点、方式、测试重点、题型的建议。
(4)为教师提供友好的教学内容、测试内容维护界面,无需改变软件的结构即可调整教学策略。
(5)通过对学生认知模型、教学内容、测试结果的智能分析,向教学督导人员提供对任课教师教学业绩评价的参考意见。可以说,一个理想、完美的ICAI系统就是一个自主、优秀的“教师”。
3.4 ICAI的标准
以现有的科学技术水平而言,短时期内显然无法实现具备上述全部功能的ICAI系统。一般认为,只要具有下列一个或几个特征的CAI系统就可以称之为ICAI系统。
(1)能自动生成各种问题与练习。
(2)根据学生的学习水平与学习情况选择与调整学习内容和进度。
(3)在了解教学内容的基础上自动解决问题,生成解答。
(4)具有自然语言生成与理解能力,以便实现比较自由的教学问答系统,提高人机交互的主动性。
(5)对教学内容有解释咨询能力。
(6)能诊断学生错误,分析原因并采取纠正措施。
(7)能评价学生的学习行为。
(8)能评价教师的教学行为。
不难看出,ICAI与传统的CAI相比,更加符合教育教学的规律,切合学生的认知习惯,具有明显的优越性。
3.5 ICAI的结构
ICAI主要由三个模块组成:专家系统模块、教师模块和学生模块。
(1)知识库
知识库是实现知识推理与专家系统的基础,而建造知识库的前提则是要解决知识的形式化,人工智能技术在教育中的应用表示以及知识的访问与调用问题。因此,知识的表示与访问是人工智能的核心技术之一,也是将AI引入教育领域必须首先解决的一个难题。
ICAI中的资源库应该包括以下一些内容:
①多媒体素材库:包括所要呈现的知识的一些素材,包括:文本、图像、声音、动画及数字影象等多媒体教学资源。这些用于多媒体数据库管理,便于分类、增删、修改及查询等操作。
②教学内容库:教学内容库用于存放教学内容,包括领域知识库(含辅助知识库、提示帮助库、练习题库,和测试题库)。这些教学内容,包括习题和试题分章、节、课及知识点等有序存贮。供专家决策系统调用。
(2)学生模块
学生模块主要包括以下三个模块:学生登陆模块、学生水平评价模块和学生监督模块。
①学生登陆模块:利用该模块主要用于学生使用ICAI时登录,第一次登录时学生输人姓名、性别、年龄、学历等相关信息,然后对学生进行询问,选择合适的测验题对学生进行初测推荐学习计划。当再次登录时,系统根据保存的信息安排合适的学习内容。
②学生水平评价模块:学生水平测试模块用于评价某一教学单元学习完后测试成绩。通过测试等因素分析,可以比较确切地了解学生的具体情况,从而制定出合理的教学策略和教学过程
③学习监测模块:学习检侧模块用于监测记录学生的日常学习情况,记录学生学习某教学单元时的参数值,并记录在学生档案中。包括:学生目前学习单元号;学习方式;正常学习、练习、提前浏览、学后复习;学习时间;学生提示问题的类型和次数;学生本次练习出错次数。
(3)专家决策模块
CAI中的专家决策系统可以看作专家系统中的推理机。专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统,它应用人工智能技术,模拟人类专家求解问题的思维过程求解领域内的各种问题,其水平可以达到甚至超过入类专家的水平。计算机中存有人类专家的知识并具有推理能力,从而可解决诊断、规划、调度、预报、决策等要靠人类专家才能完成的任务。
成功的例子如:① DENDRL系统的性能已超过一般专家的水平,可供数百人在化学结构分析方面的使用;②MYCIN系统可以对血液传染病的诊断治疗方案提供咨询意见经正式鉴定结果,对患有细菌血液病、脑膜炎方而的诊断和提供治疗方案已超过了这方面的专家。
ICAI根据学生模块提供的学生学习情况,通过智能系统的搜索与推理,得出智能化的教学方法与教学策略,能够较科学地评估学生的学习水平,还可以通过分析学生以往的学习兴趣和学习习惯,预测学生的知识需求和常犯错误,动态地将不同的学习内容、学习方法与不同的学生匹配,智能地分析学生错误的原因,进而有针对地提出合理的教学建议、学习建议以及改进方法,既提高了学生学习的满意度,激发了学生的学习热情,也对教师教学提供了客观的依据和科学的方法。
4 结束语
由此可见人工智能技术已经逐步应用于计算机辅助教学中,与教学现代化有着密切的关系。人工智能技术的发展也必将会对ICAI 的发展起到巨大推动作用。近几年来,人工智能的研究者们尝试着使学生脱离“辅导学习”的过程来接受新知识,而采用“通过活动进行学习”的方式。在教学的其他方面,人工智能技术还可以建立人类推理模型学习工具等诸多的运用, 展示出越来越好的实用性。随着Internet 的发展,虚拟现实技术的广泛应用, ICAI 也将得到进一步的完善。21 世纪的教育教学手段将是以智能化CAI 为主线,多学科、多方位发展的新技术的体现。这种手段产生了人机交互、人机共生等全新概念,使人类扩展了自己的能力,促进了教育领域方方面面的改革。
参考文献:
[1]王万森.人工智能原理及其应用[M].北京:电子工业出版社,2000.
关键词:智能教学系统;模型;局限
中图分类号:TP315 文献标识码:A 文章编号:1673-8454(2012)03-0007-03
智能教学系统(Intelligence Tutoring System,简称ITS)是把人工智能技术引入到计算机辅助教学系统中,应用人工智能技术开发出能够因材施教的教学系统,使“计算机导师”贴近人类教师的水平,具有推理、诊断、决策的能力。能够根据每个学习者的特点制定教学计划,选择教学策略,实现因材施教。
一、智能教学系统的模型及功能
基于教育学、心理学和教学设计原理分析,智能教学系统模型应包含学生模块、教学策略模块、知识库和智能接口几个主要模块,各模块的系统结构如图所示。
学生模块记录每个学生原有的知识水平和学习能力。其依据为学生与系统之间的交互问答历史,并对每个学生的学习进步情况进行动态调整。这样,系统通过学生模型就可随时了解每个学生的情况,有的放矢地进行个别化教学。
教学策略模块根据学生模块情况和知识库做出智能化的教学决策,评判学生的学习效果,帮助学生分析错误原因。提出改进方法和意见等。
知识库存储所要教的学科领域知识和教学知识。
智能接口能够理解自然语言,实现更普遍意义上的人机对话。
智能教学系统与传统CAI相比,具备以下功能:
第一,了解学生的学习能力、学习基础和当前的知识水平,以此为依据为不同的学生做出不同的教学决策,有针对性地进行个别指导,并在学习过程中根据学生进度自动调整学习内容,具有适应能力。
第二,允许学生用自然语言与“计算机导师”进行人机对话,并能对带有学生个性特点的问题做出解答,从而具备更好的交互能力。
第三,能诊断学生学习过程中的错误,并分析错误原因和给出解决方案,在此基础上逐渐积累“经验”,从而具备纠错能力。
第四,大大拓宽了CAI的模式,例如建立虚拟教室、智能导师系统、教学模拟等。从而使CAI不再是简单的课本搬家、教室搬家,而具有更多的创造能力。
二、智能教学系统的局限性分析
智能教学系统虽然较传统CAI在诸多方面有很大改进。但就智能教学系统的工作原理以及目前的研发现状而言,应当冷静地看到,它自身也存在一些固有的局限性。
要计算机解决某个问题,有三个基本的前提:必须把问题形式化、必须有一定的算法、必须有合理的复杂度。由于人的智能活动不能完全形式化,因此,机器就不能将人脑的智力活动全部复制出来。教育是一种人类所特有的活动,基于人工智能技术的智能教学系统在教育中的应用也存在局限性。
1.智能教学系统不能实现自我更新,自我改进
智能教学系统的设计原理是把现有的专家的知识和教师的教学方法和策略集中到一个数据库中。随着现代社会知识的迅猛增长,教育理念的不断更新以及教学模式和教学方法的不断改进,智能教学系统无法像人类教师那样跟随时代的变化而实现知识库的自我更新以及教学策略模型的自我改进。还需要人从外界对整个ITS进行翻新,甚至需要从一种新的教育理念出发,重新设计ITS。智能教学系统的自我更新涉及机器学习这个难点。
2.智能教学系统适用的学习领域存在局限
