欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

混凝土结构设计论文优选九篇

时间:2023-09-08 17:05:23

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇混凝土结构设计论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

混凝土结构设计论文

第1篇

关键词:混凝土结构设计建筑结构

前言

1在设计方法上的差别

在建筑结构专业的《混凝土结构设计规范》GBJ10-89中(以下简称GBJ10-89),采用的是近似概率极限状态设计方法。以概率理论为基础,较完整的统计资料为依据,用结构可靠度来衡量结构的可靠性,按可靠度指标来确定荷载分项系数与材料分项系数,使设计出来的不同结构,只要重要性相同,结构的可靠度是相同的。

在公路桥梁专业的《公路钢筋混凝土及预应力混凝土桥涵设计规范》TJT023-85中(以下简称TJT023-85),采用的是半概率半经验的极限状态设计方法。虽然也采用概率理论及结构可靠度理论,但在设计公式中是用三个经验系数来反映结构的安全性,即荷载安全系数、材料安全系数、结构工作条件系数。

在设计中,对这种系数的差别要注意区别,不能混淆。

2材料强度取值上的差别

2.1混凝土的强度

混凝土立方体抗压强度是混凝土的基本强度指标,是用标准试块在标准养护条件下养护后用标准试验方法测得的强度指标。两规范中所采用的试块尺寸是不同的。GBJ10-89中采用150mm立方体试块,TJT023-85中用200mm的立方体试块。GBJ10-89中,根据测得的具有95%保证率的立方体抗压极限值来确定混凝土的强度等级,一共分为十级,即C10,C15,C20,C25,C30,C35,C40,C45,C50,C60。

TJT023-85中,根据测得到具有84.13%保证率的立方体抗压极限值来确定混凝土的强度等级,用混凝土标号表示,一共分为七级,即15号、20号、25号、30号、40号、50号、60号。由于所采用的试块尺寸不同,两规范中相同数值等级的混凝土强度值是不同的,GBJ10-89的值大。如C15混凝土与15号混凝土,尽管都表示强度等级为15Mpa的混凝土,但实际强度C15混凝土比15号混凝土大。混凝土强度取值不同,这一点在设计中是要注意的。

2.2钢筋的强度

两规范中,钢筋的标准强度取值是一样的,都采用钢材的废品限制值作为取值依据。但钢筋的设计强度取值不一样,GBJ10-89中以标准强度值除以材料分项系数作为取值依据,而TJT023-85中设计强度取值与标准强度取值是一样的。这样,相同的钢筋等级,TJT023-85中钢筋的设计强度取值大。

3荷载取值的差别

两规范中荷载分类与取值都有明确的规定,不容易混淆。在荷载效应组合中有一点差别,应注意。GBJ10-89中,荷载效应组合时,既有荷载分项系数,又有荷载组合系数,要区别开来。TJT023-85中只有荷载分项系数。

4构件计算的差别

两规范中在构件计算上,尽管依据的原理、计算假定、计算模型基本一致,但计算公式、计算结果是有较大差别的。构件计算是关系到设计结果的最重要的一环,值得重视。限于篇幅,只以正截面受弯和斜截面受剪强度计算为例看计算上的差别。

4.1正截面受弯强度计算

两规范在计算假定上就有差别。混凝土极限压应变取值,TJT023-85中为εu=0.003GBJ10-89中εu=0.0033。在等效矩形应力图形中,TJT023-85取γσ=Raβx=0.9x。GBJ10-89中取γσ=1.1fcβx=0.8x。由于εu取值不同,两规范中混凝土界限受压区高度有些差别。从混凝土极限压应变、等效矩形应力图形的差别上可以看出,两规范中安全储备是不同的。TJT023-85的安全储备大。

下面用算例来说明这一问题。

有矩形截面梁,截面尺寸为250mm×500mm20号混凝土,Ⅱ级钢筋。计算截面处计算弯矩为Mj=15KN.m试进行配筋计算。

4.1.1先按TJT023-85计算。

已知20号混凝土抗压强度设计值Ra=11MpaII级钢筋抗拉强度设计值Rg=340Mpa混凝土相对界限受压区高度ξjg=0.55,材料安全系数γc=γs=1.25。

(1)求混凝土受压区高度x

先假定钢筋按一排布置,钢筋重心到混凝土受拉边缘的距离a=40mm,则有效高度h0=(500-40)mm=460mm由

解得X=133mm<ξjgh0=0.55×460=253mm。

(2)求所需钢筋数量Ag,由RgAg=Ra·bx,得

Ag===1076mm2

(3)验算最小配筋率μ===1%>μmin=

0.1%,满足规范要求。

4.1.2按GBJ10-89计算

C20混凝土,弯曲抗压强度设计值fcm=11Mpa,钢筋抗拉强度设计值fy=310Mpa混凝土相对界限受压区高度ξb=0.544

(1)求X有Mj=fcmb×(h0-)得115×106=11×250×(460-),解得x=(1-1-)h0=102.3mm<ξbh0=0.544×460=250.2mm满足要求

(2)求As由Asfy=fcmbx得As=fcmbx/fy=(11x250×102.3)/310=907.5mm2>μminbh0=0.15%×250×460=172.5mm2

如果扣除由于20号混凝土与C20混凝土之间强度取值的差别,20号混凝土按GBJ10-89,fcm=11×0.95=10.45MPa则x=(1-1-)×460=108.5mm,As=(10.45x250x108.5)/310=914.4mm2

从上述计算中看出,按TJT023-85比按GBJ10-89钢筋用量多17.7%。

4.1.3受弯构件斜截面强度计算

在斜截面强度计算中,两规范都是根据斜截面发生剪压破坏时的受力特征和试验资料所制定的。但两规范在计算公式表述上及计算结果上都有较大的差别。

TJT023-85中,斜截面强度计算公式为:Qj≤Qu=Qhk+QW,其中Qhk=0.0349bh0(2+p)RμkRgk,Qw=0.06RgwΣAwsinα,式中Qj:根据荷载组合得出的通过斜截面顶端正截面内的最大剪力,即计算剪力,单位为KN;Qhk:混凝土和箍筋的综合抗剪承载力(KN);Qw:弯起钢筋承受的剪力(KN);b:通过斜截面受压区顶端截面上的腹板厚度(cm);h0:通过斜截面受压区顶端截面上的有效高度,自纵向受拉钢筋合力点至受压边缘的距离(cm);μk:箍筋配筋率μk=nk·ak/(b·s);Rgk:箍筋的抗拉设计强度(Mpa),设计时不得采用大于340Mpa:R:混凝土标号(Mpa);p斜截面内纵向受拉主筋的配筋率,p=100μ,μ=Ag/bh0当p>3.5时,取p=3.5;Rgw:弯起钢筋的抗拉设计强度(Mpa);Aw在一个弯起钢筋平面内的弯起钢筋纵截面面积(cm2);α:弯起钢筋与构件纵向轴线的夹角。

上式中工作条件系数、安全系数均已记入。公式的适用条件采用上限值和下限值来保证。上限值要求截面最小尺寸满足Qj≤0.051Rh0(KN)。满足下限值,Qj≤0.038R1bh0(KN)可按构造要求配置箍筋,式中R1:混凝土抗拉设计强度(Mpa)。GBJ10-89中,斜截面承载力的计算公式为V≤Vu=Vcs+Vsb其中Vcs=0.07fcbh0+1.5fyv(Asv/S)h0Vsb=0.8fyAsbsinαs当为承受集中荷载的矩形独立梁,Vcs=0.2/(λ+1.5)fcbh0+1.25fyvh0,式中V:构件截面上的最大剪力设计值(N);Vcs:混凝土与箍筋的综合抗剪承载力(N);Vsb:弯起钢筋所承受的剪力(N);b:矩形截面的宽度,T形截面或I形截面的腹板宽度(mm);h0:通过斜截面受压区顶端截面上的有效高度,自纵向受拉钢筋合力点至受压边缘的距离(mm);fc:混凝土的抗压强度设计值(Mpa);fyv:箍筋的抗拉强度设计值(Mpa);S:沿构件长度箍筋间距(mm);fy:弯起钢筋的抗拉强度设计值(Mpa);Asb:在一个弯起钢筋平面内的弯起钢筋纵截面面积(mm2);αs:弯起钢筋与构件纵向轴线的夹角。

