欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

人工智能教育现状优选九篇

时间:2023-09-14 17:28:06

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇人工智能教育现状范例。如需获取更多原创内容,可随时联系我们的客服老师。

人工智能教育现状

第1篇

[关键词]人工智能;中学辅助教育;教育资源

[DOI]10.13939/ki.zgsc.2016.36.197

1 中学教育现状

教育乃立国之本,而中学教育乃是重中之重。一方面,中学生处于青春的成长期,各项综合素质逐渐完善中,中学教育意义和责任重大;另一方面,中学教育仍然是应试教育为主,仍然需要面对千军万马过独木桥的“中考”“高考”,中学教育很大程度左右了学生的未来。

目前的中学教育资源,分为公共教育资源――公办/民办学校教育,和社会教育资源――私人家教、补习班等,有如下两个特点。

1.1 学生得到的公共教育资源不足

学校班级结构的构成是:一名班主任教师,多名科任教师。在大多数学校中,无论是班主任教师,还是科任教师,均会承担其他班级的教学任务。可以看出,教师资源是非常有限的,加上“中考”“高考”的上线压力,教师往往会将有限的精力分散关注在所有的学生上,每个学生得到的公共教育资源并不多。

1.2 学生获取的社会教育资源不公

学生若在学校无法获取更多的教育资源,将不得不转向社会教育资源去求助。据统计,学生参与社会教育资源的成本在200元/小时,学习费用成本过高,进一步造成普通学生的社会教育资源也无法获取。

本文要探讨的,正是通过人工智能这一现代信息化技术,构建智能辅助学习系统,使中学生能够获取到更多、更公平的教育资源。

2 智能辅助学习

2.1 人工智能简介

人工智能(Artificial Intelligence)是计算机科学的一个分支,是一门研究运用计算机模拟和延伸人脑功能的综合性学科,能够对人的意识、思维等信息过程进行模拟。随着计算机科学技术的发展,特别是近年来大数据技术的成功应用,人工智能在越来越多的行业展现出蓬勃的冲击力。以谷歌围棋机器人“阿尔法”、微软助理机器人“小娜”等为代表的虚拟智能机器人,能像人那样思考,也具备超过常人的智能。

在国内,人工智能在教育领域的理论研究和教学实践表现得越来越活跃,尽管人工智能并不是为教育专门研发的,但是人工智能的不断发展,使得其在教育中的应用也越来越广泛,教育的智能化一直是教育界和教育技术领域的理想和目标。

2.2 智能辅助学习系统

智能辅助学习系统,其表现形式是能够为每个学生,配备一个虚拟教师。学生能够通过电子设备(如手机、计算机),与虚拟教师进行交流对话,咨询虚拟教师各学科的问题,并得到有效的学习辅助。

该智能辅助学习系统,具备以下几个特征。

2.2.1 虚拟教师跨学科能力

与传统的教师专一某一学科不同,虚拟教师并没有学科边界划分。只要学习系统研发出某一学科的学习算法,该虚拟教师就能够获取该门学科的能力。

2.2.2 虚拟教师深度自学习

虚拟教师的“智能”来源于三方面。一是学生基本信息档案,该档案涵盖了从小学教育开始的学科成绩、综合能力、爱好特长等,虚拟教师得到学生的人物画像。二是虚拟教师对学生的自学习,每一次双方的沟通交流,虚拟教师都能够不断更新发展学生的画像。三是虚拟教师对学校课堂内容的自学习,虚拟教师并不是独立于学校教育存在的,而是作为学习教育资源的一个补充,虚拟教师能够掌握课堂进展、作业部署、考试动态等信息。

2.2.3 接近自然语义的沟通

学生与虚拟教师之间,可以通过自然语义的语音和文字进行沟通,如 “今天数学作业第2题不会”“《荷塘月色》全文中心思想是什么”“Lets start a conversation”等。其他计算辅助手段为补充,如上传某道数学题图片,虚拟教师通过图形识别匹配,给出该题的解题思路和讲解。

2.3 优势分析

智能辅助学习系统,有三大核心优势。

一是“即学即问”,相比目前的学校教育和社会教育,学生在学习遇到困难时,只有有限的时间与教师交流,在智能辅助学习系统中学生将不受空间、时间限制,随时随地可以与虚拟教师互动,获取充足的教育资源。

二是“定制教学”,相比目前的教育形式,课堂上教师与学生是一对多的关系,教师不可能专为某个学生定制教学方案,在智能辅助学习系统虚拟教师与学生是一对一的关系,虚拟教师能够更了解学生,根据学生的具体情况制订最佳学习方案。