以智能模拟的方法实现的人工智能应用于教育中时,并非适合所有的学习领域。人的智能活动可以分为四个领域。领域一是“刺激――反应”领域,其中包括任何形式的条件反射,与上下文环境无关的、各种形式的初级联想行为,最典型的如无意义音节的机械学习。领域二是数学思维的领域,这是比较适合于人工智能的领域。它是由概念世界而不是感知世界构成,这一领域中的问题完全形式化了,并可以计算,这一领域又可称为简单形式化领域,典型的例子如逻辑和有精确规则的游戏。领域三是复杂形式化领域,这是比较难把握的一个领域。这一领域包括原则上可形式化而实际上不易驾驭的行为,包括那些不能用穷举算法处理的。因而需要设计启发程序的系统,如围棋。领域四可称作非形式化行为领域,包括有规律但无规则支配的、我们人类世界中的一些日常活动,这一领域又称作感知思维领域。在这一领域内解决问题都是直觉的遵从,无须求助规则。包括一些规则不确定的游戏,如文字猜谜游戏。以上四个领域中前两个领域适合用数字计算机模拟,第三个领域只是部分可程序化,而第四个领域则很难驾驭。
与此相对应的,根据加涅的学习结果分类,学习分为言语信息、智慧技能、认知策略、动作技能和态度五类。言语信息分为符号学习、事实学习和有组织的知识学习,这些属于可形式化内容,适用于智能教学系统;智慧技能分为辨别、具体概念、定义性概念、规则和高级规则,其中前四项属于可形式化内容,适用于智能教学系统,而高级规则属于复杂形式化内容,部分内容不适用于智能教学系统;动作技能和态度领域的学习。在其认知成分中可以使用智能教学系统,但情感和行为成分等非形式化内容,则难以用智能教学系统来实现。
因此,并不是所有的学习领域都适用于智能教学系统。智能教学系统在教育中应用的重点应放在认知领域中的符号学习、事实学习和有组织的知识学习、辨别、具体概念、定义性概念以及规则这些学习内容上。
3.与学生之间无法畅通交流
教育是一种交互活动,智能教学系统的交互功能虽然较传统CAI有所改进。但仍然缺乏在学生和计算机之间交换信息的自然的、畅通的途径。系统只能通过学生输入计算机的信息来判断其掌握和内化程度。而无法像人类教师通过自然状态的交流和观察来判断学生的真实情况,因此,“机器智能”很容易被蒙蔽“双眼”,无法做到像人与人之间那样自然畅通的交流。此外,系统在遇到新的学习情境时。不能理解和产生对话,这会影响智能教学系统功能的实施。
4.决策和推理机制不完善
智能教学系统的关键智能所在是其决策和推理机制,即“教学策略”模块根据不同学生的具体情况通过推理做出灵活决策,这种决策基于学生模块提供的学生的知识水平、认知特点和学习风格。智能教学系统虽然加入诊断系统并不断调整对学生学习水平的判断,但由于学习风格、认知特点等不能完全被形式化,因此,根据系统的教学策略模块中预先存入的诊断知识来评估不同学生的学习过程和理解每个学生不同的推理过程也是有局限的。
三、智能教学系统在教育中应用的建议
1.不能忽略教师的作用
虽然智能教学系统具有“智能性”。但在使用它的过程中,决不能放弃教师的主导作用。要明确教师是教学的设计者和教学过程的主导,应该把智能教学系统的应用纳入到教学设计中。教师作为教学的“主导”。要引领教学
全过程,时刻注意学生的学习状态、学习程度、情感交流,尽量照顾到每个同学。ITS不是将教师搁置了。而是把教师从ITS能做的事情中解放出来,有更多的时间去从事机器所无法替代的事情。例如,计划教学,开发教学补充材料,示范成熟的行为,启发、引导学生去克服遇到的各种困难。特别是一个优秀教师对学生的态度和道德的影响和培养,是任何智能教学机器所无法取代的。所以,在利用智能教学系统教学的过程中,不能用智能教学系统取代教师,不能忽略教师的指导作用。
2.注意教学模式的运用
作为一种教育技术的实现,ITS主要依赖于各种技术的发展,但作为一个能够实施完整教学过程的教学系统,ITS的应用效果更多地依赖于所采用的教学模式。长期以来,传统CAI在教学中的应用都以个别化教学模式为主。但随着认知心理学的发展,基于建构主义学习理论的以“学”为中心的教学模式逐渐受到青睐。这种教学模式更能满足学习者的个性化要求,也为协作学习创造了更大的可能性。目前,协作学习模式因其利于培养学生的多样化思维和合作精神而日益受到重视。同一个智能教学系统,用于个别化教学模式和用于协作学习模式就会产生截然不同的教学效果。因此。在利用智能教学系统时,要注意根据教学内容和教学目标灵活采用个别化教学模式或协作学习模式。
3.有效与网络相结合
随着多媒体技术和Internet网络的飞速发展,多媒体教育技术与Internet的进一步融合,ITS不仅仅在人工智能上单一发展。它要向多维的网络空间发展。网络化成为当今世界ITS系统的一大优势和特色。“无机不联”正是现代教育计算机使用情况的真实写照。智能教学系统应与网络相结合。借助网络的优势,完成在线学习、实时讨论、网上测试等多种教学任务。学生可以在学校或家中通过计算机登录到系统,系统按其不同的认知水平为其准备不同难度的教学内容。完成学习时,系统通过自适应的测试确定学生新的认知水平,作为其下一次登录学习时为其准备学习内容的依据,并向学生提出进一步需学习内容的建议。学生在学习过程中可以实时地与其他在线的学习者进行讨论,并可通过E-mail的形式与教师进行交流。教师可以使用自己的计算机,在教研室或家中登录到系统,检查学生的学习进度,学习情况。并依据学生的实际情况,有针对性地对教学内容、测试内容进行更新。网络与智能计算机辅助教学系统有机结合,相互补足,必将构建成一个新的系统工程。
参考文献:
[1]王士同主编.人工智能教程[M].北京:电子工业出版社,2001.
[1]王永庆.人工智能原理与方法[M].西安:西安交通大学出版社,1998.
[3]何克抗.计算机辅助教育[M].北京:高等教育出版社,1997.
关键词:人工智能 计算机辅助教学 教学与控制
一、人工智能的定义
人工智能也称机器智能,它是计算机科学、控制论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统角度来看,人工智能是研究如何制造出智能机器或智能系统,实现模拟人类智能活动的能力,以延伸人们智能的科学。人工智能是一门交叉科学,逐渐形成一门涉及心理学、认知科学、思维可循、信息科学、系统科学和生物学科等多学科的综合性技术学科。
二、计算辅助教学体系和现状
计算救助教学是利用多媒体计算机的功能与特点,利用计算机辅助教师完成各个教学环节,并通过与计算机之间的交互活动,激发学生的学习积极性和主动性,帮助学生更有效地学习。实用计算机辅助教学,有利于认识主体作用的发挥,它所提供的图像、声音、动画等信息由利于学生知识的获得与保持,达到提高教学教学的目的。
目前为止,所实用的绝大多数传统以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。早期绝大多数计算机辅助教学将全部教学信息以编程方式预置于课件中,这样的以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。因此现有的以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。早期绝大多数计算机辅助教学系统面临许多挑战,它主要存在以下几个方面的问题。
1.计算机辅助教学系统的闭塞性
不具有开放性是目前以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。其弊端在于固定内容的局限性使课件的适用面狭窄,而且设定的运行路线使授课缺乏自主性;授课的针对性不强;无法利用新出现的资源在较高起点上进行二次开发。
2.智能性的欠缺
现有的计算机智能辅助课件系统不能对不同何曾度的学生进行有针对性的教育,学生的学习是被动的,不能由系统自动提供助学信息而使学生有选择地学习。
3.人机交互能力较弱
现有计算机智能辅助大多以光盘作为信息的载体,将材料中的内容以多媒体的形式展现出来,教学信息是按预置的教学流程机械式地提供给学者,学习者使用计算机智能辅助课件学习是完全被动的。
4.教师与学生的互动在教学中的缺乏
现有计算机智能辅助课件在学生自学以及进行操作使用时,如何学习都是学生自己的事。教师不能全完了解学习者的情况,学生在蹦到问题时不能向教师求教,师生之间互相封闭,谈不上师生互动,因此课件所起的效果大打折扣。
5.课程特点没有突出
各门课程在教学上有不同的要求,但现有课件对于这些不同要求完全不予理会。例如很多课程都要涉及到大量的曲线或曲面,对有些课程来说,将这些曲线或曲面给出了一个简单的展示就足够了,而有些课程这样的展示不能达到教学目的的要求。