公式的适用条件也是采用上限值和下限值来保证。上限值要求截面最小尺寸满足V≤0.25fcbh0当为薄腹梁,V≤0.2fcbh0。满足下限值V=0.07fbh0,可按构造要求配置箍筋。从上述公式中,可以看出,公式的表达形式不同,各物理量的单位也不同。

下面以实际例子看看计算结果上的差别。

已知T形截面简支梁,25号混凝土,纵筋采用II级钢筋,箍筋采用I级钢筋,计算截面的计算剪力为416.27KN受拉区有2Φ32的纵筋,保护层厚30mm。进行腹筋设计。

下表是根据两规范进行的计算比较。

TJT023-85中,对斜截面抗剪计算,要求弯起钢筋承担40%的计算剪力,混凝土与箍筋共同承担60%的计算剪力。另根据规范对计算剪力的定义,TJT023-85中的计算剪力与GBJ10-89中的设计剪力是一致的。所以在GBJ10-89计算中,也按4:6比例分担剪力。

第2篇

【关键词】混凝土;结构设计;耐久性;抗震性

1.前言

从传统的观念来看,钢筋混凝土结构具有很多优点,它有良好的物理力学性能、取材容易和造价可观的优点,但它最为显著的特点主要耐久性,混凝土本身的耐久是毋庸置疑的,虽然钢筋容易发生腐蚀,但是有混凝土的保护层的包裹,钢筋不能和空气接触,钢筋不会发生锈蚀,所以钢筋混凝土结构的使用寿命是相当长的。所以成为了世界工程建筑使用最广泛的结构形式。当然这只是从传统的观念来看的,但从科学的角度来看,这是不符合科学的探索观点的,正是由于人们收传统观念的影响,只片面了考虑的混凝土的耐久性,忽视了混凝土结构的整体耐久性,并且很多地区属于地震多发段,地震对其的危害相当的大,所以抗震性也不容忽视,特别是高层建筑中,抗震性尤为重要,越是楼层高,高楼层的顶部在受到地震作用时侧向位移也越大,就更容易发生坍塌的危险。本文主要从混凝土结构的耐久性和抗震性来分析设计中的一些值得注意的问题。

2.混凝土结构的耐久性

虽然混凝土结构存在的很多的优点,但是也存在一些内部因素和外部因素对混凝土结构的耐久性产生影响。

2.1内部因素。内部因素首先便是混凝土的自身问题,混凝土内部存在碱性的水化物,当大气环境里的CO2侵入混凝土内部时,会使得混凝土中的这些碱性水化物与CO2发生中和反应,也就是使得pH值下降,俗称混凝土的碳化过程。这个过程会让混凝土急剧收缩,导致混凝土开裂,加上碳化也会破坏钢筋外表面的氧化膜,使得钢筋容易锈蚀,发生危险。提高混凝土的强度等级的,使得内部孔隙率降低,混凝土内部更加的密实,提高了抗渗透性能,减缓了外部有害物质的入侵。值得注意的是当混凝土中加有碱活性的骨料的时候,在露天潮湿环境下,碱与骨料里的活性颗粒会产生反应,混凝土表面也会产生裂缝,加速侵蚀性物质的入侵破坏。再者的内部因素便是钢筋本身的影响,当混凝土有裂缝存在且较大的时候,钢筋肯定会受锈蚀,经过锈蚀的钢筋体积会膨胀,将混凝土保护层胀裂,又加快了钢筋的锈蚀。钢筋锈蚀后,钢筋的有效受力面积减小,相对应的强度会降低,致使结构承载力削弱。另一方面,锈蚀后的钢筋抗滑移的能力也会降低,很可能使得结构发生滑移破坏。时间越长,结构出现承载力问题会加大,有时甚至会突然断裂的脆性破坏,十分危险。所以影响混凝土耐久性的根源就是混凝土自身的碳化和钢筋锈蚀。

2.2外部因素

影响混凝土结构耐久性外部重要因素便是外界环境的影响。《混凝土结构设计规范》规定:

“一类:室内干燥环境;永久的无侵蚀性静水浸没环境

二类a:室内潮湿环境;非严寒和非寒冷地区的露天环境;非严寒和非寒冷地区与无侵蚀性的水或土壤直接接触的环境;寒冷和严寒地区的冰冻线以下的无侵蚀性的水或土壤直接接触的环境

二类b:干湿交替环境;水位频繁变动环境,严寒和寒冷地区的露天环境;严寒和寒冷地区的冰冻线以上与无侵蚀性的水或土壤直接接触的环境

三类a:严寒和寒冷地区冬季水位冰冻区环境;受除冰盐影响环境;海风环境

三类b:盐渍土环境;受除冰盐作用环境;海岸环境

四类:海水环境

五类:受人为或自然的侵蚀性物质影响的环境。” [1]

根据混凝土结构耐久性的调查,一类环境中设计使用年限为50年的质量安全基本可以保证。而一类环境中大部分使用年限超过了100年的都是一些纪念性建筑,数量上相对来说很少。一类环境中使用年数在70到80年的混凝土结构基本符合要求,这些构件的混凝土立方体抗压强度在15N/mm2 [2]。所以,在设计时,在一定程度上提高混凝土的强度等级并且定期维护,可以使混凝土结构的使用年限适当增加;

第二、三类的环境情况有些复杂,设计时要规定水灰比并适当提高混凝土的强度等级,提高密实性以降低混凝土的渗透性,设计时要采用环氧涂层钢筋,这种钢筋就是普通的光圆钢筋和带肋钢筋表面喷涂环氧树脂,有很强的耐腐蚀性,注意构造上不能有积水。可以适用于潮湿环境的工业与民用房屋、桥梁、码头等一些钢筋混凝土结构;(下转第505页)

(上接第503页)

第四、五类环境下的混凝土结构的耐久性应该符合有关的标准规定。

3.混凝土结构的抗震性

当地震发生时,作用时间极短,破坏力极大,而建筑本身结构也十分复杂,当其遇到地震力作用的时候,其破坏形式和破坏过程也是相当的复杂,如果仅仅依靠结构的计算设计是片面的,是不能够满足在地震作用时结构的实际受力状态需要的,所以抗震性的问题不能仅仅依赖结构计算设计,还要重视结构抗震的概念设计。概念设计就是在有利于提高结构抗震性的基础上,对结构进行全面合理的宏观控制。对于这样的设计思路我们就应该注意下面几个问题:

3.1合理场地选择。场地是影响结构抗震性的一个重要的因素,如果场地地形复杂,依靠工程措施是很难弥补复杂地形的缺陷的。所以选择场地的时候应该进行详细的勘察,弄清楚地质情况,避开软弱土层,容易滑坡,易液化等这样的不利地段,若不能避开就采取有效的措施,如用桩基础,加强基础的刚度和整体性等。

3.2合理选择建筑体型。在选择建筑体型的时候,不要选择太复杂的建筑体型,复杂的建筑体型没有直接明确的传力途径,不利于分析结构的内力,很难找到薄弱部位,特别是有凸起凹进的地方容易产生应力集中的现象,在地震时最容易产生破坏,所以一般最好采用圆形、方形等对称的建筑体型,受力均匀,布局合理,方便进行内力以及位移分析,美学上也有良好的视觉观。

3.3合理选择结构体系。结构体系应该保证有足够的承载力分布和刚度,并在此基础上还有足够的延性。一般来说结构的承载力和刚度是分不开的,刚度越大,则承载力也越大,结构的延性可以吸收很多地震时产生的能量,可以产生较大的变形不让结构在地震时产生突然的破坏,给人员安全撤出留下了足够时间。为了更好的提高抗震性能结构所用的材料也要符合相关的抗震要求。

4.结语

总之,虽然在进行混凝土结构设计的时候需要考虑的问题很多,但是混凝土结构的耐久性和抗震性是必须要考虑的问题,把握好这两个问题的关键,可以减少很多的工程事故,提高工程质量,提高工程的安全系数,保障人员的生命与财产安全。

【参考文献】

[1]百度百科.[EB.OJ].