三是“受众广阔”,相比目前的公共教育资源紧缺、社会教育资源费用昂贵,智能辅助学习系统一旦推广,受众学生可无限增加,边际效应非常明显。并且计算机系统设计特有的水平扩展能力,能够随着学生人数的增加而增加,支撑广大的学生辅助学习。

2.4 前景预测

笔者比较看好人工智能在中学辅助教育中的落地前景,除了前文所述的人工智能技术发展,为中学教育带来的价值外,当前国家政策和社会环境也非常有利。

第一,未来10年国家政府和教育部门会大幅增加在教育信息化产业上的投入,随着《国家中长期教育改革和发展纲要(2010―2020年)》和《教育信息化十年发展规划(2011―2020年)》等相关规划相继出台,各级地方政府和教育部门都非常重视教育信息化产业的投入,人工智能+云计算是重中之重,人工智能技术的兴起必将教育信息化推向一个新的高度。

第二,教育信息化逐渐成为风口,根据前瞻产业研究《中国在线教育市场前景与投资战略规划分析报告》统计,2015年在线教育市场规模大约为479亿美元,而这一数字在2020年预计将增长到504亿美元。这个持续迅猛增长的市场正在吸引越来越多的创意和资本,教育领域中的人工智能也很快会成为热点,涉足其中的高科技公司也会越来越多。

3 结 论

本文通过智能辅助学习系统,探索了人工智能在中学辅助教育中的一个应用。虽然没有介绍具体的技术实现、系统研发,但对现状痛点、应用前景做了综合性分析概述,相信随着科学技术的持续发展、教育领域的融合开放,本文探索的这个应用将实现于市场,使广大中学生能够获取到更多、更公平的教育资源。

参考文献:

[1]何维贵.利用现代化教学手段打造高效课堂[J].广西教育(中等教育),2013(6).

[2]王斐.人工智能在中学教育教学中的应用现状分析[J].中国医学教育技术,2013(4).

第2篇

【关键词】 人工智能 农村远程教育 高效

人工智能技术是在计算机科学日新月异发展的进程中一大成果,由于其智能、高效、优化的强大功能,为许多研究者所重视。部分教育领域的研究者,将人工智能技术引入教育行业,探讨人工智能如何融入教育,促进教育深度发展。研究者们将人工智能与职业教育、继续教育、远程教育及教育技术结合,进行探讨,提出了一些很好的建议。农村远程教育虽然也属于远程教育范畴,但由于其自身具有许多特殊性,因此有必要单独将其应用于农村远程教育进行探讨。

1 我国当前农村远程教育发展面临的困境

我国农村远程教育是伴随着现代通讯技术的发展而在广大农村出现的一种新的教育模式。随着上世纪70年代末,以广播电视大学为代表的远程教育的兴起,为我国教育的发展写下了浓重的一笔,由于其不受时间、空间、学习者等要素的影响,充分体现了“时时能学、处处可学、人人皆学”的巨大优势。因此,本世纪初,国家将远程教育教学模式引入广大农村,于2003年推出了“农村党员干部现代远程教育”、“农村中小学现代远程教育工程”,于2004年依托广播电视大学体统推出了“一村一名大学生”工程,这些远程教育工程对推进农村教育起到了举足轻重的作用。但其发展也遇到了困难,具体说主要体现在以下几个方面:

1.1 师资力量短缺

由于受我国长期以来的城乡二元制经济发展模式的影响,导致城乡经济发展不均衡,直接造成了城乡教育发展失衡。在农村教育中,首先表现在教师配置上,由于农村教育经费投、教师工资水平均低于城市,造成了长期以来农村教育师资力量短缺,远程教育更是如此。据相关研究表明,现我国农村远程教育由于缺少懂计算机或网络技术的专业人才,往往用不相关专业的人才作为替代,且大都为兼职人员。这就造成了对远程教育设备的维护、远程教育资源的管理及远程教育教学辅导等方面出现问题。以广播电视大学系统为例,自2004年广播电视大学开始招收“一村一名大学生”学员,虽然学员增长速度很快,但其教学点仅延伸至县城,招收的学员往往为县城周边农村的农民,而广大较偏远地区正真渴望接受教育的农民缺少受教育机会,之所以没有延伸至乡镇及行政村,根本原因是缺少师资力量。