6.教学计划的欠缺
在课件的开发过程中实际上离不开教学策略的设计,但课件的制作者往往并未意识到这一点。例如:现有的绝大多数课件都是单一的展播式,这样的可见制作“精美”,但它不可逆、不能互动。实际上运用课件教学只是手段而不是目的,应该在教学设计理论的指导下讲求课件的实效性,着眼点在于学生学习新知识、掌握新技术、培养各种能力有帮助,而不是表面上的制作“精美”。
综上所述,现有的计算机智能辅助存在许多问题,随着新技术的不断出现,这些问题将使计算机智能辅助越来越不能适应新的要求。因此以智能计算机智能辅助为代表的心的计算机辅助教学系统将成为教育技术上需要不断探求、努力实现的发展方向。
三、智能计算机辅助教学系统
智能计算机辅助教学系统(Intelligent ComputerAided Instruction),简称ICAI。教学过程是一个复杂的教与学的思维过程,它需要教师以专门知识和经验为依据,经过吸取、讲解、推理、示例、综合等多个步骤才能较好地完成。计算机辅助教学实际上是一个由计算机系统辅助教师进行教学以及学生进行学习并得以实现的系统。在智能ICAI中,教学思想、方法、学习内容可用知识形式表示,如何解决知识的形式化表示以及知识的访问与调用问题,是人工智能的核心技术之一,也是将ICAI引入教育技术领域中所要面临的一个问题。知识库是实现知识推理与专家系统的基础,可以用知识库作为智能ICAI的构建环境。在知识库中,教学内容等的有关知识可以用事实与规则表示,并存储于知识库内,教学与学习过程既是对知识库中知识进行推理,并最终得出所需结果的过程。ICAI系统的一般包括以下几个模块:
1.知识库。知识库是关于教学内容的模块,解决“教什么”问题。知识库中的教学内容有待于教学与控制模块和学生模块进行选取、调用。
2.学生模块。学生模块是用于记录学生的学习情况,对学生学习的各个环节信息进行搜集,以便系统对学生的学习情况进行自动评估,提出具有针对性的学习建议和个别化的辅导。学生模块描述学生对教学内容理解、掌握的程度,系统可以根据学生模块的具体情况调整教学策略并提供适当的反馈。
3.用户接口模块。这是系统与用户交流的界面。整个系统依靠用户接口模块把教学内容呈现给用户、接受用户输入的信息、并向用户提供反馈。
4.教学与控制模块。这是教学过程与整个系统的控制模块,涉及到“如何教”的问题。它具有领域知识、教学策略和人机对话等方面的知识。根据学生模型提供的学生学习情况,通过智能系统的搜索与推理,得出智能化的教学方法与教学策略,能够较科学地评估学生的学习水平,可以通过分析学生以往的学习兴趣和学习习惯,预测学生的知识需求和常犯错误,动态地将不同的学习内容、学习方法与不同的学生匹配,智能地分析学生错误的原因进而针对地提出合理的教学建议、学习建议以及改进方法。
新世纪的教学将是以智能化的ICAI为主线,是多学科、多方位发展的新技术的体现。随着人工智能技术的发展、计算机辅助教学的成效将更加明显。
参考文献:
【摘要】计算机辅助教学的实际需要应用人工智能技术及复杂的程序,如自然语言理解、知识表示、推理方法等,一些人工智能技术的特殊应用成果,同时以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。早期绝大多数计算机辅助教学技术被应用于建立学习模块。这种方法能控制调练策略并给出适合学生的学习内容。
【关键词】人工智能计算机辅助教学教学与控制
一、人工智能的定义
人工智能也称机器智能,它是计算机科学、控制论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统角度来看,人工智能是研究如何制造出智能机器或智能系统,实现模拟人类智能活动的能力,以延伸人们智能的科学。人工智能是一门交叉科学,逐渐形成一门涉及心理学、认知科学、思维可循、信息科学、系统科学和生物学科等多学科的综合性技术学科。
二、计算辅助教学体系和现状
计算救助教学是利用多媒体计算机的功能与特点,利用计算机辅助教师完成各个教学环节,并通过与计算机之间的交互活动,激发学生的学习积极性和主动性,帮助学生更有效地学习。实用计算机辅助教学,有利于认识主体作用的发挥,它所提供的图像、声音、动画等信息由利于学生知识的获得与保持,达到提高教学教学的目的。
目前为止,所实用的绝大多数传统以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。早期绝大多数计算机辅助教学将全部教学信息以编程方式预置于课件中,这样的以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。因此现有的以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。早期绝大多数计算机辅助教学系统面临许多挑战,它主要存在以下几个方面的问题。
1.计算机辅助教学系统的闭塞性
不具有开放性是目前以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。其弊端在于固定内容的局限性使课件的适用面狭窄,而且设定的运行路线使授课缺乏自主性;授课的针对性不强;无法利用新出现的资源在较高起点上进行二次开发。
2.智能性的欠缺
现有的计算机智能辅助课件系统不能对不同何曾度的学生进行有针对性的教育,学生的学习是被动的,不能由系统自动提供助学信息而使学生有选择地学习。。
3.人机交互能力较弱
现有计算机智能辅助大多以光盘作为信息的载体,将材料中的内容以多媒体的形式展现出来,教学信息是按预置的教学流程机械式地提供给学者,学习者使用计算机智能辅助课件学习是完全被动的。
4.教师与学生的互动在教学中的缺乏
现有计算机智能辅助课件在学生自学以及进行操作使用时,如何学习都是学生自己的事。教师不能全完了解学习者的情况,学生在蹦到问题时不能向教师求教,师生之间互相封闭,谈不上师生互动,因此课件所起的效果大打折扣。
5.课程特点没有突出
各门课程在教学上有不同的要求,但现有课件对于这些不同要求完全不予理会。例如很多课程都要涉及到大量的曲线或曲面,对有些课程来说,将这些曲线或曲面给出了一个简单的展示就足够了,而有些课程这样的展示不能达到教学目的的要求。
6.教学计划的欠缺
在课件的开发过程中实际上离不开教学策略的设计,但课件的制作者往往并未意识到这一点。例如:现有的绝大多数课件都是单一的展播式,这样的可见制作“精美”,但它不可逆、不能互动。实际上运用课件教学只是手段而不是目的,应该在教学设计理论的指导下讲求课件的实效性,着眼点在于学生学习新知识、掌握新技术、培养各种能力有帮助,而不是表面上的制作“精美”。
综上所述,现有的计算机智能辅助存在许多问题,随着新技术的不断出现,这些问题将使计算机智能辅助越来越不能适应新的要求。因此以智能计算机智能辅助为代表的心的计算机辅助教学系统将成为教育技术上需要不断探求、努力实现的发展方向。
三、智能计算机辅助教学系统
智能计算机辅助教学系统(IntelligentComputerAidedInstruction),简称ICAI。教学过程是一个复杂的教与学的思维过程,它需要教师以专门知识和经验为依据,经过吸取、讲解、推理、示例、综合等多个步骤才能较好地完成。计算机辅助教学实际上是一个由计算机系统辅助教师进行教学以及学生进行学习并得以实现的系统。在智能ICAI中,教学思想、方法、学习内容可用知识形式表示,如何解决知识的形式化表示以及知识的访问与调用问题,是人工智能的核心技术之一,也是将ICAI引入教育技术领域中所要面临的一个问题。知识库是实现知识推理与专家系统的基础,可以用知识库作为智能ICAI的构建环境。在知识库中,教学内容等的有关知识可以用事实与规则表示,并存储于知识库内,教学与学习过程既是对知识库中知识进行推理,并最终得出所需结果的过程。ICAI系统的一般包括以下几个模块:
1.知识库。知识库是关于教学内容的模块,解决“教什么”问题。知识库中的教学内容有待于教学与控制模块和学生模块进行选取、调用。
2.学生模块。学生模块是用于记录学生的学习情况,对学生学习的各个环节信息进行搜集,以便系统对学生的学习情况进行自动评估,提出具有针对性的学习建议和个别化的辅导。学生模块描述学生对教学内容理解、掌握的程度,系统可以根据学生模块的具体情况调整教学策略并提供适当的反馈。
