时间:2023-09-11 17:26:22
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇统计学同质的概念范例。如需获取更多原创内容,可随时联系我们的客服老师。
>> 中日大学校长对世界一流大学的认知 对我国高校学习建设“世界一流大学”的历史思考 西南联大对我国当前建设世界一流大学的启示 NCA―HLC院校认证对中国建设世界一流大学的启示 一流大学的真谛 世界一流大学的理念以及对中国大学理念的反思 世界一流大学学科建设的经验及对我国的启示 一流大学本科改革及其对高中生源质量的新要求 一流大学的“有”与“无” 斯坦福大学创业型大学发展之路对我国高校创建一流大学的启示 世界一流大学探析与启示 一流大学的澡堂狂欢 论一流大学建设的路径转型 一流大学建设的核心任务 关于构建世界一流大学的思考 强化建设一流大学的治理能力 亚洲世界一流大学的师资模式 独特的灵魂才能造就一流大学 世界一流大学是怎样建成的 创建一流大学视域下的一流图书馆建设 常见问题解答 当前所在位置:ltopics/20121011/14721.html。[Bailitop Education Consulting Co.,Ltd.,2014,“What is the first-class university in the United States?”..]
[2]刘承波,2001:《试论世界一流大学概念的模糊性问题》,《教育发展研究》第1期。[Liu Chengbo,2001,“A Brief Study on Concepption of First-class Universities”, Research in Education Development.No.1.]
[3]刘志民、刘川宁,2015:《行业特色型高水平大学的国际标杆探索》,《高等工程教育研究》第5期。[Liu Zhimin and Liu Chuanning,2015,“On the World Benchmark of the High-level Universities with Clear-cut Professional Characteristics”,Research in Higher Education of Engineering, No.1.]
[4]韩立文、程栋显、欧冬舒,2006:《什么是世界一流大学》,《北京大学教育评论》第10期。[Henry H.Levin,Dong Wook Jeong and Dongshu Ou,2006,“What is World Class University? ”Peking Univeristy Education Review. No.4.]
[5]王晓阳、刘宝存、李婧,2010:《世界一流大学的定义、评价与研究:美国大学联合会常务副主席约翰・冯(John Vaugh)访谈录》,《比较教育研究》第1期。[Wang Xiaoyang,Liu Baocun and Li Jing,2010,“Definition Evaluation and Research of World Class University: an Interview with Dr. John Vaugh, the Executive Vice President of AAU”,Comparative Education Review.No.1.]
[6]维基百科,2014 :《大学排名》, 2014/07/16。[Wu Shulian,Lv Jia and Guo Shilin,2014,“ 2002 annual list of China’s top universities”.]
[8]武书连、吕嘉、郭石林,2014:《2002年度中国一流大学名单》, 2014/07/16。[Wu Shulian,Lv Jia and Guo Shilin,2014,“ 2002 annual list of China’s top universities”.]
[9]中国社会科学院语言研究所词典编辑室,2005:《现代汉语词典(第五版)》,北京商务印书馆。[Dictionary editorial office of Language Research Institute of Chinese Academy of Social Sciences,2005,“Modern Chinese Dictionary 5th Edition”,Beijing The Commercial Press.]
[10]中国校友会网大学研究团队,2014 :《中国一流大学名单?》。[China’s University Alumni Network Research Team,2014,“China’s top universities list.in”.]
[11]周光礼,2014:《世界一流大学的量化指标》, .[Zhou Guangli,2014,“Quantitative indicators of world-class universities”, .]
The Logic Dilemma and Outlook for the Different Cognition of the Concept “First-Class University”
Liu Zhimin
(College of Public Administration, Nanjing Agricultural University)
关键词:高层管理团队;认知特征;认知能力