1.2 资源建设不足

由于农村远程教育是本世纪初才在农村兴起的一种新的教育模式,属于新生事物,因此缺少前期的积累,主要体现在教学资源的积累上。我们知道,是否拥有丰富优质的教学资源是关乎远程教育成败的关键。而长期以来,我们主要注重城市远程教育的发展,现城市远程教育已相当成熟,拥有一大批优质的教育资源,吸引了大批学习者。但由于农村远程教育与城市远程教育相比有其特殊性,广大农村学员需要掌握的不仅仅是理论知识,他们最迫切学习的是农业实用新技术及掌握能够改变自己生活现状的一技之长,而这些课程资源在城市远程教育中设计不多。因此我们没有现成的教育资源可供使用,需要另起炉灶进行建设。但由于投入农村远程教育的经费有限,用于资源建设的经费也不足。造成了现阶段农村远程教育资源依然短缺的现实。这不利于农村远程教育进一步发展。

1.3 课程设置不合理

如上所述,广大农村学员渴望学习的是改善自身生活的实用农业新技术及一技之长,同时广大农村也需要培养一批懂管理的乡村干部。因此在专业和课程设置上,客观上要求向这些方面靠拢。虽然现在农村远程教育在专业设置上慢慢转向适合农村学员的涉农专业,但在课程设置上还是不尽如人意,往往只根据自己师资情况及资源情况来设置课程,这样往往造成农民学员需要的课程没有涉及,而农民学员缺乏兴趣的理论课程所占比重过大的问题。这样会严重挫伤广大农村学员学习积极性,对农村远程教育发展极为不利。

1.4 网络教学平台存在不足

我国现阶段远程教育的网络辅导教学平台现阶段的形势往往通过QQ对话、Email邮件、BBS及一些音频、视频系统进行。这些方式当然是有效的网络教学方式,但存在问题也是十分明显的,最主要问题在于如果没有提前联系,教师就不会及时回复学生提出的问题,缺少师生互动。学生的学习效果会大打折扣。

2 人工智能应用于远程教育的优势

2.1 人工智能的概念

人工智能是计算机学科的一个分支,是一门研究计算机模拟和延伸人脑功能的综合性科学,部分研究者将其定义为:一个电脑系统具有人类的知识和行为,具有学习、推理判断来解决问题、记忆知识和了解人类自然语言的能力。人工智能的产生过程:对于人类因问题和事物而引起的刺激和反应,以及因此而引发的推理、解决问题及思考决策等过程,将这些过程分解成一些步骤,再通过程序设计,将这些人类解决问题的过程模拟化或公式化,使电脑能有一个系统的方法来设计或应付更复杂的问题,这套能够应付问题的软件系统,称之为人工智能。

2.2 人工智能切合了远程教育的要求

有研究者指出:人工智能是研究如何构造智能机器(智能计算机)或智能系统,使其模拟、延伸、扩展人类智能的学科。人工智能在教学领域应用的最直接结果就是诞生了智能教学系统。而所谓的智能教学系统是以计算机辅助教学为基础而兴起的,它是以学生为中心,以计算机为媒介,利用计算机模拟教学专家的思维过程而形成的开放式人机交流系统。由于它综合了知识专家、教师、学生三者的活动,因此,与之相对应,智能教学系统一般分为知识库、教学策略和学生模型三个基本模块,再加上自然语言智能接口。人工智能的这些功能和模块刚好切合了远程教育的特点及要求。我们开展的远程教育一直以来就强调以学生为中心,以学生自学为主,教师辅导为辅,教师通过计算机网络系统对学生进行实时和非实时辅导,以此来完成学生的学习过程。因此人工智能适合应用于远程教育教学过程。

2.3 人工智能能够有效加强对学生的管理,提高学习效率

长期以来远程教育为社会诟病的是,由于缺少师生间直接交流的机会,造成教师对学生的组织和管理方面的困难。如果我们仅仅依据学生登录次数、登录时间等方面来评价学生学习情况,这样往往造成对学生学习的错误评价,但对远程教育的教师来说也只能做到这些。但如果我们将人工智能引入远程教育,它可以依据自己强大的功能,通过对学生情况的数据分析,科学提供学生的学习能力、认知特点及当前的知识水平。更为重要的是,通过对这些信息的分析,它能为每位学习者制定适当的教学内容和教学方法,为学生提供个性化的学习服务,切实提高学生的学习效率,这是我们远程教育所倡导的最佳服务的效果。

2.4 人工智能可以从某方面解决农村远程教育师资力量

如上所述,由于城乡间经济差距,造成了长期以来城乡教育发展失衡,广大农村地区师资力量较为薄弱,特别是远程教育方面。这一问题解决的根本途径在于缩小城乡经济差距,但这并非一朝一夕就能解决的问题。因此农村师资力量特别是远程教育师资力量的解决,需要一个过程。而人工智能技术利用了计算机模拟教学专家的思维过程而形成的开放式人机交流系统,它集知识专家和教师于一身。广大学员可以通过自然语言系统,实现正真意义上的人机对话,完成适时的学习辅导过程,这从某种程度上解决了师资短缺的问题,为农村远程教育的发展提供了一条新的发展思路。