3.用户接口模块。这是系统与用户交流的界面。整个系统依靠用户接口模块把教学内容呈现给用户、接受用户输入的信息、并向用户提供反馈。
关键词 智能授导系统;辅助教学;语义Web
中图分类号TP31 文献标识码A 文章编号 1674-6708(2012)58-0165-02
计算机辅助教学(CAI)是以对话方式利用多媒体计算机的功能与特点与学生讨论教学内容、安排教学进程和进行教学训练的方法与技术。但是存在交互能力差和缺乏虚拟技术支持、智能性及教学策略等问题。人工智能(AI)是计算机科学、信息论、神经生理学、控制论、心理学、语言学等多种学科互相交叉渗透而发展起来的一门综合性学科。它用人工的方法在机器(计算机)上执行智能行为:感知、理解、学习、判断、推理、规划、设计、求解等。其技术特征主要是具有搜索功能、知识表示能力、一定的推理功能、抽象功能、语音识别功能及模糊信息处理能力。
1 智能授导系统
智能授导系统(ITS)技术是在对计算机辅助教学研究局限性的改革突破中发展起来的,它不仅克服了仅仅关注学生行为的缺陷,还引入了对知识的描述以及智能推理技术,智能授导系统的独特之处是能依据每个学习对象的不同需求而调整教学策略。
ITS从上个世纪80年代提出到至今已有30多年了,几乎涉及人工智能技术的所有问题,而且一直是人工智能技术在教育领域的核心研究之一。比较有代表性的是Peng-Kiat Pek和Kim-Leng Poh应用贝叶斯网络构建的学生模型可以较好的估计出学生的学习兴趣值,从而对学生的学习行为方向进行预测;Dietrich Albert和Cord Hockemeyer通过分析知识空间理论而得出的超文本结构和知识空间在结构上的有很强的相似性,通过对知识空间进行建模,使之适用于网络Web结构模式;Joel Martin和Kurt VanLehn使用贝叶斯网络技术对学生的学习结果进行评估,有效的分析出学生学习过程中的问题和不足;Declan Kelly和Brendan Tangney提出了一种多Agent技术(Multi-Agent System,MAS),通过对个体的个性化学习进行动态建模的智能框架的建构重组,满足了学习者的不同需求。随着国内数字化教学与教育信息化的大趋势,最近几年国内对于该领域的研究发展的相对比较快,而且需要进行综合性的研究,以不断促进智能授导系统的实际应用价值。
2 自适应智能授导系统机制
由于个体学习者基本上是基于资源的自主学习,在教学上的有效组织主要体现在学习资源的组织、传递和共享上,良好的资源组织和个性化资源服务是学习个体最强烈的需求。为了支持个体的自主学习,辅助教学研究十分强调“授导”。“授”即系统地对教学内容的组织和传播,通常反映为学习目标制定、学习材料序列化、学习路径引导以及学习结果评价等方面;而“导”则侧重对学生的具体学习过程提供针对性的学习支持。
2.1 网络智能授导的技术实现
网络辅助教学平台设计者们一直致力于智能授导机制的理论研究和实现,不仅在理论上提出很多模型和设想,而且实践上也有所突破,特别是可以借助计算机网络技术和人工智能技术构建一个更有针对性的、更智能的信息空间,为学习者提供个性化的学习支持。通过调研,网络辅助教学中智能授导的研发技术路线主要是模拟课堂面授的路线、人工智能的技术路线和网络协同进化的路线。
2.2 本体的智能授导机制
根据Brusilovsky提出的关于虚拟校园环境的部件理论知道,当前分布式虚拟环境支撑的网络教学平台大多是围绕内容部件、行为部件、通信部件、管理部件来提供学习者本体的智能授导应用功能。
1)内容部件是辅助教学系统的核心,多由构成课程的多媒体教学材料组成。运用静态超媒体比较容易实现,以一种同有的结构和形式呈现给学习者同样的教学内容。但是会产生由适应性内容所呈现的各种方法与技术问题,例如:附加解释、前提知识解释、比较性解释、解释变体、信息排序等。其实现需依赖于知识表示与呈现技术,特别是知识建模和知识本体的研究;2)行为部件主要功能是需要学生通过“做”的交互方式来完成的自主学习的过程,表现形式多指学习导航、练习、测试、模拟、实验等。其三个主要应用方向是自适应导航、自适应测试和虚拟实验;3)通信部件在智能授导系统中起到媒介作用,主要是支持学生与教师之间、学生相互之间的交流和沟通的通信工具,支持学习社区的协作学习和协同进化;其3个主要应用方向为)针对交互信息的知识发现、学习者智能互助和群体智慧;4)管理部件主要是支持教学过程中必要的管理职能。如学生管理、课程管理等。
2.3 自适应智能授导系统的构建策略
个性化的自适应辅助教学研究已成为现代教学系统应用的一个热点问题,而自适应智能授导系统运用人工智能技术,直接、科学地了解到学习者的个性特点及学习进展情况,灵活调整自身的策略、方案来满足受教育对象的需求。从集成观点出发,自适应智能授导系统首先涉及的是教学理论和思想与计算机技术的交叉。从计算机辅助教学的发展线索出发,网络技术与人工智能方法的应用是计算机辅助教学的必然趋势,但智能授导绝不是在计算机网络通信技术上的简单翻版,其需要进行更为深刻的分析与抽象。总的来看,自适应智能授导系统是一种建立在软件协同基础上的分布式的群体智能,更是一种人机协调的智能。
学习者模型是自适应智能授导系统的核心,而学习者学习过程中存在大量的不确定性因素和不确定性信息,因而成功获取学习者的情况是其它环节正确运行的保障。在学习者模型设计中,我们利用贝叶斯网络的条件概率分布量化知识项之间的组织关系及依赖关系,很好地反映学习者特定领域中的知识结构,当学习者模型中的知识项的状态发生改变时,将引起相关知识项的状态的改变,因而使学习者模型具有一定的预测能力。同时我们选择专门为语义Web设计的本体表示语言OWL语言来描述学习者模型,因为它具有更强大的功能来表示语义,比XML和RDF更容易被机器理解。
我们在辅助教学软件的研究开发中选择了语义Web下的自适应智能授导系统,因为它更多的关注系统各模块的标准化、形式化构建,以及系统间的互操作和知识共享与重用。其目标是使机器能够更好的理解网络上的内容,构建一个基础结构使在网络上运行的智能能够进行复杂的活动,对嵌入在基于网络的应用程序中的知识进行显性的描述,从而以智能化的方式来整合信息,提供基于语义的方式来访问网络,以及从文本中进行信息抽取。语义Web技术可以通过对智能授导系统不同模块中嵌入的知识和学习者的交互信息进行共享,从而在一定程度上推动了分布式智能授导系统的开放程度。图1给出了自适应智能授导系统的智能产生流程图。
3 结论
伴随着互联网络的日益发展,我们日常的学习与工作越发依赖数字化的资源与服务,智能化与人性化将是数字化教学重要的发展方向。我们选择了自适应智能授导系统作为数字化技术辅助教学研究的一个切入点,依据网络智能授导系统实现的三条技术路线,从理论框架上阐述了教学辅助平台中常见的智能授导机制,利用人工智能中贝叶斯网络的思想来设计学习者模型来实现适应性和个性化的教学,并选择了语义Web下的自适应智能授导系统来实现辅助教学软件的开发。
参考文献
[1]闵宇锋.浅谈网络教学平台中的智能授导机制[J].科技情报开发与经济,2010.
[2]Brusilovsky P. MILLER P., Course Delivery Systems for the Virtual University.
Abstract: In view of the characteristics of artificial intelligence curriculum, including abstract content and complex algorithm, and the actual needs of undergraduate teaching, combined with teaching practice, this paper discusses and sums up the teaching reform and innovation of undergraduate artificial intelligence curriculum from the teaching system, teaching content, teaching methods and assessment methods.