中图分类号:F270 文献标志码:A
组织面临的变化和问题日益复杂,团队决策逐渐取代个体决策成为组织应对问题的首选方法。高层管理团队的战略决策的优劣决定了组织绩效的高低,而高管团队的认知特征驱动着其战略决策效率、质量和决策的一致性。因此,深入探讨不同的高管团队的认知特征对于团队决策的关系研究和作用机制有着非常实际的现实要求和意义。
1 高管团队认知特征的概念和分类
本文中关于高层团队认知特征的定义总结了以往的研究和观点,认为认知特征包括团队同质认知能力、团队认知需求、认知的稳定性、经验认知的复杂性、附和性、外向性。在本文把认知特征分成了两大类别,一是同质性认知,及团队同质认知能力;二是异质性认知包括团队认知需求、认知的稳定性、经验认知复杂性、附和性、外向性。1,1团队同质认知能力
团队同质的认知能力是指每个成员都拥有的共同的一些能够从复杂多变的环境中辨识对决策有用的信息,并运用于团队决策中的能力。认知能力是指处理信息和学习知识的一种能力和过程(Hunter,1986)。团队认知能力对团队绩效有积极作用Barrick(1998)。团队最低认知能力与任务决策达成的一致性相关Neuman,Wright(1999)。团队的同质性认知能力越高那么任务决策达成一致的可能性就大。
1.2认知需求
不同的成员在思考问题和信息加工过程中会有不同的倾向,所有的这些倾向之间交互作用,对团队共享知识起到了一定的影响。例如在任务决策时,个体X1愿意广泛搜集环境中的知识和深入思考信息,去努力发现现象之间内在的逻辑联系;个体X2则不愿意投入较多的认知努力。认知需要就是描述上述个体之间认知倾向上的差别,是指人们在信息加工过程中是否有意愿去从事周密的思考,以及能否从深层次的思考中获得享受,它反映的是人的认知动机。认知需要高的TMT比较喜欢复杂的任务,努力最大可能的运用已知经验和信息,进行全面搜索和详细分析相关的材料,进而会导致高绩效行为。
1.3认知稳定性
认知的稳定表现为认知的耐性持久、平衡、自信(Goldberg,1 990)。认知稳定性与高团队绩效和有效的团队过程,尤其是团队凝聚力、内部冲突、灵活性、工作分担等相关(Barrick,1998)。而且研究发现具有消极认知的成员会在团队内部制造一种消极的气氛,导致较低的亲社会行为。因此,较高的认知稳定性是团队绩效的提升的前提。
1.4经验认知复杂性
认知复杂性反映个体运用现有的知识和在环境的作用下建构“客观”世界的能力。认知复杂性高的个体具有高度复杂化的思维能力和认知特点,会比其它成员更有可能应用多种具有互补性的方法知识和多种互不相容的概念去理解和解释周围的现象。Neaman等(1999)发现成员平均开放性水平与团队绩效相关。Colquitt等(2002)发现较高认知复杂性的团队,通过作用于交流有效性,提高决策的准确性。认知复杂性高的高管团队更能引发有效、开放的行为和更加准确的认知,具有更准确的预测能力,从而能够取得更好的绩效。
1.5认知附和性
TMT认知附和性是指工作中的灵活性、合作性、容忍性和相容性。Mount等人(1998)认为附和性的人是友好的、合作的能够很好与他人共事的是团队沟通交流的剂。TMT认知附和性对于在团队环境下的高管团队的决策效率有着十分重要的作用,与较高的团队有效性相关。Mount等得出以下结论:附和性与团队决策的评估分数的相关性最大。高管团队成员之间较高的附和性会使其交互沟通更有效,有效的沟通,有助于他们获取对于工作环境和如何合作有着更为深入的了解。
1.6外向性
Costa和McCrae(1992)研究认为外向性包括热情、群集度、活跃性、追求创新和积极的情绪等方面。Judge,Watson&Clark又指出外向性的两个主要维度是社交性和热情度。许多研究结果表明外向性对团队绩效(Barrick,1998),团队决策,成员凝聚力、认知冲突、交流和工作共享等团队过程有积极作用。高管团队的认知外向性越高团队成员会更加乐观的看待团队工作,对团队工作怀有更大的信心。
2 MT认知特征的研究阶段
国内外学术界对高层管理团队(TMT)的研究主要源Hambrick等提出的“高层梯队理论”,在该理论中指出高管团队对周围事物的解读方式就是高管团队认知,决定了高管团队的决策的绩效和结果。从而认为企业的产出或组织绩效是TMT决策认知的结果。高层梯队理论的研究者们一直致力于打开被称为高管团队认知这个“黑盒子”(Jackson,1998),关于TMT认知的研究工作可以大致概括为3个阶段,如图1所示。
第一阶段研究的重心是通过高管团队的人口统计学特征来研究高管的认知特征。认知特征和认知过程不易于直接观测,研究者在这一时期用人口统计学特征来近似的替代认知特征作为研究的对象。之所以收集人口统计学数据而不是认知特征数据,是因为“认知特征和认知过程比较难考察和衡量”。当时的研究表明,高管团队的人口统计学特征可以作为高管认知特征的有效替代变量。相对高管团队认知特征来说,人口统计学变量更加客观、直观的解释组织经济和运作现象,更加低成本和更容易进行检测的变量。所以在这一研究阶段,研究者们对于组织绩效和战略决策的研究都是集中于高管职能背景、年龄、行业和企业任期、教育水平等人口特征变量进行的研究。在第一阶段的中后期,研究者将注意力转移到人口统计学特征差异性上。
【论文关键词】统计学;统计思想;认识
【论文摘要】所谓统计思想,就是在统计实际工作、统计学理论的应用研究中,必须遵循的基本理念和指导思想。统计思想主要包括均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想等思想。文章通过对统计思想的阐释,提出关于统计思想认识的三点思考。