第3篇

要想有效实现混凝土框架顶层加建钢结构的目标,就一定要明确两者之间的区别。混凝土框架具有自重大、刚度大、震害明显、密闭性好、整体性好、抗压性好、不易受外界侵蚀等特点;钢结构具有自重小、延性好、耐火性差、密闭性差、易受外界侵蚀等特点。混凝土框架与钢结构均是借助传统力学和数学公式进行受力计算的,同时在进行抗震设计的时候,均需要设置多道抗震防御体系,这样才可以保证结构的整体性与牢固性;在进行管理的时候,无论是混凝土框架还是钢结构,均需要管理人员具备相应的专业素质与技能,对施工中可能出现的风险、隐患、质量问题等进行预防与处理,保证施工的顺利完成。当然,两者之间也存在着明显的区别:首先,材质方面。混凝土框架主要就是由钢筋与混凝土构成,自重非常大;钢结构主要是由钢构件连接组成,自重比较小。其次,震害结果。根据相关资料显示,混凝土框架震害主要表现为裂缝,局部倒塌,很少出现整栋楼倒塌的情况;钢结构在地震作用下,经常发生失稳、扭曲、变形的情况,并且因为整体性比较差,因此在进行设计的时候,定要对整体性进行充分的考虑。最后,施工管理方面。在实际施工中,对于相同面积的施工,钢结构要比混凝土框架施工快;在现场施工的时候,混凝土框架施工需要进行现场支模浇筑,进行预制构件工厂加工的情况不多,而钢结构需要在工厂加工很多的预制构件,之后运输至施工现场,进行相应的安装与焊接。除此之外,针对工程造价而言,钢结构也要比混凝土框架低一些,在进行实际施工时,可以根据市场情况,进行适当的选择。

2加建工程的现状

我国加建设计起步比较晚,与世界先进国家之间存在着一定的差距。随着社会的不断发展与进步,科学技术水平的不断提高,加建工程得到了很大的发展空间,并且在我国各地都开展了一些旧房挖潜、改造、加建等工程,并且在上海、重庆、广州、贵阳、昆明等地都将旧房改造工程列入到了城市规划项目当中,颁布了相应的文件与规章制度。由此可以看出,我国加建工程得到了很大的发展空间。1)由以往的单个房屋加建发展为成片住宅区的加建工程;2)各种新材料、新工艺应用到了加建工程当中;3)轻钢结构加建技术得到了深入的分析与研究,并且在加建工程中得到了广泛的应用。

3钢结构加建的优缺点

开展钢结构加建工程的时候,具有以下优点:1)节约土地,提高土地面积的使用效率,缩短建设工期;2)因为钢结构的自重比较轻,因此,加建部分的荷载作用对原结构的影响非常小,不需要单独对地基进行加固处理,这样不仅可以减少工作量,还可以缩短工期,节省部分施工成本;3)钢结构具有较强的多样性,在进行加建的时候,可以充分发挥空间的优势,降低对原建筑结构的影响;4)钢结构加建的适用范围比较广,不仅可以对房屋建筑进行加建,还可以对工业建筑进行加建,因此,在建筑加建工程中得到了广泛的应用。当然,其也存在着一些缺点:1)在进行钢结构加建之后,其整体建筑结构就会呈现一种上柔下刚、上轻下重的质量与刚度分布,导致建筑整体性较差,缺乏一定的抗震性能;2)钢结构耐久性较差,在进行加建的时候,需要进行防腐、防火等措施的考虑,这样就会增加一些建筑材料的使用,此时不仅会涉及到原材料的质量问题,还要考虑原材料的成本问题,因此,存在着一定的不足。

4混凝土框架顶层加建钢结构设计

1)楼板设计。在设计楼板的时候,现阶段一般选用的都是现浇灌技术。目前,现浇灌技术是楼板设计中最为常用与有效的方法,在采用此种方式进行钢结构施工的时候,可以有效提高建筑结构整体的稳定性、牢固性与安全性。同时,在钢结构施工中,此种方法可以对出现的问题进行灵活的处理与调整,根据实际情况,提出有效的解决办法,保证楼板设计与施工的顺利进行,确保建筑工程的整体施工质量。2)梁设计。在进行梁设计的时候,一定要结合国际设计标准与实际设计情况,制定合理、科学的钢构设计要求:首先,在进行梁设计的时候,一定要保证其截面宽度不会低于200mm,同时宽度与高度之间的比值不要超过4。其次,在梁设计中必然要使用一些钢筋,对其使用钢筋也要进行一定的规定,保证梁结构具有一定的硬度与抗震性能,进而确保建筑工程整体结构的牢固性与安全性。最后,在设计扁梁的时候,一定要保证梁中线和柱中线重合,采用双向布置结构。同时对扁梁进行严格的计算与设计,保证其结构的合理性与科学性,增强建筑工程整体结构的稳定性。3)柱设计。在进行柱设计的时候,一定要保证其截面符合设计标准:通常情况下,柱截面宽度与高度均不可低于300mm,柱直径一定要超过350mm,截面短边与长边的比值不可以超过3,柱纵向钢筋配比不可以低于0.2%等。在设计柱的时候,一定要严格遵照以上要求,这样才可以保证柱设计的合理性与科学性,同时增强钢结构的稳定性,保证建筑工程施工的顺利完成。4)基础承载重量构件设计。在进行基础承载重量构件设计的时候,一定要综合考虑各方面的因素,结合建筑负荷、结构形式、施工状况等,加强基础设计的合理性与科学性,使其达到建筑工程整体设计要求。针对设计不合理、不符合要求的部分,一定要进行相应的修改,保证其设计的合理性与科学性,这样才可以保证建筑工程整体的施工质量。

5结语

第4篇

关键词:高层建筑;预应力;混凝土板式;转换层结构;设计

现代社会经济不断发展进步,社会群体对高层建筑工程的设计效果以及建设质量也提出了更高的要求,预应力混凝土板式转换层结构作为高层建筑中的重要组成部分,受到社会的高度重视。为进一步满足用户的多元需求,促进高层建筑实际功能的有效发挥,应当充分做好预应力混凝土板式转换层结构设计工作,以保证建筑的整体性,进一步改善高层建筑整体设计效果。

1预应力混凝土板式转换层结构的优点

一是预应力混凝土板式转换层结构能够在一定程度上改善建筑整体结构抗裂性能,提高高层建筑整体质量。通过研究可知,在采用预应力混凝土板式转换层结构后,高层建筑转换层结构的抗裂性得到明显改善,裂缝发生的几率明显降低,为高层建筑质量控制打下良好的基础。二是预应力混凝土板式转换层结构能有效改善转换层结构的抗冲切能力,且便于施工操作,一定程度上降低了施工难度。三是预应力混凝土板式转换层结构能够促进混凝土板中内部压力均匀分布,便于高层建筑建设过程中对不同体积的混凝土内部收缩拉力进行科学化控制,减少混凝土内部裂缝发生几率,切实提高了混凝土浇筑质量,提高转换层抗震性能,确保高层建筑的使用功能得到最大程度的发挥。