P键词: 人工智能;创新;本科
Key words: artificial intelligence;innovation;undergraduate
中图分类号:G642 文献标识码:A 文章编号:1006-4311(2017)22-0230-02
0 引言
人工智能是计算机科学的一个分支,是当前科学技术中正在迅速发展、新思想、新观点、新理论、新技术不断涌现的一个学科,其属于一门边缘学科,同时也是多个学科交叉而成的一门学科,包括语言学、哲学、心理学、神经生理学、系统论、信息论、控制论、计算机科学、数学等[1]。当前人工智能已经是很多高校计算机相关专业的必修课程,它是计算机科学与技术学科类各专业重要的基础课程,其教学内容主要包括自然语言理解、计算智能技术、问题求解和搜索算法、知识表示和推理机制、专家系统和机器学习等,国内外很多大学都意识到了其重要性,纷纷对其展开了教学和研究。人工智能课程包含多个学科,具有内容抽象、理论性强、知识点多等特点,且算法复杂,但是多数高校采用的教学方式仍是传统的课堂教学方式,即“教师讲、学生听”的教学模式,这种信息单向传输教学模式以教师为主体,学生只是在被动的接收知识;存在过分重视理论教学,忽视实践活动教学的问题,导致教育内容无法和社会接轨;人工智能教材理论性过强,学生在学习过程中常常感到枯燥乏味,进而对学习该课程失去热情[2],久而久之,不仅人工智能课程的教学质量和效果无法达到预期,甚至学生还会产生厌学心理。针对人工智能课程中现有的各项问题,本文作者结合自身丰富人工智能教学实践经验,参考人工智能课程特点和教学目标,从多个方面探讨和总结了人工智能,包括教学内容、教材选择、教学方法和考核形式等。
1 教学内容优化与更新
人工智能是一门崭新的学科。开设本课程首先是确定教学内容。通常来讲,人工智能学科的内容包括两个部分,具体:一是知识表示和推理;二是人工智能的应用。前者是人工智能的重要基础,后者主要介绍了几种人工智能应用系统,包括自动规划和机器视觉、机器学习、专家系统等。另外,课程内容中还包括了一些人工智能应用的实例,将实践和理论紧密结合起来[3]。
随着时代的发展和科技的进步,人工智能学科也取得了较大发展。基于此,人工智能学科也应该与时俱进,更新人工智能教学大纲,进一步完善其教学内容。修订后的人工智能教学大纲将人工智能分成两个部分,即基础部分和扩展应用部分。前者包括计算智能、搜索原理、知识表示等,后者包括智能机器人、智能控制、多智能体、自然语言理解、自动规划、机器学习、知识工程等。
教学内容的选择和确定应综合考虑多项因素,不仅要重视基础知识,也应注意推陈出新,随着科技的进步做到与时俱进,同时教学内容应符合现实的需求,能够与社会接轨,将理论和实践紧密结合起来,只有这样人工智能课程的教学质量和效果才能事半功倍。
2 教学策略及教学方法的改革创新
由于人工智能课程具有算法复杂、内容抽象、理论性强、 知识点多的特点,传统的教学模式已经无法满足人工智能课程的需求,教师应探索更加有效的教学模式和方法,确保人工智能课程能够取得良好的教学质量和教学效果。具体的改革和创新人工智能课程的手段和方法主要包括以下几个方面:
2.1 激发学生的学习兴趣 无论是经验还是常识都在告诉我们每个人最好的老师就是兴趣,学生只有对某门学科存在兴趣,才会更加主动积极的学习该门课程,从而获得良好的教学效果。比如,作者在课程的一开始先播放了一段著名导演斯蒂文・斯皮尔伯格的《Artificial Intelligence》的相关片段,由这个电影学生知道了世上存在人工智能的机器人,学生们随着电影情节的发展而深深感动,与此同时教师让学生思考和谈论人工智能是什么?研究人工智能的意义在哪里?实践发现,在课堂中加入电影因素,能够大大提升学生们的注意力,让学生更加专注在教学任务中,有效提高了学生探索人工智能的积极性和主动性。此外,在教学中还可以用动画、视频、图片等手段将反映人工智能最新研究和应用的成果展示出来,让学生更直观的感受人工智能的奥妙,从而投入更多热情学习人工智能课程。
2.2 面向问题的案例教学法 案例教学法是一种以案例为基础、以能力培养为核心的一种教学方法[11]。针对学校学生特点,我们采取了以下几种教学形式实施案例教学。①讲解式案例教学:这种案例通过教师的讲解,帮助学生理解抽象的理论知识点。案例的呈现有两种基本形式:一是“案例―理论”,即先给出教学案例,然后再讲解理论知识;二是“理论―案例”,即教师先讲解理论知识,再给出教学案例;通过情境体验与案例剖析激发学生认知的兴趣,引导学生对将要学习的内容产生注意,有利于教师导入新课。②讨论式案例教学:在课程初期将学生分成若干学习小组,每小组3~4人;教师将提前设计好的一题多解的教学案例以及收集的相关资料分配给每个小组,要求学生在课余时间通过自学和组内讨论的方式给出问题的不同解决方案。③辩论式案例教学:在课程后期,采取专题辩论的方式对综合应用案例进行讨论,能有效地启发学生全方位地思考和探索问题的解决方法,加深学生对人工智能的理解。
2.3 个性化学习与因材施教 在开展课程教育过程中应注意对学生进行个性化教学,结合学生特点因材施教。比如,在日常教学中多观察学生情况,鼓励那些应对教学任务后仍存在余力的W生深入探索较深层次的课程及相关知识,同时友善面对学习较差的学生,分析其学习过程中面对的困难,有的放矢地采取应对措施,帮助其不断进步;在教学过程中让学生以读书报告的形式多多思考,鼓励学生发散性思考问题,鼓励优秀学生进行深一步的探讨,并且教师应帮助具有新颖思想或论点的学生将其智慧以科技论文和发表文章的形式转化为成果。
2.4 注重综合能力培养 在研究型教学中任务驱动是一种常用的教学方法,其中心导向是任务,学生在完成任务的同时也在吸收和掌握知识。通常来讲,该教学方法的步骤是:教师提出任务师生共同分析以得出完成任务的方法和步骤适当讲解或自学、协作学习完成任务交流和总结。”[3]该教学模式不仅有利于培养学生的创新能力和创新意识,还能够培养学生解决实际问题的能力,提高其综合实力。不仅如此,由于该教学模式通常是以小组协作的方式进行,教师给出研究范围,学生自愿结组并选择具体的题目,经过分析和讨论后以程序设计或者论文的形式协作完成研究。由此可知,学生是在以团队的力量解决问题,这十分考验学生的团队协作能力,对于学生团队合作精神的培养至关重要,且在完成任务的过程中学生需要查阅大量的资料,久而久之学生收集资料和创新能力势必会得到提升。
2.5 采用启发式教学 人工智能的很多问题都较为抽象,对学生理解力的要求较高,因此,在实际的教学过程中教师应有意识的就课程内容提出相关问题,让学生自己独立思考,鼓励学生提出自己的想法和解决方案。然后回归到课程上,对比分析教材上的解决方案和学生自己的解决方案,如此不仅培养了学生独立思考的能力,也增加了学生参与教学活动的意识,提高了学生的学习热情。比如,在讲到较为抽象的“遗传算法”时,先提出一个问题,即“遗传算法如何用于优化计算?”,然后从“达尔文的生物进化论”入手,讨论“遗传”、“变异”和“选择”作用,之后举例分析,启发学生思考“遗传”、“变异”和“选择”的实现,最后师生一起导出遗传算法用于优化计算的基本步骤。如此既完成了教授遗传算法的目的,也锻炼了学生逻辑思维的能力,教学效果良好[4]。
3 作业和考核方式的改革创新
过去的课程作业都是单一书面习题作业,发展至今,课程作业形式已经发生了变化,更加丰富多样,包括必须交给教师评阅的书面家庭作业和不必交给教师的课外思考题目、口头布置的思考题或阅读材料以及大型作业等。其中通过网络就可以完成上交作业,并且教师批阅作业后也可以通过网络返回给学生,实现了网络化。课程的考核方式较之以前也发生了较大变化,加强了平时思维能力的考核,更加注重学生实验能力和动手能力的培养,不再是绝对的一次考试定成绩,而是在总评成绩中加入30%的平时成绩,如此不仅减轻了学生的期末负担,也迫使学生更加重视平时的学习思考,有利于课程教学质量的提升。
4 结束语
本文是以提高教学质量为目标,结合教学实践,从教学体系、教学内容、教学方法、考核方式等方面对本科人工智能课程的教学改革进行了探讨,总结了该课程在教学和实践方面的一些教改举措。这些举措符合二十一世纪高校教学的要求,可以支持教师提高教学手段现代化的水平,同时更贴合学生的学习需求。作为该课程的授课教师应始终保持对教学内容的不断更新、教学方法的多样化,才能激发学生的学习兴趣,培养他们的思维创新和技术创新的能力,最终提高本课程的教学质量。从学生的反馈来看,作者所总结的教学实践具有明显的教学效果。但仍有许多方面做得不够,今后将继续在教学过程中不断总结成功的经验,吸取失败的教训。
参考文献:
[1]蔡自兴.人工智能及其应用[M].三版.北京:清华大学出版社,2007.
[2]谢榕,李霞.人工智能课程教学案例库建设及案例教学实践[J].计算机教育,2014(19):92-97.
[3]蔡自兴,肖晓明,蒙祖强.树立精品意识搞好人工智能课程建设[J].中国大学教学,2004(1):28-29.