1关于统计学
统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。统计学是继承和发展基础统计的理论成果,坚持统计学的社会科学性质,使统计理论研究更接近统计工作实际,在国家和社会得到广泛发展。
2统计学中的几种统计思想
2.1统计思想的形成
统计思想不是天然形成的,需要经历统计观念、统计意识、统计理念等阶段。统计思想是根据人类社会需求的变化而开展各种统计实践、统计理论研究与概括,才能逐步形成系统的统计思想。
2.2比较常用的几种统计思想
所谓统计思想,就是统计实际工作、统计学理论及应用研究中必须遵循的基本理念和指导思想。统计思想主要包括:均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想。现分述如下:
2.2.1均值思想
均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有统计学理论,是统计学的基本思想。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。
2.2.2变异思想
统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。统计方法就是要认识事物数量方面的差异。统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。平均与变异都是对同类事物特征的抽象和宏观度量。
2.2.3估计思想
估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质。样本才能代表总体。但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。
2.2.4相关思想
事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,而我们所研究的事物总体又是在同质性的基础上形成。因而,总体中的个体之间、这一总体与另一总体之间总是相互关联的。
2.2.5拟合思想
拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势。趋势表达的是“事物和关系的变化过程在数量上所体现的模式和基于此而预示的可能性”。
2.2.6检验思想
统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。
2.3统计思想的特点
作为一门应用统计学,它从数理统计学派汲取新的营养,并且越来越广泛的应用数学方法,联系也越来越密切,但在统计思想的体现上与通用学派相比,还有着自己的特别之处。其基本特点能从以下四个方面体现出:(1)统计思想强调方法性与应用性的统一;(2)统计思想强调科学性与艺术性的统一;(3)统计思想强调客观性与主观性的统一;(4)统计思想强调定性分析与定量分析的统一。
3对统计思想的一些思考3.1要更正当前存在的一些不正确的思想认识
英国著名生物学家、统计学家高尔顿曾经说过:“统计学具有处理复杂问题的非凡能力,当科学的探索者在前进的过程中荆棘载途时,唯有统计学可以帮助他们打开一条通道”。但事实并非这么简单,因为我们所面临的现实问题可能要比想象的复杂得多。此外,有些人认为方法越复杂越科学,在实际的分析研究中,喜欢简单问题复杂化,似乎这样才能显示其科学含量。其实,真正的科学是使复杂的问题简单化而不是追求复杂化。与此相关联的是,有些人认为只有推断统计才是科学,描述统计不是科学,并延伸扩大到只有数理统计是科学、社会经济统计不是科学这样的认识。这种认识是极其错误的,至少是对社会经济统计的无知。比利时数学家凯特勒不仅研究概率论,并且注重于把统计学应用于人类事物,试图把统计学创建成改良社会的一种工具。经济学和人口统计学中的某些近代概念,如GNP、人口增长率等等,均是凯特勒及其弟子们的遗产。
3.2要不断拓展统计思维方式
统计学是以归纳推理或归纳思维为主要的逻辑方式的。众所周知,逻辑推理方式主要有两种:归纳推理和演绎推理。归纳推理是基于观测到的数据信息(尤其是不完全甚至劣质的信息)去产生新的知识或去验证一个假设,即以所掌握的数据信息为依据,归纳得出具有一般特征的结论。归纳推理是要在数据信息的基础上透过偶然性去发现必然性。演绎推理是对统计认识能力的深化,尤其是在根据必然性去研究和认识偶然性方面,具有很大的作用。
3.3深化对数据分析的认识
任何统计研究都离不开数据分析。因为这是得到统计研究结论的必要环节。虽然统计分析的形式随时代的推移而变化着,但是“从数据中提取一切信息”或者“归纳和揭示”作为统计分析的目的却一直没有改变。对统计数据分析的原因有以下三个方面:一是基于同样的数据会得出不同、甚至相反的分析结论;二是我们所面对的分析数据有时是缺损的或存在不真实性;三是我们所面对的分析数据有时则又是海量的,让人无从下手。虽然统计数据分析已经经历了描述性数据分析(DDA)、推断性数据分析(IDA)和探索性数据分析(EDA)等阶段,分析的方法技术已经有了质的飞跃,但与人类不断提高的要求相比,存在的问题似乎也越来越多。所以,我们必须深化对数据分析的认识,围绕“准确解答特定问题并且从数据中获取一切有效信息”这一目的,不断拓展研究思路,继续开展数据分析方法技术的研究。
新晨
参考文献:
[1]陈福贵.统计思想雏议[J]北京统计,2004,(05).
[2]庞有贵.统计工作及统计思想[J]科技情报开发与经济,2004,(03).