2预应力混凝土板式转换层结构的设计原则与设计方法

2.1设计原则

在高层建筑预应力混凝土板式转换层结构设计过程中,应当充分考虑高层建筑功能需求,对混凝土板式转换层结构进行灵活布置,调整好上下剪切刚度,确保其满足设计要求,对转换层结构设计质量进行科学化控制。在基础上应当依照建筑物高度方向设置转换层结构,将其分为三种布置形式,分别是分段布置、间隔布置以及在建筑物顶部设置。在预应力混凝土板式转换层结构设计过程中,应当结合工程项目的实际情况在上述布置方式中加以合理选取,依据实际情况进行合理选择,最大程度上避免高层建筑物出现整体刚度不足而影响转换层结构稳定性的情况。在设计中应当遵循一定设计原则,确保转换层与加强层和设备层共同设置,从而全面提高预应力混凝土板式转换层结构设计水平。

2.2设计方法

2.2.1设计计算。首先对预应力混凝土板式转换层结构参数进行计算分析,根据计算结果,适宜将其设置在转换层的下面,同时可以采用等效交叉梁系方法计算实体厚板,一般情况下等效交叉梁单侧宽度小于板厚,一般为两个支承距离的一半。其次应对厚板的具体荷载进行计算,按照实际柱、墙,将支座的各项参数输入即可。再次由于三维单元计算方法精度较高,时间相对较短,所以采用此种方式对厚板的局部参数进行计算,在计算过程中,其主要形式为直角合格,所以还需要绘制网格,绘制过程中,应保证网格的长、宽、高的量级相同,并对尺寸相近的单元进行模式划分。

2.2.2结构平面布置。转换层结构形式有很多种,包括板式转换层、梁式转换层、箱式转换层以及桁架式转换层等等,在结构平面布置过程中,应根据建筑工程的实际情况,合理选择转换层结构形式。在所有转换层结构中,板式结构层具有结构布置简单、灵活等,缺点在于板的自重较大、材料消耗大;梁式转换层有点在于施工简单、传力明显,缺点在于空间受力复杂、高度受到限制等;箱式转换层的优点在于刚度大、整体工作效果好,缺点在于施工较为复杂、施工成本较高;桁架式转换层弯矩、剪力相对较小,缺点在于施工复杂。因此通过对不同转换层结构形式的分析,结合工程实际情况,采取板式转换层结构形式。

2.2.3结构竖向布置。对于结构竖向布置,关键在于控制好建筑的侧向刚度,应遵循下大上小的原则,并严格控制转换层上下等效侧向刚度比。在设计过程中,应对转换层的上部和下部分别进行强化和弱化,为达到这一目的,其具体做法如下:对于转换层下部结构,如剪力墙、核心筒部分,应增加其厚度,同时在条件允许的情况下,应使其底部剪力墙不开洞;采取有效措施,提高底部柱的强度等级,与此同时剪力墙的强度也应有所提高。

3高层建筑预应力混凝土板式转换层结构设计的要点

3.1转换层下部区域结构的刚度分布。在预应力混凝土板式转换层结构设计过程中,下部区域结构的刚度分布是转换层结构设计中的重点内容,一旦设计刚度较大,会导致地震反应发生,结构竖向刚度急速膨胀,使得转换层上下受力不均衡,严重影响转换层结构稳定性与经济性。一旦刚度过小,在沉降差作用下会产生次应力,导致配筋增加。此种情况下,为切实提高高层建筑预应力混凝土板式转换层结构设计要点,应当充分做好转换层下部区域结构的刚度分布,充分考虑竖向刚度变化情况,并全面衡量抗震设计相关内容,确保转换层主体结构剪切刚度满足高层建筑相关技术标准,通过提高混凝土强度或增加剪力墙等方式来保证刚度分布的均匀性。应当注意的是,在转换层下部区域结构刚度分布中,应当高度重视筒体安全设计等相关工作,切实提高高层建筑的抗震性能。尤其是剪力墙的运用应当保证刚度均衡,最大程度上避免建筑物变形而影响高层建筑结构稳定性。3.2剪力墙作用于结构上下部分的刚度传输。在预应力混凝土板式转换层结构设计中,为促进不同结构之间内力的有序传递,应当在结构上部对刚度分布进行科学化控制,通过减少剪力墙的方式缩短墙肢,从而促进刚度顺利传输。与此同时,应当适度增大下部刚度,在确定剪力墙数量后对其进行优化布置,保证对称分布,从而促进刚度传输的均匀性和有效性。3.3合理确定转换层结构的刚度值。在进行转换层结构设计的时候,一个重要的值就是转换层结构的刚度值。一旦出现刚度超标的现象,地震反应就会出现,竖向刚度会急剧增大,使得上下层不利于受力和均衡性,另外,材料的需要增加,经济上比较不合理。如果转换层的刚度较小,那么竖向构件之间会出现沉降差,在结构与构件之间形成次应力。此时,就要选择合适的次梁截面尺寸,保证其刚度达标。

总而言之,预应力混凝土板式转换层结构在高层建筑设计中的合理应用,能够在一定程度上改善结构性能,从整体上提高高层建筑设计效果。为保证预应力混凝土板式转换层结构设计的合理性,应当结合高层建筑工程项目的实际特点开展综合分析,掌握好设计要点,对转换层相关参数进行合理计算,全面提高高层建筑预应力混凝土板式转换层结构设计水平,推动高层建筑行业的稳定健康发展。

作者:张晓妍 单位:大庆市规划建筑设计研究院

参考文献

第5篇

【关键词】钢筋混凝土;地基与基础设计;概念设计;问题

前言

结构概念设计是保证结构具有优良抗震性能的一种方法。选择对抗震有利的结构方案和布置,采取减少扭转和加强抗扭刚度的措施,设计延性结构和延性结构构件,分析结构薄弱部位,并采取相应的措施,避免薄弱层过早破坏,防止局部破坏引起连锁效应,避免设计静定结构,采取二道防线措施等每个设计步骤中都贯穿了结构概念设计内容。

一、概念设计

强调结构概念设计的重要性,是要求建筑师和结构师在建筑设计中应特别重视规范、规程中有关结构概念设计的各条规定,设计中不能陷入只凭计算的误区。以下一些问题值得探讨:

1.在结构体系上,应重视结构的选型和平、立面布置的规则性,择优选用抗震和抗风性能好且经济合理的结构体系。结构应具有明确的计算简图和合理的传递地震力途径,结构在两个主轴方向的动力特性宜相近。

2.一般工程都仅进行小震下的弹性设计,而用概念设计和构造措施保证“中震可修,大震不倒”,但没有验算和证实,那么建筑物是否真能做到“中震可修,大震不倒”,无人知晓。对抗震设防烈度较高地区的特别重要建筑和超限建筑,审查专家往往会提出更具体的设计指标:(1)中震或大震不屈服设计;(2)中震或大震弹性设计;要求设计单位确保实现“三水准”的设计目标。

3.建筑物是应当有个性的,不应当千面一物。基于性能的抗震设计理念的特点是,使抗震设计从宏观定性的目标向具体量化的多重目标过渡,允许按照业主的要求选择不同层次的抗震性能目标作为设计者的设计依据。例如业主可以提出更高的抗震设防要求,按中(大)震不屈服设计或中(大)震弹性设计,保证重要的建筑物在大地震作用下不影响正常使用功能,而不仅仅是不坏不倒。

4.水平地震作用是双向的,结构布置应使结构能抵抗任意方向的地震作用,应使结构沿平面上两个主轴方向具有足够的刚度和抗震能力;结构刚度选择时,虽可考虑场地特征,选择结构刚度以减少地震作用效应,但是也要注意控制结构变形的增大,过大的变形将会因P-Δ效应过大而导致结构破坏;结构除需要满足水平方向刚度和抗震能力外,还应具有足够的抗扭刚度和抵抗扭转震动的能力。