2.5 人工智能能够有效解决农村远程教育资源建设问题

目前我国农村远程教育在资源方面存在的问题除了数量较少,质量也不高,许多网络课程资源仅仅是课本的翻版,虽然资源制作者利用现代资源制作手段,以文字、视频及图片等手段来展现知识,但知识之间的逻辑联系性方面存在不足。这给学习者有效学习带来极大不便,影响了学习效果。而人工智能技术,能够对现有的网络课程资源进行智能加工,对知识结构进行重新构建,对知识间的层次性、逻辑性进行重新编排,为学习者展示学习重点、难点,切实提高学习效率。使资源更加优质高效。

2.6 人工智能能够提供实时交流,解决网络教学平台的不足

由于人工智能集知识专家、教师与一身,可以通过自然语言系统,开展人机对话,通过讨论解决学生遇到的问题。能改变传统网络教学平台缺乏及时交互性的问题。能够解决网络教学平台的不足。促进农村远程教育的发展。

3 结语

人工智能技术是计算机科学发展的成果之一,它具有智能、高效、优化的强大功能,许多行业都利用人工智能技术提高效率。对我国农村远程教育而言,如果能将人工智能引入,能从某种程度解决因为资金问题造成的师资力量缺乏问题;提高对远程教育学生的管理,为他们提供个性化的高效远程教育服务;能够利用它强大的功能重新编辑网络资源,让它更有利于学生学习;同时人工智能还能提供自然语言接口,打破以往网络教学平台的弊端。相信通过引入人工智能技术,我国农村远程教育会迎来新的发展。

参考文献

[1]张震,王文发.人工智能原理在人类学习中的应用[J].吉首大学学报,2006(1):39-41.

[2]武晶晶.关于人工智能教育应用的几个问题[J].教育教学论坛,2012(9):159-160.

[3]张.人工智能与教育技术[J].陕西师范大学学报(自然科学版),2005(6):228-230.

[4]张小永.陕西农村现代远程教育资源建设初探[J].陕西农业科学,2011(4):228-230.

第3篇

关键词:新工科;人工智能导论;实践教学;校企合作;案例库

随着物联网、大数据、5G及人工智能等信息技术的发展,为了应对中国产业变革及新一轮的科技革命,适应“中国制造2025”国家战略需要及产业经济创新发展,同时将国际工程教育思想本土化,“新工科”应运而生[1]。信息技术发展催生出了人工智能相关的专业,国内高校纷纷设立了智能科学与技术专业。近年来,人工智能技术的发展引领着人类社会正逐渐走进智能社会,人工智能将深刻影响人类社会。随着人工智能的进一步发展,高等教育的价值也将进一步提高[2]。因此,各高校应尽快建立与新工科相一致的智能科学与技术专业,并深入研究我国人工智能的人才培养体系、课程设置、实验平台及成果转化等方法,改革传统人工智能的教育教学方法,形成有新工科特色的智能科学与技术专业工程教育方法。由于传统的专业是按学科划分的,因此,目前的智能科学与技术专业课程体系以理论为主,强调学科知识的系统性和完备性[3]。人工智能导论作为智能科学与技术专业的核心课程,同时也是人工智能“入门性”和“引导性”的课程。但是,目前人工智能导论的课程设置上主要存在课程内容陈旧、实践课程不足、教材理论过强、教学模式老旧及实践教学与企业需求不适应等问题。尤其是人工智能导论课程,缺乏实践教学将会降低学生学习人工智能的兴趣和积极性。因此,为了解决这些问题,并使高校跟上人工智能时代的脚步,抓住高等教育发展的新机遇,进行面向新工科的人工智能导论实践教学模式探索具有重要的现实意义。