【关键词】 人工智能 农村远程教育 高效
人工智能技术是在计算机科学日新月异发展的进程中一大成果,由于其智能、高效、优化的强大功能,为许多研究者所重视。部分教育领域的研究者,将人工智能技术引入教育行业,探讨人工智能如何融入教育,促进教育深度发展。研究者们将人工智能与职业教育、继续教育、远程教育及教育技术结合,进行探讨,提出了一些很好的建议。农村远程教育虽然也属于远程教育范畴,但由于其自身具有许多特殊性,因此有必要单独将其应用于农村远程教育进行探讨。
1 我国当前农村远程教育发展面临的困境
我国农村远程教育是伴随着现代通讯技术的发展而在广大农村出现的一种新的教育模式。随着上世纪70年代末,以广播电视大学为代表的远程教育的兴起,为我国教育的发展写下了浓重的一笔,由于其不受时间、空间、学习者等要素的影响,充分体现了“时时能学、处处可学、人人皆学”的巨大优势。因此,本世纪初,国家将远程教育教学模式引入广大农村,于2003年推出了“农村党员干部现代远程教育”、“农村中小学现代远程教育工程”,于2004年依托广播电视大学体统推出了“一村一名大学生”工程,这些远程教育工程对推进农村教育起到了举足轻重的作用。但其发展也遇到了困难,具体说主要体现在以下几个方面:
1.1 师资力量短缺
由于受我国长期以来的城乡二元制经济发展模式的影响,导致城乡经济发展不均衡,直接造成了城乡教育发展失衡。在农村教育中,首先表现在教师配置上,由于农村教育经费投、教师工资水平均低于城市,造成了长期以来农村教育师资力量短缺,远程教育更是如此。据相关研究表明,现我国农村远程教育由于缺少懂计算机或网络技术的专业人才,往往用不相关专业的人才作为替代,且大都为兼职人员。这就造成了对远程教育设备的维护、远程教育资源的管理及远程教育教学辅导等方面出现问题。以广播电视大学系统为例,自2004年广播电视大学开始招收“一村一名大学生”学员,虽然学员增长速度很快,但其教学点仅延伸至县城,招收的学员往往为县城周边农村的农民,而广大较偏远地区正真渴望接受教育的农民缺少受教育机会,之所以没有延伸至乡镇及行政村,根本原因是缺少师资力量。
1.2 资源建设不足
由于农村远程教育是本世纪初才在农村兴起的一种新的教育模式,属于新生事物,因此缺少前期的积累,主要体现在教学资源的积累上。我们知道,是否拥有丰富优质的教学资源是关乎远程教育成败的关键。而长期以来,我们主要注重城市远程教育的发展,现城市远程教育已相当成熟,拥有一大批优质的教育资源,吸引了大批学习者。但由于农村远程教育与城市远程教育相比有其特殊性,广大农村学员需要掌握的不仅仅是理论知识,他们最迫切学习的是农业实用新技术及掌握能够改变自己生活现状的一技之长,而这些课程资源在城市远程教育中设计不多。因此我们没有现成的教育资源可供使用,需要另起炉灶进行建设。但由于投入农村远程教育的经费有限,用于资源建设的经费也不足。造成了现阶段农村远程教育资源依然短缺的现实。这不利于农村远程教育进一步发展。
1.3 课程设置不合理
如上所述,广大农村学员渴望学习的是改善自身生活的实用农业新技术及一技之长,同时广大农村也需要培养一批懂管理的乡村干部。因此在专业和课程设置上,客观上要求向这些方面靠拢。虽然现在农村远程教育在专业设置上慢慢转向适合农村学员的涉农专业,但在课程设置上还是不尽如人意,往往只根据自己师资情况及资源情况来设置课程,这样往往造成农民学员需要的课程没有涉及,而农民学员缺乏兴趣的理论课程所占比重过大的问题。这样会严重挫伤广大农村学员学习积极性,对农村远程教育发展极为不利。
1.4 网络教学平台存在不足
我国现阶段远程教育的网络辅导教学平台现阶段的形势往往通过QQ对话、Email邮件、BBS及一些音频、视频系统进行。这些方式当然是有效的网络教学方式,但存在问题也是十分明显的,最主要问题在于如果没有提前联系,教师就不会及时回复学生提出的问题,缺少师生互动。学生的学习效果会大打折扣。
2 人工智能应用于远程教育的优势
2.1 人工智能的概念
人工智能是计算机学科的一个分支,是一门研究计算机模拟和延伸人脑功能的综合性科学,部分研究者将其定义为:一个电脑系统具有人类的知识和行为,具有学习、推理判断来解决问题、记忆知识和了解人类自然语言的能力。人工智能的产生过程:对于人类因问题和事物而引起的刺激和反应,以及因此而引发的推理、解决问题及思考决策等过程,将这些过程分解成一些步骤,再通过程序设计,将这些人类解决问题的过程模拟化或公式化,使电脑能有一个系统的方法来设计或应付更复杂的问题,这套能够应付问题的软件系统,称之为人工智能。
2.2 人工智能切合了远程教育的要求
有研究者指出:人工智能是研究如何构造智能机器(智能计算机)或智能系统,使其模拟、延伸、扩展人类智能的学科。人工智能在教学领域应用的最直接结果就是诞生了智能教学系统。而所谓的智能教学系统是以计算机辅助教学为基础而兴起的,它是以学生为中心,以计算机为媒介,利用计算机模拟教学专家的思维过程而形成的开放式人机交流系统。由于它综合了知识专家、教师、学生三者的活动,因此,与之相对应,智能教学系统一般分为知识库、教学策略和学生模型三个基本模块,再加上自然语言智能接口。人工智能的这些功能和模块刚好切合了远程教育的特点及要求。我们开展的远程教育一直以来就强调以学生为中心,以学生自学为主,教师辅导为辅,教师通过计算机网络系统对学生进行实时和非实时辅导,以此来完成学生的学习过程。因此人工智能适合应用于远程教育教学过程。
2.3 人工智能能够有效加强对学生的管理,提高学习效率
长期以来远程教育为社会诟病的是,由于缺少师生间直接交流的机会,造成教师对学生的组织和管理方面的困难。如果我们仅仅依据学生登录次数、登录时间等方面来评价学生学习情况,这样往往造成对学生学习的错误评价,但对远程教育的教师来说也只能做到这些。但如果我们将人工智能引入远程教育,它可以依据自己强大的功能,通过对学生情况的数据分析,科学提供学生的学习能力、认知特点及当前的知识水平。更为重要的是,通过对这些信息的分析,它能为每位学习者制定适当的教学内容和教学方法,为学生提供个性化的学习服务,切实提高学生的学习效率,这是我们远程教育所倡导的最佳服务的效果。
2.4 人工智能可以从某方面解决农村远程教育师资力量
如上所述,由于城乡间经济差距,造成了长期以来城乡教育发展失衡,广大农村地区师资力量较为薄弱,特别是远程教育方面。这一问题解决的根本途径在于缩小城乡经济差距,但这并非一朝一夕就能解决的问题。因此农村师资力量特别是远程教育师资力量的解决,需要一个过程。而人工智能技术利用了计算机模拟教学专家的思维过程而形成的开放式人机交流系统,它集知识专家和教师于一身。广大学员可以通过自然语言系统,实现正真意义上的人机对话,完成适时的学习辅导过程,这从某种程度上解决了师资短缺的问题,为农村远程教育的发展提供了一条新的发展思路。
2.5 人工智能能够有效解决农村远程教育资源建设问题
目前我国农村远程教育在资源方面存在的问题除了数量较少,质量也不高,许多网络课程资源仅仅是课本的翻版,虽然资源制作者利用现代资源制作手段,以文字、视频及图片等手段来展现知识,但知识之间的逻辑联系性方面存在不足。这给学习者有效学习带来极大不便,影响了学习效果。而人工智能技术,能够对现有的网络课程资源进行智能加工,对知识结构进行重新构建,对知识间的层次性、逻辑性进行重新编排,为学习者展示学习重点、难点,切实提高学习效率。使资源更加优质高效。
2.6 人工智能能够提供实时交流,解决网络教学平台的不足
由于人工智能集知识专家、教师与一身,可以通过自然语言系统,开展人机对话,通过讨论解决学生遇到的问题。能改变传统网络教学平台缺乏及时交互性的问题。能够解决网络教学平台的不足。促进农村远程教育的发展。
3 结语
人工智能技术是计算机科学发展的成果之一,它具有智能、高效、优化的强大功能,许多行业都利用人工智能技术提高效率。对我国农村远程教育而言,如果能将人工智能引入,能从某种程度解决因为资金问题造成的师资力量缺乏问题;提高对远程教育学生的管理,为他们提供个性化的高效远程教育服务;能够利用它强大的功能重新编辑网络资源,让它更有利于学生学习;同时人工智能还能提供自然语言接口,打破以往网络教学平台的弊端。相信通过引入人工智能技术,我国农村远程教育会迎来新的发展。
参考文献
[1]张震,王文发.人工智能原理在人类学习中的应用[J].吉首大学学报,2006(1):39-41.