5.在一个独立的结构单元内,应避免应力集中的凹角和狭长的缩颈部位;避免在凹角和端部设置楼、电梯间;减少地震作用下的扭转效应。竖向体型尽量避免外挑,内收也不宜过多、过急,结构刚度、承载力沿房屋高度方向不宜均匀、连续分布、避免造成结构的软弱或薄弱的部位。应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载力。根据具体情况,结构单元之间应遵守牢固连接或有效分离的方法。高层建筑的结构单元应采取加强连接的方法。

二、结构选型问题

对于高层结构而言,在工程设计的结构选型阶段,应该注意以下几点:

1、结构的规则性问题

新旧规范在这方面的内容出现了较大的变动,新规范在这方面增添了相当多的限制条件,例如:平面规则性信息、嵌固端上下层刚度比信息等,而且,新规范采用强制性条文明确规定“建筑不应采用严重不规则的设计方案。”因此,结构工程师在遵循新规范的这些限制条件上必须严格注意,以避免后期施工图设计阶段工作的被动。

2、结构的超高问题

在抗震规范与高规中,对结构的总高度都有严格的限制,尤其是新规范中针对以前的超高问题,除了将原来的限制高度设定为A 级高度的建筑外,增加了 B 级高度的建筑,因此,必须对结构的该项控制因素严格注意,一旦结构为B级高度建筑甚或超过了B级高度,其设计方法和处理措施将有较大的变化。在实际工程设计中,出现过由于结构类型的变更而忽略该问题,导致施工图审查时未予通过,必须重新进行设计或需要开专家会议进行论证等工作的情况,对工程工期、造价等整体规划的影响相当巨大。

3、嵌固端的设置问题

由于高层建筑一般都带有二层或二层以上的地下室和人防,嵌固端有可能设置在地下室顶板,也有可能设置在人防顶板等位置,因此,在这个问题上,结构设计工程师往往忽视了由嵌固端的设置带来的一系列需要注意的方面,如:嵌固端楼板的设计、嵌固端上下层刚度比的限制、嵌固端上下层抗震等级的一致性、在结构整体计算时嵌固端的设置、结构抗震缝设置与嵌固端位置的协调等等问题,而忽略其中任何一个方面都有可能导致后期设计工作的大量修改或埋下安全隐患。

4、短肢剪力墙的设置问题

在新规范中,对墙肢截面高厚比为5~8的墙定义为短肢剪力墙,且根据实验数据和实际经验,对短肢剪力墙在高层建筑中的应用增加了相当多的限制,因此,在高层建筑设计中,结构工程师应尽可能少采用或不用短肢剪力墙,以避免给后期设计工作增加不必要的麻烦。

三、地基与基础设计问题

地基与基础设计一直是结构工程师比较重视的方面,不仅仅由于该阶段设计过程的好与坏将直接影响后期设计工作的进行,同时,也是因为地基基础也是整个工程造价的决定性因素,因此,在这一阶段,所出现的问题也有可能更加严重甚至造成无法估量的损失。在地基基础设计中要注意地方性规范的重要性问题。由于我国占地面积较广,地质条件相当复杂,作为国家标准,仅仅一本《地基基础设计规范》无法对全国各地的地基基础都进行详细的描述和规定,因此,作为建立在国家标准之下的地方标准。地方性的“地基基础设计规范”能够将各地方的地基基础类型和设计处理方法等一些成熟的经验描述和规定得更为详细和准确,所以,在进行地基基础设计时,一定要对地方规范进行深入地学习,以避免对整个结构设计或后期设计工作造成较大的影响。

四、结构计算与分析问题

在结构计算与分析阶段,如何准确,高效地对工程进行内力分析并按照规范要求进行设计和处理,是决定工程设计质量好坏的关键。由于新规范的推出对结构整体计算和分析部分相当多的内容进行了调整和改进,因此,结构工程师也应该相当地对这一阶段比较常见的问题有一个清晰的认识。

1、结构整体计算的软件选择。目前比较通用的计算软件有:SATWE、TAT、TBSA或ETABS、SAP等,但是,由于各软件在采用的计算模型上存在着一定的差异,因此导致了各软件的计算结果有或大或小的不同。所以,在进行工程整体结构计算和分析时必须依据结构类型和计算软件模型的特点选择合理的计算软件,并从不同软件相差较大的计算结果中,判断哪个是合理的、哪个是可以作为参考的,哪个又是意义不大的,这将是结构工程师在设计工作中首要的工作。

2、是否需要地震力放大,考虑建筑隔墙等对自振周期的影响。振型数目是否足够。在新规范中增加一个振型参与系数的概念,并明确提出了该参数的限值。由于在旧规范设计中,并未提出振型参与系数的概念,或即使有该概念,该参数的限值也未必一定符合新规范的要求,因此,在计算分析阶段必须对计算结果中该参数的结果进行判断,并决定是否要调整振型数目的取值。多塔之间各地震周期的互相干扰,是否需要分开计算。

3、非结构构件的计算与设计。在高层建筑中,往往存在一些由于建筑美观或功能要求且非主体承重骨架体系以内的非结构构件。对这部分内容,尤其是高层建筑屋顶处的装饰构件进行设计时,由于高层建筑的地震作用和风荷载均较大,因此,必须严格按照新规范中增加的非结构构件的计算处理措施进行设计。

第6篇

关键词:钢筋混凝土; 建筑结构;问题

中图分类号:TU375文献标识码:A文章编号:

引言:

随着我国经济的飞速发展,城市面貌日新月异,一栋栋高楼大厦拔地而起。随之建筑功能的不断丰富,新颖的造型,致使工程设计越来越复杂,但目前的设计周期普遍偏短,也使设计文件中普遍存在某些质量问题,应该引起我们的重视。

1.地基与基础设计过程中存在的问题

1.1柱下独立基础带梁板式的地下室底板设计中,地下室底板设计中,容易忽视因建筑物沉降所引起的附加应力的影响。因为实际上整个地下室底板与柱下独立基础在上部荷载作用下,将会一起发生沉降变形,共同受力,如未考虑因此产生的附加应力,对底板而言是偏于不安全的,有可能会导致地下室底板承载能力不足而开裂。尤其对于采用天然地基的情况时,其影响则更为显著。对于总沉降量较小的工程,可考虑在地下室底板与持力层之间采取褥垫处理措施,当然,是否采用,还要综合考虑其他因素。另外,对于地下水位季节性变化较大的地区,应考虑高低两种不同水位对地下室底板的不同影响,求出包络图,再做配筋设计。

1.2天然地基锥体独立基础设计问题,有的基础设计锥体斜面坡度大于1:3,该锥体部分砼很难振捣密实,现场施工往往是砼自然堆上,采用铲子或抹灰刀拍捣成形,其锥体部分的砼很难达到设计强度要求。因此建议优先采用阶梯形独立基础,利于施工,才能更好地保证施工质量。

1.3柱下独立基础之间的拉梁,如同时又是首层维护墙的承重梁的时候,不应该再简单地按拉梁进行设计。而且在考虑荷载时,要考虑梁上皮以上土扩散角之内的土重。

1.4对于有地下室的建筑,当地下水位较高时,在室外地坪之下的结构部分,外轮廓形状应尽量简洁,这样有利于建筑防水的施工。尤其对于柱下承台的形式,更为明显。此时,由于柱下承台的影响,基槽地模形状很复杂,有很多的阴阳角和放坡,即加大了防水施工的难度,有加长了施工时间,都不利于保证质量,并且还增加工程造价。对于这种情况下,我建议大家考虑反承台法,即统一地下室底板和承台的下皮标高相同,承台需要加厚部分向上作,然后地下室内部作滤水层和覆土等地面做法。这种做法的优点是,基槽地模形状很简单,方便施工,利于施工质量得保证,同时也缩短了施工时间。并且,内部的覆土重量也平衡掉了部分作用在底板上的水浮力,减小配筋,这种自相平衡的思路最科学。同时也提高了建筑物的抗倾覆能力。