【摘要】所谓统计思想,就是在统计实际工作、统计学理论的应用研究中,必须遵循的基本理念和指导思想。统计思想主要包括均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想等思想。文章通过对统计思想的阐释,提出关于统计思想认识的三点思考。
一、关于统计学
统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。统计学是继承和发展基础统计的理论成果,坚持统计学的社会科学性质,使统计理论研究更接近统计工作实际,在国家和社会得到广泛发展。
二、统计学中的几种统计思想
1统计思想的形成
统计思想不是天然形成的,需要经历统计观念、统计意识、统计理念等阶段。统计思想是根据人类社会需求的变化而开展各种统计实践、统计理论研究与概括,才能逐步形成系统的统计思想。
2比较常用的几种统计思想
所谓统计思想,就是统计实际工作、统计学理论及应用研究中必须遵循的基本理念和指导思想。统计思想主要包括:均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想。现分述
2.1均值思想
均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有统计学理论,是统计学的基本思想。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。
2.2变异思想
统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。统计方法就是要认识事物数量方面的差异。统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。平均与变异都是对同类事物特征的抽象和宏观度量。
2.3估计思想
估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质。样本才能代表总体。但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。
2.4相关思想
事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,而我们所研究的事物总体又是在同质性的基础上形成。因而,总体中的个体之间、这一总体与另一总体之间总是相互关联的。
2.5拟合思想
拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势。趋势表达的是“事物和关系的变化过程在数量上所体现的模式和基于此而预示的可能性”。
2.6检验思想
统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。
3统计思想的特点
作为一门应用统计学,它从数理统计学派汲取新的营养,并且越来越广泛的应用数学方法,联系也越来越密切,但在统计思想的体现上与通用学派相比,还有着自己的特别之处。其基本特点能从以下四个方面体现出:(1)统计思想强调方法性与应用性的统一;(2)统计思想强调科学性与艺术性的统一;(3)统计思想强调客观性与主观性的统一;(4)统计思想强调定性分析与定量分析的统一。
三、对统计思想的一些思考
1要更正当前存在的一些不正确的思想认识
英国着名生物学家、统计学家高尔顿曾经说过:“统计学具有处理复杂问题的非凡能力,当科学的探索者在前进的过程中荆棘载途时,唯有统计学可以帮助他们打开一条通道”。但事实并非这么简单,因为我们所面临的现实问题可能要比想象的复杂得多。此外,有些人认为方法越复杂越科学,在实际的分析研究中,喜欢简单问题复杂化,似乎这样才能显示其科学含量。其实,真正的科学是使复杂的问题简单化而不是追求复杂化。与此相关联的是,有些人认为只有推断统计才是科学,描述统计不是科学,并延伸扩大到只有数理统计是科学、社会经济统计不是科学这样的认识。这种认识是极其错误的,至少是对社会经济统计的无知。比利时数学家凯特勒不仅研究概率论,并且注重于把统计学应用于人类事物,试图把统计学创建成改良社会的一种工具。经济学和人口统计学中的某些近代概念,如GNP、人口增长率等等,均是凯特勒及其弟子们的遗产。
2要不断拓展统计思维方式
统计学是以归纳推理或归纳思维为主要的逻辑方式的。众所周知,逻辑推理方式主要有两种:归纳推理和演绎推理。归纳推理是基于观测到的数据信息(尤其是不完全甚至劣质的信息)去产生新的知识或去验证一个假设,即以所掌握的数据信息为依据,归纳得出具有一般特征的结论。归纳推理是要在数据信息的基础上透过偶然性去发现必然性。演绎推理是对统计认识能力的深化,尤其是在根据必然性去研究和认识偶然性方面,具有很大的作用。
3深化对数据分析的认识
任何统计研究都离不开数据分析。因为这是得到统计研究结论的必要环节。虽然统计分析的形式随时代的推移而变化着,但是“从数据中提取一切信息”或者“归纳和揭示”作为统计分析的目的却一直没有改变。对统计数据分析的原因有以下三个方面:一是基于同样的数据会得出不同、甚至相反的分析结论;二是我们所面对的分析数据有时是缺损的或存在不真实性;三是我们所面对的分析数据有时则又是海量的,让人无从下手。虽然统计数据分析已经经历了描述性数据分析(DDA)、推断性数据分析(IDA)和探索性数据分析(EDA)等阶段,分析的方法技术已经有了质的飞跃,但与人类不断提高的要求相比,存在的问题似乎也越来越多。所以,我们必须深化对数据分析的认识,围绕“准确解答特定问题并且从数据中获取一切有效信息”这一目的,不断拓展研究思路,继续开展数据分析方法技术的研究。
参考文献:
陈福贵.统计思想雏议[J]北京统计,2004,(05).
庞有贵.统计工作及统计思想[J]科技情报开发与经济,2004,(03).
【论文摘要】所谓统计思想,就是在统计实际工作、统计学理论的应用研究中,必须遵循的基本理念和指导思想。统计思想主要包括均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想等思想。文章通过对统计思想的阐释,提出关于统计思想认识的三点思考。
一、关于统计学
统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。统计学是继承和发展基础统计的理论成果,坚持统计学的社会科学性质,使统计理论研究更接近统计工作实际,在国家和社会得到广泛发展。
二、统计学中的几种统计思想
2.1统计思想的形成
统计思想不是天然形成的,需要经历统计观念、统计意识、统计理念等阶段。统计思想是根据人类社会需求的变化而开展各种统计实践、统计理论研究与概括,才能逐步形成系统的统计思想。