[2]武晶晶.关于人工智能教育应用的几个问题[J].教育教学论坛,2012(9):159-160.
[3]张.人工智能与教育技术[J].陕西师范大学学报(自然科学版),2005(6):228-230.
[4]张小永.陕西农村现代远程教育资源建设初探[J].陕西农业科学,2011(4):228-230.
关键词:计算机辅助教学
中图分类号:tp 文献标识码:a
收录日期:2013年4月16日
计算机辅助教学的智能化源于20世纪五十年代后期。英国数学家图灵在“计算机器与智能”一文中提出了著名的图灵测试,用来测试一台机器有无智能。当时,麦卡锡和纽厄尔等人认为机器能够像人一样思考的时代已经近在咫尺,实现这一目标的主要问题只是需要创建更大的、运算速度更快的计算机。如果机器能够像人一样地思考这一命题成立,就可以据此提出一个合理的假设:人们能够制造出聪明的机器,它能够执行需要人类思考才能完成的复杂任务,例如开展教学。计算机辅助教学的智能化研究正是基于这样的假设,从20世纪五十年代至今,在计算机科学、教育科学、认知科学等学科专家的不懈努力下取得了不少成果。
普莱西于1924年发明了第一台教学机器,但是直到20世纪五十年代,哈佛大学心理学家斯金纳把他研究的操作条件反射和积极强化原理成功地运用到教学机器上,在美国军队中进行应用并取得了良好的教学效果,使程序教学获得社会的承认并有了很大的发展,才导致了教学机器和程序教学的兴起。程序教学(pi)就是将教学内容按一定的逻辑顺序分解成若干小的学习单元,编制成教学程序由学习者自主学习。程序教学具有小的学习步骤、自定学习进度、积极反应、即时反馈等特点,综合使用比单个使用某种能产生更好的记忆效果,从而改善学习。如果将视、听觉和做结合起来,那么学习效果会有更大的提高。通过多媒体条件下个性化学习环境的创设,智能教学系统能够有效地支持学生看、听和做,从而提高学习效率。但智能教学系统也存在着一些难以解决的问题,例如,如何让学生从被动地接受教学转为主动的建构式学习;如何根据学生的需求和教学目标,实现学习者和教学系统之间有效的知识通讯;如何在网络环境下有效地支持个别化学习、协作学习和探究学习等。此外,智能教学系统的开发需要领域专家、知识工程师、教学专家的通力合作,开发难度大。由于人工智能技术自身的局限,当前智能教学系统的智能化程度并不令人满意。
20世纪九十年代以来,计算机多媒体技术、网络通信技术以及人工智能技术的发展,为基于建构主义学习理论的多媒体教学环境的构建提供了有效的技术支持,数字化学习(e-learning)迅速成为人们崇尚的一种学习方式。但是,在网络环境下,教学材料的选择和组织往往缺乏系统的设计,容易造成数字化学习者的认知超载和网络迷航。为了提高网络学习效率和学习质量,一些智能教学系统的研究专家开始转向网络环境下的适应性学习支持系统研究。
在学习过程中,学习者个体具有很大的差异性,具体表现在个人的能力、背景、学习风格以及学习目标等各个方面。即使是个体本身,在学习过程中其知识状态也是在不断变化和发展的。适应性学习支持系统(alss),是针对个体学习过程中的差异性而提供的适合个体特征的一种支持学习的系统。适应性学习支持系统本质上是一类个别化的学习支持系统,它能够提供一个适应用户个性化特征的用户视图,这种个性化的学习视图不仅包括个性化的资源,而且包括个性化的学习过程和策略。适应性学习支持系统提供对不同学习者个别化需求的适应,包括学习诊断、学习内容、自主选择学习策略等。对于相同的学习内容,该系统可以为不同的学生提供不同的学习方式。不同的学习者通过适应性学习支持系统学习同样的知识,会有不同的学习路径、学习策略和学习内容。
换言之,适应性学习支持系统提供的学习是个别化的、因人而异的,是符合学习者个人学习情况的。在其支持之下,学习者能够以更快的速度,更加有效地进行学习。由于学习者在适应性学习支持系统中不仅可以进行个别学习,而且可以开展在线的协作学习、探究式学习等多种学习方式,适应性学习支持系统已经超越了作为传统意义上的辅助教学的工具,而是作为认知工具、协作交流工具和情感激励工具,可以作为导师、学习伙伴和学习工具。
近年来,我国不少学者开始对适应性学习支持系统进行研究,例如开放的、通用的适应性学习支持系统外壳a-tutor;基于教师经验性知识的适应性学习系统在中小学校的应用,等等。智能教学系统
主要特点在于能够针对不同学生进行因材施教,但由于该类系统过于强调理想化的教育,生硬的界面和过多的程序控制往往无法激发学习者学习的主动性或维持学习者的学习兴趣,因此,它的实现和应用受到了较大的限制。计算机作为教师,监控学生学习过程,执行错误诊断和生成提示信息采用知识表示技术,教学内容由系统自动安排多媒体,主要由文本构成、辅以图片、动画、声音适应性学习支持系统开放的网络学习环境下自主学习、协作学习、探究学习。计算机作为学习伙伴,或作为认知工具、协作和交流工具、情感激励工具由多媒体、超媒体构成,采用适应性超媒体、超文本系统综合了生成性cai和面向帧的cai的设计思想,并规定了问题的描述格式,系统据此生成参数,然后在数据库里查询正确的答案。
卡内基梅隆大学卡波纳尝试将人工智能(ai)技术应用于cai系统,并设想了这样一种教学系统。该系统有一个包含教学主题材料和授导教学规律的知识库,能够用自然语言与学生对话,能够以自然的方式从它的通用知识库里面生成问题和反馈。卡波纳按照上述设想建立了第一个智能化的地理教学系统 scholar,它采用语义网络知识表示,建立了覆盖学生模型,能够自动生成教学材料和问题,也是第一个能够用自然语言与学生交互的系统。scholar 的出现标志着智能计算机辅助教学(icai)的开始。
在智能教学系统中,学生主要通过问题解决的方式学习,这些问题都是经过恰当选择的,能够为学习者提供良好的学习经验。哈特利和史利曼认为智能教学系统必须提前考虑三个方面的知识:第一,系统通过评估学生已有的知识基础,建立起学生模型;第二,系统考虑到学生需要学习什么,建立起领域专家模型;第三,系统还必须决定下一步应该教学生学习哪一个教学单元,怎么呈现教学内容,即具备教师模型。系统在上述基础上选择或生成一个问题,并通过专家模型生成该问题的解决方案。智能教学系统时时比较学生的解答与计算机的解答,并诊断两者的差异。针对学生是否已经接受了系统提供的学习建议,系统还会提供进一步的反馈。当反馈循环结束后,智能教学系统会更新学生的技能记录(一个关于学生知道什么和不知道什么的记录)、学习进度标识,从而更新了学生模型。然后系统又开始新一轮的循环,选择或生成一个新问题。从领域知识、学习者知识、教学策略知识的视角,对程序教学系统、计算机辅助教学系统、生成性cai系统以及智能教学系统进行考察,不难看出它们的差异所在。
关键词:人工智能影视教育课堂在场价值观
人工智能技术作为社会媒介化发展的特殊产物,不仅能够建构起智能媒介化的信息社会,更能深入到传媒研究领域,引导影视传媒研究朝着“互联网+教育”的方向发展。当前影视传媒教育正面临重要的转型阶段,如何通过媒介信息技术调整现有的理论学习模式和教学培养目标,已经成为影视教育进行改革创新的突破口。基于人工智能为教育信息化带来的机遇和挑战,影视教育正致力于从“刀切教育”迈向“精准教育”,从“课堂缺席”转为“课堂在场”,从人才培养模式到教育信息平台搭建,都在不断强化智能教育培养,力求为影视传媒教育的智能化改革和实践提供决策依据。
一、影视教育智能化发展的应用价值
智能化影视传媒研究是教育信息化极为重要的应用场景,人工智能技术不仅拓宽了影视传媒教育的研究方向,同时也在技术手段、渠道搭建、傳媒伦理等层面发挥着重要作用。