1.5地下室底板和外墙配筋计算时,往往假设条件与实际情况不符。例如地下室外墙配筋计算:有的工程外墙配筋计算中,凡外墙带扶壁柱的,不区别扶壁柱尺寸大小,一律按双向板计算配筋,而扶壁柱按地下室结构整体电算分析结果配筋,又未按外墙双向板传递荷载验算扶壁柱配筋。按外墙与扶壁柱变形协调的原理分析,其外墙竖向受力筋配筋不足、扶壁柱配筋偏少、外墙的水平分布筋有富余量。建议:除了垂直于外墙方向有钢筋砼内隔墙相连的外墙板块或外墙扶壁柱截面尺寸较大(如高层建筑外框架柱)之间外墙板块按双向板计算配筋外,其余的外墙宜按竖向单向板计算配筋为妥。

2.结构计算与分析

在结构计算与分析阶段,如何准确,高效地对工程进行内力分析并按照规范要求进行设计和处理,是决定工程设计质量好坏的关键。由于新规范的推出对结构整体计算和分析部分相当多的内容进行了调整和改进,因此,结构工程师也应该相当地对这一阶段比较常见的问题有一个清晰的认识。

2.1结构整体计算的软件选择。目前比较通用的计算软件有:SATWE、TAT、TBSA或ETABS、SAP等,但是,由于各软件在采用的计算模型上存在着一定的差异,因此导致了各软件的计算结果有或大或小的不同。所以,在进行工程整体结构计算和分析时必须依据结构类型和计算软件模型的特点选择合理的计算软件,并从不同软件相差较大的计算结果中,判断哪个是合理的、哪个是可以作为参考的,哪个又是意义不大的,这将是结构工程师在设计工作中首要的工作。否则,如果选择了不合适的计算软件,不但会浪费大量的时间和精力,而且有可能使结构有不安全的隐患存在。

2.2是否需要地震力放大,考虑建筑隔墙等对自振周期的影响。该部分内容实际上在新老规范中都有提及,只是,在新规范中根据大量工程的实测周期明确提出了各种结构体系下高层建筑结构计算自振周期折减系数。

2.3振型数目是否足够。在新规范中增加一个振型参与系数的概念,并明确提出了该参数的限值。由于在旧规范设计中,并未提出振型参与系数的概念,或即使有该概念,该参数的限值也未必一定符合新规范的要求,因此,在计算分析阶段必须对计算结果中该参数的结果进行判断,并决定是否要调整振型数目的取值。

2.4多塔之间各地震周期的互相干扰,是否需要分开计算。一段时间以来,大底盘,多塔楼的高层建筑类型大量涌现,而在计算分析该类型高层建筑时,是将结构作为一个整体并按多塔类型进行计算,还是将结构人为地分开进行计算,是结构工程师必须注意的问题。如果多塔间刚度相差较大,就有可能出现即使振型参与系数满足要求,但是对某一座塔楼的地震力计算误差仍然有可能较大,从而便结构出现不安全的隐患。

2.5非结构构件的计算与设计。在高层建筑中,往往存在一些由于建筑美观或功能要求且非主体承重骨架体系以内的非结构构件。对这部分内容,尤其是高层建筑屋顶处的装饰构件进行设计时,由于高层建筑的地震作用和风荷载均较大,因此,必须严格按照新规范中增加的非结构构件的计算处理措施进行设计。

3.梁侧纵向钢筋的配置

3.1由于目前电算程序在结构构件分析时尚不能考虑现浇楼板对梁扭转的影响,而是由程序给出一个梁扭距折减系数,合理选用梁扭距折减系数对控制梁的扭距是很重要的,一般情况可取0.4-0.6。

3.2对跨度较大的次梁支承于主梁上时,次梁的支承端会对主梁产生较大的扭距,这时可在电算程序中指定该次梁的端支座为绞接。这种方法对解决梁在受剪扭情况下的超筋超限是非常有效的。

3.3有时虽然做了以上调整,但梁的抗扭纵筋面积仍然较大。此时应将抗扭纵筋面积分摊一部分到梁的四根角筋,其余部分面积按梁侧腰筋设置,梁腰筋直径仍以Φ12~Φ16为宜。

4.混凝土施工方面出现的问题

为满足结构承载的要求,节约工程造价,通常在结构设计中对上、下柱或柱与粱扳的混凝土选择不同强度等级,然而未对结构的点区域的混凝土强度作出明确说明。按施工规范要求,当梁柱的混凝土强度等级不同时,节点处应按强柱弱梁的原则,节点区域的混凝土强度等级应与柱相同。采用强度较高的混凝土,在梁柱交汇处侧面设垂直施工缝是不符合规范要求的,混凝土浇筑时,应按图在梁柱接头周边用钢网或小板定位,并先浇筑梁柱接头的混凝土,随后浇筑梁板混凝土,这样既不便于施工,其质量也得不到保证。因此,在结构设计时应作综合考虑,根据实际情况将柱与梁板选择相同的混凝土强度等级,以方便施工。

5.结语

对于建筑钢筋混凝土框架结构的施工,有关规范虽已有详细规定,但仍有若干问题没有明确具体作法。这些问题在规范条文中没有具体规定,也往往易被忽视,给工程质量留下隐患。

参考文献:

[1]叶菁. 钢筋混凝土框架结构设计要点及注意事项[J]. 甘肃科技纵横, 2010, (05).

第7篇

关键词:钢筋混凝土高层结构;结构设计;剪力墙

中图分类号:tu37 文献标识码:a

随着改革开放以来我国国民经济整体的迅速发展,国内各个行业都得到了巨大的发展,整体的行业水平稳步提高,其中,建筑行业的提升水平是比较快的,建筑行业的发展带来了建筑形式,建筑技术,建筑材料等的多元化变革,其中钢筋混凝土因为安全系数高,抗震性能好等诸多优点而使用广泛,其中高层建筑发展更为迅速,设计思想也在不断更新,结构体系日趋多样化,建筑平面布置与竖向体型也越来越复杂,这就给高层建筑结构分析和设计提出了更高的要求。如何高效、准确地对高层结构体系进行内力分析,是结构工程师设计高层建筑结构时需要解决的重要课题。本文通过对高层建筑结构设计过程中经常遇到的问题进行分析,为高层建筑结构设计提供计算方法及理论依据。

1 建筑设计

建筑不同于普通商品,尤其是高层建筑,很多因为是地理标志性建筑。什么是高层建筑呢?10层及10层以上或房屋高度大于28m的住宅建筑和房屋高度大于24m的其他高层民用建筑。在建筑外观上,我们应该多选择一些新颖的建筑样式,同时又要注意其抗震设计、抗风设计等基础要素。但是建筑也不能盲目的标新立异,结构上应该选择规则性强一些的,不论是平面或者立体都应该尽量遵循这个原则。而且建筑在弹性设计上,尽量要满足延展性的需求。这种概念设计的强调是对建筑师的必须要求,建筑设计师一定要重视各种规范规定,千万不要陷入只管设计不管计算的误区。