2.2比较常用的几种统计思想
所谓统计思想,就是统计实际工作、统计学理论及应用研究中必须遵循的基本理念和指导思想。统计思想主要包括:均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想。现分述如下:
2.2.1均值思想
均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有统计学理论,是统计学的基本思想。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。
2.2.2变异思想
统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。统计方法就是要认识事物数量方面的差异。统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。平均与变异都是对同类事物特征的抽象和宏观度量。
2.2.3估计思想
估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质。样本才能代表总体。但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。
2.2.4相关思想
事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,而我们所研究的事物总体又是在同质性的基础上形成。因而,总体中的个体之间、这一总体与另一总体之间总是相互关联的。
2.2.5拟合思想
拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势。趋势表达的是“事物和关系的变化过程在数量上所体现的模式和基于此而预示的可能性”。
2.2.6检验思想
统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。
2.3统计思想的特点
作为一门应用统计学,它从数理统计学派汲取新的营养,并且越来越广泛的应用数学方法,联系也越来越密切,但在统计思想的体现上与通用学派相比,还有着自己的特别之处。其基本特点能从以下四个方面体现出:(1)统计思想强调方法性与应用性的统一;(2)统计思想强调科学性与艺术性的统一;(3)统计思想强调客观性与主观性的统一;(4)统计思想强调定性分析与定量分析的统一。
三、对统计思想的一些思考
3.1要更正当前存在的一些不正确的思想认识
英国著名生物学家、统计学家高尔顿曾经说过:“统计学具有处理复杂问题的非凡能力,当科学的探索者在前进的过程中荆棘载途时,唯有统计学可以帮助他们打开一条通道”。但事实并非这么简单,因为我们所面临的现实问题可能要比想象的复杂得多。此外,有些人认为方法越复杂越科学,在实际的分析研究中,喜欢简单问题复杂化,似乎这样才能显示其科学含量。其实,真正的科学是使复杂的问题简单化而不是追求复杂化。与此相关联的是,有些人认为只有推断统计才是科学,描述统计不是科学,并延伸扩大到只有数理统计是科学、社会经济统计不是科学这样的认识。这种认识是极其错误的,至少是对社会经济统计的无知。比利时数学家凯特勒不仅研究概率论,并且注重于把统计学应用于人类事物,试图把统计学创建成改良社会的一种工具。经济学和人口统计学中的某些近代概念,如GNP、人口增长率等等,均是凯特勒及其弟子们的遗产。
3.2要不断拓展统计思维方式
统计学是以归纳推理或归纳思维为主要的逻辑方式的。众所周知,逻辑推理方式主要有两种:归纳推理和演绎推理。归纳推理是基于观测到的数据信息(尤其是不完全甚至劣质的信息)去产生新的知识或去验证一个假设,即以所掌握的数据信息为依据,归纳得出具有一般特征的结论。归纳推理是要在数据信息的基础上透过偶然性去发现必然性。演绎推理是对统计认识能力的深化,尤其是在根据必然性去研究和认识偶然性方面,具有很大的作用。
3.3深化对数据分析的认识
任何统计研究都离不开数据分析。因为这是得到统计研究结论的必要环节。虽然统计分析的形式随时代的推移而变化着,但是“从数据中提取一切信息”或者“归纳和揭示”作为统计分析的目的却一直没有改变。对统计数据分析的原因有以下三个方面:一是基于同样的数据会得出不同、甚至相反的分析结论;二是我们所面对的分析数据有时是缺损的或存在不真实性;三是我们所面对的分析数据有时则又是海量的,让人无从下手。虽然统计数据分析已经经历了描述性数据分析(DDA)、推断性数据分析(IDA)和探索性数据分析(EDA)等阶段,分析的方法技术已经有了质的飞跃,但与人类不断提高的要求相比,存在的问题似乎也越来越多。所以,我们必须深化对数据分析的认识,围绕“准确解答特定问题并且从数据中获取一切有效信息”这一目的,不断拓展研究思路,继续开展数据分析方法技术的研究。
参考文献:
[1]陈福贵.统计思想雏议[J]北京统计,2004,(05).
[2]庞有贵.统计工作及统计思想[J]科技情报开发与经济,2004,(03).
【关键词】统计学;统计思想;认识
1关于统计学
统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。统计学是继承和发展基础统计的理论成果,坚持统计学的社会科学性质,使统计理论研究更接近统计工作实际,在国家和社会得到广泛发展。
2统计学中的几种统计思想
2.1统计思想的形成
统计思想不是天然形成的,需要经历统计观念、统计意识、统计理念等阶段。统计思想是根据人类社会需求的变化而开展各种统计实践、统计理论研究与概括,才能逐步形成系统的统计思想。
2.2比较常用的几种统计思想
所谓统计思想,就是统计实际工作、统计学理论及应用研究中必须遵循的基本理念和指导思想。统计思想主要包括:均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想。现分述如下:
2.2.1均值思想
均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有统计学理论,是统计学的基本思想。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。
2.2.2变异思想
统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。统计方法就是要认识事物数量方面的差异。统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。平均与变异都是对同类事物特征的抽象和宏观度量。