1.消除数据鸿沟,发挥智能传媒教育技术赋能和知识平权的双重功能。影视传媒研究是以实践为基础的理论性教学,以培养创新型和复合型人才为教育目标。教育学者是影视文化传播的驱动者,因个体间存在传播技能、信息储备和交往行为方面的差异,造成影视传媒教育具有严重的知识鸿沟。在影视研究学者步入算法教育的重要阶段,智能教育平台可通过读取人的反馈改变原有的教学模式,调整每一位受教育者的天赋类型。与此同时,教育学者能够充分利用算法技术和人工智能手段,获取定制化的影视资源和学习条件,以技术逻辑引导学习流程,用分析框架提高教学模式的理论性和可操作性,通过强化教与学的变革场景,激活文化创作的想象力和逻辑性思维,使科技创新在理性与感性、理论与实践的引导作用下,从一般的理论教学形成智能媒介化的信息教学模式,从单向传授转变为双向互动的学习教育模式。
2.拓宽学习渠道,推动教育形态从理论课堂到智能媒体教育课堂的变革。人工智能技术与影视教育教学的深度融合,正引发起一场新的教学革命。从教育手段和学习途径上来看,原有的课堂教学已无法满足理论和实践的双重需求,大数据催生出的智能化影视教育,在虚拟世界和现实世界间搭建起新的算法课堂,利用人工神经网络简化理论教学的概念,又通过具有超强运算能力和通讯能力的技术手段协助实践操作。例如,人工智能照相机作为辅助型的教学工具,被运用于智慧课堂的摄影实践教学中,借助云端技术和物联网连接远程数据中心,可以帮助不懂摄影技术的学习新手尽快了解电影拍摄的理论框架和基本技能,推动教学场景从应用性教学到智慧型课堂的氛围建构。人工智能与影视教学的跨界融合,成为智能传媒教育进行颠覆式创新的重要表现形式,教育形态正逐渐从智慧课堂过渡到智慧校园,从传统的理论范式过渡到智慧媒体的应用型范式,帮助构建起新的学科话语体系。
3.重视传媒伦理,推动智能化影视传媒教育价值观和技术性的生成。人工智能是以追求效益为初心的理性工具,在技能研发阶段尚未对伦理规范提出强制要求,技术伦理向来是人工智能难以逾越的一道鸿沟;影视传媒教育则是以培养学生的伦理观和价值观为出发点,重视以道德审美为核心的理性意识。智能化传媒教育将信息技术和影视教学进行结合,使得理性工具得以同理性意识深度融合,人文关怀建立在技术作用之上,这既是培养受教育者核心价值观的时代需要,亦是强化人工智能技术伦理的有效途径。人工智能时代,强调智能化影视传媒教育技术性和价值观的生成,与其说是建立在影视教育应用场景上的技术伦理规范,不如说是借信息技术完成对传媒伦理和受教育者价值观的理性建构,让人工智能发展紧密联系意识形态和伦理道德问题,加深技术手段和教育学习的彼此作用,从而获得传媒教学在伦理层面的共识。随着传媒影响力的逐步扩大,以内容为载体的影视教学活动意味着要担负起更重要的教学责任,学科研究核心价值观的建设必须以注重传媒伦理和技术伦理为教学基础,重新建构现有的伦理道德观念,为人工智能技术注入价值观的活的灵魂。
二、影视教育智能化发展的风险问题
人工智能技术的迅速发展,赋予影视传媒教育极大的应用价值,与此同时也面临着潜在的风险问题。
1.灌输式教育仍占据主流,智能化影视教学陷入价值认知困境。在人工智能技术出现以前,理论+实践的教学策略已经成为一种固定的形态存在于传统影视教学工作中,受教育者根据统一的培养目标规划自己的学习方式,包括影视创作及影视理论等相关课程都按照相同的培养模式进行。由于教育主体对人工智能的认知存在两极分化的现象,过往只能够通灌输式对学生进行强制教育,智能化影视教学则是处于小范围内的实践和创新。对影视教育而言,理论与实践是学习的内容,继承与创新才是研究的实质。明确人工智能教育的价值认知,从灌输教育逐步迈向定制化教育,为高校的人才培养提供重要的智力支持,应当是影视教育智能化转型发展的着力点。
2.智能教育应用场景缺乏思考,其深度和广度有待进一步挖掘。当前,智慧课堂、智慧校园的出现奠定了智能传媒教育的基本雏形,依靠大数据、物联网等信息技术支撑的智能传媒教育,在平台搭建层面已出现显著性成果,但对应用场景的深度和广度挖掘还存在明显问题。影视教育智能化应当以追求个性化和定制化教育为目标,崇尚的是终身学习的教学理念,不应当将人工智能技术仅局限于传统的教学课堂,除了要从“线下”走向“线上”,还需要考虑到以人机交互为主要形态的教学应用场景,挖掘人工智能教育更多的应用情境和展现方式,从而对影视课堂的理论与实践教学价值提供合理的在场性证明。
3.专业壁垒依然存在,智能化教学成果马太效应极为明显。智能教育世界要求培养更加多元化的应用型人才,但人工智能的马太效应逐渐渗透到影视传媒教育工作中,也会导致教学成果受到出现严重的失衡现象,难以满足高校对人才培养的多元化需求。作为艺术研究的影视教学活动,其科学精神和创新实践同样重要。尤其在媒介融合背景下,要想推进受教育者从“影视学者”逐渐过渡到“影视作者”,人工智能不仅需要满足师生的定制化教学任务,还应当破除专业和行业的壁垒,对其相关联的学科和传媒领域进行合作,才能够改变当前智能化影视教育在教学模式上面临的不足,不断为社会输送更多的应用型人才。
三、影视教育智能化发展的转型实践
面对智能传媒教育的风险与挑战,影视专业更应当立足于自身的教育发展特色,从人才培养模式、应用场景建设、教育资源整合等方面,推进影视教育智能化发展的转型实践。
1.从“灌输教育”走向“精准教育”,创建新的人才培養模式。智能传媒教育范式的自主性建构,应当立足于对传统教学效率和人才培养模式的颠覆。基于当前影视传媒智能化发展在人才培养模式层面的不足,其转型实践需要从受教育者的个性化需求出发,在师生、家长和社会的通力合作下,创建新的人才培养模式,利用碎片化学习完成系统化的学习过程,逐渐从“灌输式教育”走向“精准化教育”。例如,人工智能时代对影视学生的培养更趋向于“以个人为导向的系统化学习”,通过前期对受教育者的大数据整理,对每一位同学的逻辑性、想象力、创造性和沟通能力等进行分析,从影视理论和影视创作两大方向出发对受教育者形成定制化的学生画像,并提供针对性的智慧作业,帮助教师采集学生的学习情况,从而实现规范化的信息管理。可以预见的是,智能传媒时代,“互联网+教育”学习模式的生成,在推动知识平权化等方面发挥重要价值,成为影视教育智能化追求的重要转型路径。
2.从“课堂缺席”走向“课堂在场”,打造新的传媒教育平台。人工智能不仅要改变传统的人才培养模式,同样也应当提供更加多元化的学习应用场景。过去的影视研究多局限于单一的课堂场景,采用课上理论和课下实践的方式进行授课,完成影视教学的闭环。人工智能时代,影视传媒教育应当调整原有的受教育模式,通过搭建合理的人工智能应用平台,可以巧妙地将课堂场景与智能技术结合起来,为受教育者提供更加多样性的教学应用场景,从而实现成长课堂的“在场共生”。例如,人工智能可以带动影视制作的推陈出新,通过搭建智慧超媒体系统,将电影屏幕从影院搬到校园,自动生成无穷界面。与此同时,影视传媒的智能化还可以帮助教师自动生成电影梗概,将理论性教学转变为可视化形象,使电影理论同定制化的影像人物之间建立匹配关联,让教育场景从线下逐步延伸到线上,为影视研究提供重要的云服务。
3.从“媒教分离”走向“共建合作”,实现产研学的自主对接。影视教育智能化发展的最终目的是为了寻求理论与实践的融和,帮助构建起传媒教育和传媒业界的良性生态关系。传媒教育智能化也可以全面提高受教育者的学习效率和工作效率,通过优化教育资源,带动影视内容的高质量生产、影视人才的高质量创作。因此,从“媒教分离”走向“共建合作”,引导产研学的自主对接也成为了影视教育智能化转型实践的有效探索。未来的影视传媒发展,能够抓取海量资源建构独立的影像景观模型,为机器人参加艺考创造可能性,并且也可以紧抓电影内容的智能化生产,从前期的电影脚本自动化写作到后期的虚拟演员个性化定制,系统均可以对剧本创作、电影拍摄等课程进行精准化评估,从中筛选出符合影视公司要求的作品,进入后续的市场化操作。