2 结构设计

2.1 剪力墙底部加强部位墙厚的确定

抗震设计时,剪力墙的底部加强部位包括底部塑性铰范围及其上部的一定范围,其目的是在此范围内采取增加边缘构件箍筋和墙体横向钢筋等必要的抗震加强措施避免脆性的剪切破坏,改善整个结构的抗震性能。《高建筑混凝土结构技术规程》jgj3-2010(下简称《高规》)7.1.4条规定,抗震设计时,一般剪力墙结构底部加强部位的高度可取墙肢总高度的1/10和底部两层二者的较大值。部分框支剪力墙结构底部加强部位的高度应符合《高规》10.2.2条的规定,底部加强部位的高度应从地下室顶板算起,当结构计算嵌固端位于地下一层底板或以下时,底部加强部位宜延伸到计算嵌固端。《建筑抗震规范》gb50011(以下简称<抗规》)及《高规》规定了剪力墙底部加强部位墙厚的取值。其中,考虑到高层建筑结构的重要性,《高规》对墙厚的取值规定得更为严格。一般情况下,高层建筑结构底部加强部位的剪力墙截面厚度k取法如下:一、二级抗震等级时取层高或剪力墙无支长度的1/16,并且满足bw≥200mm;三、四级抗震等级时,k取层高或剪力墙无支长度的1/20,并且满足k≥160mm。但对于墙底轴力较小且结构层高相对较高的剪力墙而言。其截面厚度按上述方法取值则显得不是很经济合理。因此具体工程设计时,剪力墙截面厚度bw可适当减小但必须按下式计算墙体的稳定性。

公式中:q为作用于墙顶组合的等效竖向均布荷载设计值;ec为剪力墙混凝土弹性模量;t为剪力墙墙肢截面厚度;lo墙肢计算长度。

2.2 结构的超高问题

在抗震规范与高规中,建筑物的高度控制是非常严格的,而在新规范中这一点重新进行了界定,除了将原来的限制高度设定为a级高度的建筑外,增加了b级高度的建筑。因此,所以在进行设计的时候一定不可以超越其应属范围,b级建筑物就应该控制在b级规定范围之内,一旦超过了,那么无论是设计还是施工都要全部进行重新设定。在现实情况中这类问题曾经出现过,结果导致审查时难以通过。

2.3 短肢剪力墙的设置问题

短肢剪力墙使用虽然具有一定的的作用,但是在使用数量上一定要严格参照规范,《高规》7.1.8规定抗震设计时,高层建筑结构不应全部采用短肢剪力墙,b级高度高层建筑以及抗震设防度为9度的a级高度层建筑,不宜布置短

肢剪力墙,不应采用具有较多短肢剪力墙的剪力墙结构。当采用具有较多短肢剪力墙的剪力墙结构时,应符合下列规定:(1)在规定的水平地震作用下,短肢剪力墙承担的底部倾覆力矩不宜大于结构底部总地震倾覆力矩的50%;(2)房屋适用高度应比本规程表3.3.1-1规定的剪力墙结构的最大适用高度适当降低,7度、8度(0.2g)和8度(0.3g)时分别不应大于100m,80m和60m。短肢剪力墙是指截面厚度不大于300mm、各肢截面高度与厚度之比的最大值大于4但不大于8的剪力墙。

2.4 基础设计

在地基基础设计中要注意地方性规范的重要性问题。由于我国占地面积较广,地质条件相当复杂,作为国家标准,仅仅一本《地基基础设计规范》无法对全国各地的地基基础都进行详细的描述和规定。因此,作为建立在国家标准之下的地方标准,地方性的“地基基础设计规范”能够将各地方的地基基础类型和设计处理方法等一些成熟的经验描述和规定得更为详细和准确。所以,在进行地基基础设计时,一定要对地方规范进行深入地学习,以避免对整个结构设计或后期设计工作造成较大的影响。

3 计算与分析

3.1 计算模型的选取

对于常规结构,可采用楼板整体平面内无限刚假定模型;对于多塔或错层结构,可采用楼板分块平面内无限刚模型;对于楼板局部开大洞、塔与塔之间上部相连的多塔结构等可采用楼板分块平面内无限刚,并带弹性连接板带模型;而对于楼板开大洞有中庭等共享空间的特殊楼板结构或要求分析精度高的高层结构则可采用弹性楼板模型。

3.2 抗震等级的确定

对常规高层建筑,与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级;对于地下室部分,当地下室顶板作为上部结构的嵌固部位时,地下一层的抗震等级应与上部结构相同,地下一层以下的抗震等级可逐层降低一级,但不低于四级,地下室中超出上部主楼相关范围且无上部结构的部分,其抗震等级可根据具体情况采用三级或四级。

结语

钢筋混凝土高层结构作为现代化城市发展的一种客观成果,引领着我国建筑行业整体的发展水平。在设计方面,钢筋混凝土高层结构一定要充分考虑到各种潜在的因素,既要让建筑漂亮美观大方,也要注意建筑的安全性能,毕竟后者是所有建筑的立足之本。在做好相关工作的基础上,希望我国的建筑水平能迎来更好的发展。

参考文献

[1]jgj3-2010,高层建筑混凝土结构技术规程[s].

第8篇

关键词:建筑工程;混凝土结构;问题;对策

中图分类号:TU198文献标识码: A

前言

近年来在我国建筑行业的发展过程中,混凝土结构设计作为其中重要的内容,它的质量问题不仅对建筑结构的稳定性和可靠性有着严重的影响,还使得建筑物的功能无法得到充分的发挥。因此我们在对建筑混凝土结构设计时,就要对设计技术进行严格要求,只有这样才能使得工程施工的质量得到进一步的保障。但从当前我国建筑工程混凝土结构设计的实际情况来看,其中还存在着许多的问题,这就对建筑结构的稳定性有着严重的影响,因此我们就需要采用相应的技术手段,来对其进行处理,从而保障建筑工程的施工质量。

1、关于结构计算与分析阶段中的常见问题及处理对策

混凝土结构设计中计算与分析阶段的常见问题。目前的工程建设中,大都是通过计算机软件进行结构设计等工作,这样不仅使得建筑混凝土结构设计的准确性和可靠性得到进一步的保障,还满足了现代化建筑结构设计的相关要求。但在不同的建筑工程施工项目中,其软件系统的应用效果也就存在着一定的差异,因此我们在建筑设计阶段中,就需要根据工程施工的实际情况,对混凝土结构设计计算和分析方式进行相应的分析,从而保障建筑工程的施工质量。

设计师们在对建筑混凝土结构进行设计的过程中,除了要对计算软件的特点进行相应的比较研究以外,还要对建筑设计的相关内容进行全面了解,从而根据工程施工的实际情况,采用相应的技术手段对其进行处理,以确保工程的施工质量。而且在施工的过程中,设计人员也要根据工程施工的相关要求,对混凝土结构的尺寸大小进行严格的控制,并采用相应的设计技术方法对其进行处理,以确保建筑混凝土结构的质量和强度得到有效的控制。

我们还要对施工材料的质量进行有效的控制,以避免在建筑混凝土结构设计的过程中,其质量无法满足工程设计的相关要求。高层建筑结构设计原则。是高层建筑结构设计过程中需要注意的重要标准和准则。也是高层建筑设计单位提高高层建筑结构设计质量与效益的重要保障。只有在一定的高层建筑结构设计原则支持下。才可以进行建筑结构设计,总体来讲。高层建筑结构设计原则主要包括以下几点。

建筑结构基础方案需要配置完善的施工地质调查报告。最大程度的发挥建筑物地基的潜力。必要的情况下设计人员还需要对地基的变形做好相应的演算。另一方面。设计单位还需要对建筑物进行综合性分析。尤其是对于建筑物负荷以及上部结构类型。通过对这些综合性分析。最终选定最适合的基础方案。从而可以在提高设计质量的基础上提高设计单位经济效益。一条基本原则是设计单位经常忽略的。那就是结构措施完善原则。设计单位在进行建筑物结构的设计时。 需要注意结构组件的延展性。例如建筑物中钢筋的锚固长度等。同时。设计单位还需要注意建筑物薄弱环节以及建筑物本身温度对于建筑物组件的影响。对于这两方面的问题。在实际的设计过程中。需要遵循$强柱弱梁%强剪弱弯以及强压弱拉&的基本原则。只有这样才可以提高高层建筑结构设计的安全性以及牢靠性。