2.2.3估计思想
估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质。样本才能代表总体。但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。
2.2.4相关思想
事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,而我们所研究的事物总体又是在同质性的基础上形成。因而,总体中的个体之间、这一总体与另一总体之间总是相互关联的。
2.2.5拟合思想
拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势。趋势表达的是“事物和关系的变化过程在数量上所体现的模式和基于此而预示的可能性”。
2.2.6检验思想
统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。
2.3统计思想的特点
作为一门应用统计学,它从数理统计学派汲取新的营养,并且越来越广泛的应用数学方法,联系也越来越密切,但在统计思想的体现上与通用学派相比,还有着自己的特别之处。其基本特点能从以下四个方面体现出:(1)统计思想强调方法性与应用性的统一;(2)统计思想强调科学性与艺术性的统一;(3)统计思想强调客观性与主观性的统一;(4)统计思想强调定性分析与定量分析的统一。
3对统计思想的一些思考
3.1要更正当前存在的一些不正确的思想认识
英国著名生物学家、统计学家高尔顿曾经说过:“统计学具有处理复杂问题的非凡能力,当科学的探索者在前进的过程中荆棘载途时,唯有统计学可以帮助他们打开一条通道”。但事实并非这么简单,因为我们所面临的现实问题可能要比想象的复杂得多。此外,有些人认为方法越复杂越科学,在实际的分析研究中,喜欢简单问题复杂化,似乎这样才能显示其科学含量。其实,真正的科学是使复杂的问题简单化而不是追求复杂化。与此相关联的是,有些人认为只有推断统计才是科学,描述统计不是科学,并延伸扩大到只有数理统计是科学、社会经济统计不是科学这样的认识。这种认识是极其错误的,至少是对社会经济统计的无知。比利时数学家凯特勒不仅研究概率论,并且注重于把统计学应用于人类事物,试图把统计学创建成改良社会的一种工具。经济学和人口统计学中的某些近代概念,如GNP、人口增长率等等,均是凯特勒及其弟子们的遗产。新晨
3.2要不断拓展统计思维方式
统计学是以归纳推理或归纳思维为主要的逻辑方式的。众所周知,逻辑推理方式主要有两种:归纳推理和演绎推理。归纳推理是基于观测到的数据信息(尤其是不完全甚至劣质的信息)去产生新的知识或去验证一个假设,即以所掌握的数据信息为依据,归纳得出具有一般特征的结论。归纳推理是要在数据信息的基础上透过偶然性去发现必然性。演绎推理是对统计认识能力的深化,尤其是在根据必然性去研究和认识偶然性方面,具有很大的作用。
3.3深化对数据分析的认识
任何统计研究都离不开数据分析。因为这是得到统计研究结论的必要环节。虽然统计分析的形式随时代的推移而变化着,但是“从数据中提取一切信息”或者“归纳和揭示”作为统计分析的目的却一直没有改变。对统计数据分析的原因有以下三个方面:一是基于同样的数据会得出不同、甚至相反的分析结论;二是我们所面对的分析数据有时是缺损的或存在不真实性;三是我们所面对的分析数据有时则又是海量的,让人无从下手。虽然统计数据分析已经经历了描述性数据分析(DDA)、推断性数据分析(IDA)和探索性数据分析(EDA)等阶段,分析的方法技术已经有了质的飞跃,但与人类不断提高的要求相比,存在的问题似乎也越来越多。所以,我们必须深化对数据分析的认识,围绕“准确解答特定问题并且从数据中获取一切有效信息”这一目的,不断拓展研究思路,继续开展数据分析方法技术的研究。
参考文献:
[1]陈福贵.统计思想雏议[J]北京统计,2004,(05).
[2]庞有贵.统计工作及统计思想[J]科技情报开发与经济,2004,(03).
一、数理统计思想的形成
统计思想需要经历统计观念、统计意识、统计理念等阶段。统计思想是根据人类社会需求的变化而开展各种统计实践、统计理论研究与概括,才能逐步形成系统的数理统计思想。
二、数理统计思想的特点
数理统计思想从数理统计学派汲取新的营养,并且越来越广泛的应用数学方法,联系也越来越密切,但在数理统计思想的体现上与通用学派相比,还有着自己的特别之处。其基本特点能从以下四个方面体现出:(1)数理统计思想强调方法性与应用性的统一;(2)数理统计思想强调科学性与艺术性的统一;(3)数理统计思想强调客观性与主观性的统一;(4)数理统计思想强调定性分析与定量分析的统一。
三、数理统计思想
就是统计实际工作、数理统计学理论及应用研究中必须遵循的基本理念和指导思想。数理统计的思想主要包括:均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想。
1.均值思想
均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有数理统计学理论,是数理统计学的基本思想。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。
2.变异思想
统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。统计方法就是要认识事物数量方面的差异。数理统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。平均与变异都是对同类事物特征的抽象和宏观度量。
3.估计思想
估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质。样本才能代表总体。但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。
4.相关思想
事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,而我们所研究的事物总体又是在同质性的基础上形成。因而,总体中的个体之间、这一总体与另一总体之间总是相互关联的。
5.拟合思想
拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势。趋势表达的是“事物和关系的变化过程在数量上所体现的模于此而预示的可能性”。
6.检验思想
数理统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。
四、数理统计的思想方法?