2、关于混凝土结构设计中,地基与基础设计中常见问题及处理对策

在建筑工程施工中,基础结构的设计有着十分重要的意义,这也是保障混凝土结构施工质量的主要内容。但是我们在对其地基基础结构进行施工的过程中。其建筑物时常会出现沉降的现象,这就对建筑结构的稳定性和可靠性有着一定的影响。而且如果其基础结构的稳定性存在着一定的问题,还可能会破坏了建筑基础底板的质量,为此我们就需要采用相应的技术手段来对其进行处理,从而保障建筑结构的稳定性。

针对不同程度的沉降量的工程,地基与基础设计所采取的处理措施也是不同的。对于沉降量相对较小的工程,可以采用褥垫的方法处理,也就是说在地下室与持力层之间建筑一层保护带,在沉降作用发生时,保护层会承受一部分的附加应力,防止地下室地板因受力过度而开裂或沉降。同时,对天然地基也起到了养护的作用。这样,地基保养便从根本上达到了解决。对于有地下室的建筑,地下水的季节性变化也是影响地下室底板的重要因素。当降水期来临,地下水位升高。底板的防水设计得尤为重要。一般的地下室建筑,由于柱下承台的形式比较复杂,其基槽地膜形状也是较为繁复的,建筑复杂的外在轮廓一方面加大了防水设计的难度,另一方面,增加了工程造价。很多设计工程师仅仅考虑到建筑物当时当地的地理状况,忽视对降水这一因素的考虑,而导致在地下室底板设计时对防水工程的不全面。不科学。在室外地坪之下的结构部分,外轮廓形状设计应尽量简洁,这样有利于建筑防水的施工。另外,在具体的设计方略上,采用统一地下室底板和柱下承台的下标高的反承台法。这一方法的具体做法:在地下室内部做滤水层和覆土,同时对柱下承台进行加厚工程的设计。这样一来,基槽地膜形状变得简单,方便施工,缩短了施工时间,从而施工质量也可以得到保证。.

3、关于混凝土上部结构设计中常见问题及处理对策

混凝土上部结构设计中常见的问题解决混凝土上部结构设计中常见问题的对策。由于建筑结构设计过程中难免会需要反复的修改。所以在设计之前很有必要将相应的准备工作做好。进行设计更改的时候。也能有一个调整的余地。一般常用的方法是对结构设计进行建模计算。通过计算机将结构设计中容易出现了问题进行一个周密的预测和估算。在上部结构设计阶段,要考虑建筑物的抗震功能,当遇到中震时,我们应考虑第一级别的剪力墙。在建筑结构设计中。要保障建筑工程的质量。要使得工程造价控制在可接受范围内)这就需要在建筑结构设计上充分考虑投资商的经济效益。

权衡建筑质量和投资回报之间的重要性)所以在设计时。应该尽量的优化结构设计。要始终牢记强柱弱梁强剪弱弯强压弱拉原则。具体来说。设计时要注意测试地基的抗压性%检查支撑架的稳定性%控制钢筋的锚固氏度等方面。只有这样才能使得建筑结构设计的最终效果令人满意。在进行建筑结构的设计之前。必须要和承包商投资商有一个全面和谐的沟通过程。主要是来讨论建筑结构的类型以及施工的具体要求。 这样将会有利于设计人员充分了解本次建筑工程的施工基调。对整个建筑工程的结构设计思路有一个明确的方向。 对于不同的基础形式,所出现的问题和解决办法也各不相同。常见问题如下:对于地下车库中的柱下独立基础,基础埋深的计算方法因各地方基础规范有不同的规定,对基础底面积大小影响较大。当地库底板厚度满足一定要求的情况下,独立基础的埋深可取自室外地面及室内地面计算埋深的平均值。对于平板筏板基础,上部结构刚度、板底地基土的基床系数等都对筏板的计算有一定影响。设计时应将上部结构刚度传给基础,考虑基础与上部结构的共同作用,并合理选取基床系数,有效降低基础工程量。另外,基础底板及地下室的外轮廓应尽量简洁,有利于防水工程的施工和降低造价。

结束语

总而言之,在当前我国建筑混凝土结构设计中存在的问题还有很多,这不仅对混凝土结构的稳定性和可靠性有着严重的影响,还降低了建筑工程的效益,因此我们就需要的采用相应的技术手段来对其进行处理,从而保障建筑工程的施工质量。

参考文献:

[1]混凝土结构设计规范(GB500010-2002北京.中国建筑工业出版社.

第9篇

关键词:框排架结构,柱计算长度,初参数法

 

在工业厂房中经常遇见带平台的工业厂房,常见于轻工业厂房及火力发电厂主厂房,此类结构的基本特征为上部为带吊车的排架结构,下部平台为框架结构,常称为框排架结构,其结构基本形式图1,图2所示。论文写作,初参数法。

图1 横向框架布置图

图2 柱网布置图

设计此类结构时,对于结构纵向,结构的基本形式是框架结构,按常规框架计算方法即可实现,而对于结构横向,结构形式为框架和排架两种结构形式的组合,设计时问题就比较复杂,需进行仔细考虑,下文主要就横向框架的计算进行说明。

1.横向框架内力计算

本文按以下简图(图3,图4)进行说明,H1,H2为下部框架的层高,H3为上部排架的下柱的高度,H4为上部排架的上柱高度,本文中把两个边柱称为排架柱,内部柱称为框架柱,实际工程中,有平台梁和排架柱刚接和铰接两种情况,所以给出两种情况下的简图。

图3 计算简图一图4 计算简图二

各种荷载的取值在规范中有比较明确的说明,对于一般设计人员不存在问题,按照弹性方法计算内力,现在的计算机普及,常规设计软件也都可以比较准确的实现。

有了内力计算配筋时,对于排架和框架,梁配筋的计算一致的,而混凝土结构柱的设计现在都基本都习惯再按η-l0法计算,η-l0法在计算时需要设计人员确定各段柱计算长度。混凝土规范明确给出了排架结构和框架结构中柱计算长度的确定方法,两种结构为不同的方法,对于排架和框架组合在一起的结构形式规范则没有给出确定方法,所以计算长度的设计就成为框排架结构设计的关键。论文写作,初参数法。论文写作,初参数法。

2.排架柱计算长度确定

内部框架柱,由于结构形式为规则的框架结构,计算长度按照混凝土结构设计规范《GB50010-2002》的7.3.11条有关框架柱的规定确定取值即可,下面主要说明两边排架柱的计算长度确定,按梁和柱两种不同的连接方式分别进行说明(图3,图4)。论文写作,初参数法。

2.1平台梁与排架柱刚接,简图一(图3)

此时排架柱的H1和H2段,可以认为是底部框架的一部分,可依照混凝土结构设计规范7.3.11条有关框架柱规定进行取值。

对于上部排架,混凝土结构设计规范《GB50010-2002》仅规定了单层厂房排架柱的计算长度,对于本文所讨论的排架柱在使用条件上显然不合适,文献4中对框排架结构,按初参数法对上部排架柱的计算长度进行了计算,最终分析结果建议上柱取3.0,下柱可取2.0。论文写作,初参数法。论文写作,初参数法。在参考文献3中,对于初参数法,进一步分析,修正了初参数法在理论上的缺陷,认为按原初参数法计算的柱的计算长度上柱偏大,综合这两篇文献,设计时建议下柱取2.0,上柱取2.0,排架柱的各段具体计算长度见表1。

相关文章