1.要更正不正确的思想认识
英国著名生物学家、统计学家高尔顿曾经说过:“统计学具有处理复杂问题的非凡能力,当科学的探索者在前进的过程中荆棘载途时,唯有统计学可以帮助他们打开一条通道”。但事实并非这么简单,因为我们所面临的现实问题可能要比想象的复杂得多。此外,有些人认为方法越复杂越科学,在实际的分析研究中,喜欢简单问题复杂化,似乎这样才能显示其科学含量。其实,真正的科学是使复杂的问题简单化而不是追求复杂化。与此相关联的是,有些人认为只有推断统计才是科学,描述统计不是科学,并延伸扩大到只有数理统计是科学、社会经济统计不是科学这样的认识。这种认识是极其错误的,至少是对社会经济统计的无知。比利时数学家凯特勒不仅研究概率论,并且注重于把统计学应用于人类事物,试图把统计学创建成改良社会的一种工具。经济学和人口统计学中的某些近代概念,如GNP、人口增长率等等,均是凯特勒及其弟子们的遗产。
2.要不断拓展统计思维方式
数理统计学是以归纳推理或归纳思维为主要的逻辑方式的。众所周知,逻辑推理方式主要有两种:归纳推理和演绎推理。归纳推理是基于观测到的数据信息(尤其是不完全甚至劣质的信息)去产生新的知识或去验证一个假设,即以所掌握的数据信息为依据,归纳得出具有一般特征的结论。归纳推理是要在数据信息的基础上透过偶然性去发现必然性。演绎推理是对统计认识能力的深化,尤其是在根据必然性去研究和认识偶然性方面,具有很大的作用。
3.要深化对数据分析的认识
任何统计研究都离不开数据分析。因为这是得到统计研究结论的必要环节。虽然统计分析的形式随时代的推移而变化着,但是“从数据中提取一切信息”或者“归纳和揭示”作为统计分析的目的却一直没有改变。对统计数据分析的原因有以下三个方面:一是基于同样的数据会得出不同、甚至相反的分析结论;二是我们所面对的分析数据有时是缺损的或存在不真实性;三是我们所面对的分析数据有时则又是海量的,让人无从下手。虽然统计数据分析已经经历了描述性数据分析、推断性数据分析和探索性数据分析等阶段,分析的方法技术已经有了质的飞跃,但与人类不断提高的要求相比,存在的问题似乎也越来越多。所以,我们必须深化对数据分析的认识,围绕“准确解答特定问题并且从数据中获取一切有效信息”这一目的,不断拓展研究思路,继续开展数据分析方法技术的研究。
数理统计思想方法应用必须坚持以事实为依据、用数据说话的原则,把统计技术的应用与专业技术紧密结合,在考虑统计项目实施时,应从理论和事实层面上注重分析和使用条件,认真权衡各种关联因素。数理统计学是继承和发展基础统计的理论成果,坚持统计学的社会科学性质,使统计理论研究更接近统计工作实际,在国家和社会得到广泛发展。
参考文献
[1] 陈福贵.统计思想雏议[J]北京统计,?2004,(05).
[2] 庞有贵.统计工作及统计思想[J]科技情报开发与经济,?2004,(03).
[3] 范文正.几种基本统计思想的现实意义[J]统计与决策,?2007,(08).
一、统计学中的几种常见统计思想
统计思想主要包括:均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想等。统计思想不是天然形成的,需要经历统计观念、统计意识、统计理念等阶段。统计思想是根据人类社会需求的变化而开展各种统计实践、统计理论研究与概括,才能逐步形成系统的统计思想。作为一门应用统计学,它从数理统计学派汲取新的营养,并且越来越广泛的应用数学方法,联系也越来越密切,但在统计思想的体现上与通用学派相比,还有着自己的特别之处。其基本特点:
(1)统计思想强调方法性与应用性的统一;
(2)统计思想强调科学性与艺术性的统一;
(3)统计思想强调客观性与主观性的统一;
(4)统计思想强调定性分析与定量分析的统一。
1.均值思想。均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有统计学理论,是统计学的基本思想。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。
2.变异思想。统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。统计方法就是要认识事物数量方面的差异。统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。平均与变异都是对同类事物特征的抽象和宏观度量。
3.估计思想。估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质。样本才能代表总体。但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。
4.相关思想。事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,而我们所研究的事物总体又是在同质性的基础上形成。因而,总体中的个体之间、这一总体与另一总体之间总是相互关联的。
5.拟合思想。拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势。趋势表达的是“事物和关系的变化过程在数量上所体现的模式和基于此而预示的可能性”。
6.检验思想。统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。
二、对统计思想的若干思考
1.要改变当前存在的一些不正确的思想认识。英国著名生物学家、统计学家高尔顿曾经说过:“统计学具有处理复杂问题的非凡能力,当科学的探索者在前进的过程中荆棘载途时,唯有统计学可以帮助他们打开一条通道”。但事实并非这么简单,因为我们所面临的现实问题可能要比想象的复杂得多。此外,有些人认为方法越复杂,越科学。在实际的分析研究中,喜欢简单问题复杂化,似乎这样才能显示其科学含量。其实,真正的科学是使复杂的问题简单化而不是追求复杂化。与此相关联的是,有些人认为只有推断统计才是科学,描述统计不是科学,并延伸扩大到只有数理统计是科学、社会经济统计不是科学这样的认识。这种认识是极其错误的,至少是对社会经济统计的无知。比利时数学家凯特勒不仅研究概率论,并且注重于把统计学应用于人类事物,试图把统计学创建成改良社会的一种工具。经济学和人口统计学中的某些近代概念,如GNP、人口增长率等等,均是凯特勒及其弟子们的遗产。
【关键词】概率论 描述统计 推断统计 统计思想
一、概率论引入统计学的意义
(一)方法的突破
统计学研究对象的拓展。引入概率论后统计学研究对象的拓展表现在外延与内涵两方面。外延上,导源赌博问题研究的概率论以随机性现象为主要研究对象,它的应用将统计学思想方法带到自然科学领域,甚至用于研究人类心理活动、思维现象,拓展了原来始于社会经济现象研究的统计学的研究对象。另外,联姻前统计学对现象的描述、分析只能止于其确定性方面,有概率论新工具后,其不确定性方面也能描述分析,拓展了作为统计学对象的社会经济现象的数量信息内涵。研究对象的拓展,使得在此基础上统计学成了一门具有通用性的定量分析工具。
统计学研究方法的进阶。概率论联姻“统计”的突出意义表现在方法上—由描述走向推断。“描述统计”(包括数据的收集、整理、显示和分析)主要是通过图表形式对所收集的数据进行加工处理和显示,进而综合、概括和分析得出反映客观现象规律的数量特征;“推断统计”则是在对样本数据进行描述的基础上对统计总体的未知数量特征作出以概率形式表达的推断。联姻之前的古典统计学主要就是初级的“描述统计”(简单的计量、分组、图表、推算等),现代统计学则以“推断统计”为其核心内容。这里“描述”与“推断”的划分一方面反映统计方法发展的两个阶段,另外也反映应用统计方法探索客观事物数量规律的不同过程。“描述”是基础,“推断”是主要内容。
推断统计的现实性意义。统计学从描述发展到推断,反映统计学发展的巨大成就,也是统计学成熟的重要标志。一方面,它是重要的认识工具。正是由于有了“推断”,科学借助统计这一定量分析工具取得了巨大成就。象著名的基因论就借助推断统计方法而得。
(二)思想的腾飞
矩:统计学早期便有“平均”即一般代表值的思想,认识事物数量方面的一般性。引入概率论后,“平均”引申到“期望”,描述随机变量的集中趋势。与“平均”相对应,有对数据偏离“一般”程度的描述即“变异”,认识事物数量方面的差异。引入概率论后其内涵扩充到对随机变量离散程度的描述。“矩”源于力学研究,均数、方差同重心和转动力矩之间的类似促使统计上用“矩”来描述数据特征。其概念涵盖前述的几个参数,并扩充到多阶、多维随机变量特征的描述。“矩”体现了统计“求同察异”的思想,即在了解差异的同时认识事物的同质性。
估计:估计是据样本数据对总体参数所作出的“猜想”’其实质是一种类比,将对已知事物的认识拓广到更大范围。实际上有一个假定即样本、总体的同质性(同分布)。由于样本的随机性使得估计带有不确定性,便给出“区间”来对其描述。
检验:检验即先对总体特征作出一种假设,然后根据样本信息对这一假设的支持程度作出描述(假设正确性的判断),主要运用反证法、小概率原则等思想。检验与估计构成统计推断内容的两面,鉴于思维上推与证的不同而分别提出。
拟合:拟合就是对现象之间的联系、发展规律、变化趋势给予定量描述,是对事物间关系表现的一种抽象。也就是以一定的模型来反映现象及现象间的联系的发展变化,表现出联系的显性方面而抽象掉非显性方面。
相关:相关是客观事物普遍联系的哲学思想在统计上的具体化。统计所研究的对象之间往往表现出相随共变或相随共现的情况,相关便是对现象间这种联系的数量表现的描述、分析。通过对比关联现象变化的方向与程度,来研究它们之间是否有联系、联系的紧密程度和形式。
惯性:哲学上,客观现象都是有规律的辩证发展运动过程。任何运动都具有惯性,这种惯性表现为系统的动态性即记忆性。它反映现象未来行为与过去的行为有关这样一种动态思想,是“动态相关”,也是预测的思想基础,反映现象本身及现象之间关系发展、变化的规律性。
二、概率论引入统计学的启发
概率论引入统计学,使统计学思想方法有了质的飞跃,并成为统计学坚实的理论基础。这也给我们启发:统计学必须与时俱进,顺应时代而发展,不断完善方法体系,与其它定量分析工具、计算技术及其应用领域科学结合融会。
研究对象泛化:统计学是定量分析工具,首先便表现在对所研究的对象(社会经济现象、自然现象、精神思维等)的定量描述上(对象信息数据化),然后再做定量分析。最初统计学只能局限于现象数量信息做确定性的数量描述、分析,引入概率论之后,对研究对象便可以做随机性描述、分析。而实际工作中有时还必须对定性的、模糊的、混沌的甚至突变的等研究对象做定量的描述与分析,概率论便会有所局限,必须引入新的工具。比如引入模糊数学,对模糊性现象做定量描述分析;引入灰色理论,形成灰色统计思想等等。
电子技术发展:科技特别是计算机技术的发展使数据处理的手段得到提升,并对统计提出了新挑战。电脑、网络的出现一方面使统计学的研究对象(总体)成了一个结构复杂的系统,另一方面对数据的分析处理变成了算法。同时在我们面对的数量信息超大量化后,统计的“收集、分析数据”的任务、统计推断意义也就必然发生变化,等等。这一切都要求统计必须与计算机及其它科学联姻,如人工智能、神经网络理论等。
应用领域扩张:现代统计学是一多层次多门类的学科,几乎所有的科研都要借助这一定量分析工具。应用领域的不同,对这一工具的要求必然不尽相同。比如生物统计、保险统计与统计地理学在基础性方法一致的基础上各有与其相联系的实质性科学的特点。现代统计方法(包括概率论的成长、壮大)很大程度上来自一些实质性科研活动,这也就要求我们坚持以概率论等数理工具为基础的前提下紧密联系应用领域的实质性科学。
总之,统计学是一门生命力强大的科学,也是一门与时俱进的科学。顺应时代要求,不断借鉴其它方法科学,丰富统计方法,拓展应用领域。