1人工智能对新工科人才的新要求

1.1具备多学科交叉知识。人工智能导论是一个多个学科交叉而成的一门课程。人工智能导论主要包括知识系统、智能搜索技术、脑科学、机器学习、神经网络、支持向量机、专家系统、智能计算及分布式智能等内容[4]。因此,一个合格人工智能专业人才需要具备多学科知识。1.2具备多领域应用能力。人工智能导论的应用领域广泛,基本包含工业、农业及社会生活的各个行业(如工业生产、通信、医疗、金融、社会治安、交通领域及服务业等)[5]。人工智能导论课程要求学生在学好理论前提下也应该掌握各行业的相关知识,只有这样才能提高人工智能技术在各领域的应用。1.3具备人工智能创新创业精神。目前,创新驱动发展成为了我国现阶段发展的重要力量,人工智能成为经济发展的新引擎[5]。在大众创业、万众创新的号角下,人工智能技术作为创新创业过程中的一个大趋势。因此,当今新形势下培养具有创新创业精神的人工智能专业人才对我国经济发展及大学毕业生创新创业具有重要意义。1.4具备人工智能人文素养。人的内在品质就是人文素养,人文科学的知识水平和研究能力是人文素养的重要组成部分,人文素养是人文科学体现出来的以人为研究对象和中心的精神[6]。人工智能对人类社会带来的是便利还是带来灾难,关键是使用者的思想道德和人文素养。因此,培养具有人文精神的人工智能专业人才具有重要的意义。

2人工智能导论课程教学现状

目前,许多高校已经认识到传统的人工智能导论课程已经不能适应社会和学生发展的需要。尤其是地方普通高校在师资、科研及学科力量薄弱情况下进行人工智能导论的实践教学。目前人工智能导论的课程设置上主要存在的问题如下:⑴本科生课程内容陈旧。近年来,随着云计算、大数据、5G等信息技术的快速发展,也带动人工智能技术发展日新月异。对于高校来说,要紧跟人工智能技术前沿,传授学生的知识也要紧跟人工智能的发展。目前,虽然也出现了不少新的人工智能导论教材,但在课堂上能够教学的新内容仍然不多,教材内容仍然集中在传统的人工智能技术(如问题求解、知识表示、归结原理及经典推理等技术)上。⑵研究生课程内容重叠。研究生的人工智能导论课程应作为本科生课程的一个延续,但部分高校对研究生人工智能导论课程的教学重视不够。很多本科生已经学过的内容在研究生阶段又进行了重复。因此,在新工科背景下培养高层次的人工智能人才,就必须要在研究生阶段加强新工科人才实践能力的培养,选择合理的人工智能导论课程,改革研究生阶段人工智能导论的教学理念和教学模式。⑶实践课程不足。实践教学是提高人工智能新工科人才能力的重要路径。目前,大多数院校的人工智能导论课程理论与实践联系不够紧密,对学生实践能力的培养不够,只知道理论,而不进行实际的实践应用就不能成为合格的人工智能新工科人才。另外,大多数地方高校的人工智能实验室建设投入不足,实验条件差,验证性的实验较多,实验课时不足,学生对人工智能新技术的接触不够。⑷人工智能导论教材理论性过强。目前,现有的人工智能导论教材以理论为主,缺乏人工智能实践内容。在课程教学过程中学生经常会感觉索然无味,当实践课程开设不足时,这种情况会非常明显。学生会渐渐的对人工智能导论课程失去兴趣和热情,最终会导致课程的教学质量和效果下降,不能达到新工科人工智能专业人才培养的预期。⑸教学模式老旧。人工智能导论是多学科交叉的课程,课程内容理论性强、抽象、多知识点是新工科的特点。然而,大多数地方高校仍然采用过去的课堂教学模式(即“教师讲、学生听”的教学模式),这种单向灌输的教学方式以教师为主,学生的主动性不够,只是在被动接收知识。学校这种重视理论不重视实践的教学模式,在一定程度上影响了新工科人才的实践能力,从而导致教学内容与企业社会需求脱节。

3人工智能导论实践教学初探

3.1人工智能导论课程实践平台建设。为了提高学生对实践教学的兴趣,南阳师范学院计算机科学与技术学院在人工智能导论授课过程中广泛应用多种计算机实验教学平台,如采用开源的PaddlePaddle百度飞桨深度学习平台,希冀一体化人工智能实践教学平台及大数据综合实验平台。教师可以在实践教学过程中方便的使用这些平台进行授课,学生也可以在课堂中跟随老师完成相关实验,并能够在课下进行相关实验练习及提交作业。3.2人工智能导论课程实验内容优化。在人工智能导论实践教学过程中,以学生兴趣为导向,开展相关应用课程实验,南阳师范学院计算机科学与技术学院对人工智能导论实验课程内容进行优化。优化后的主要实验课程包括搜索优化算法实现、智能计算实现、贝叶斯分类实验、最近邻算法实验、机器学习实验及神经网络实验。最后,通过期末课程设计进一步提高学生解决实际问题及创新创业的能力。3.3人工智能导论实践教学模式改革。⑴校企合作为使人工智能导论实践教学不与企业脱节,校企合作是关键。应积极派遣教师进企业进修,了解企业需求,并提高教师的工程能力。从2018年以来,南阳师范学院计算机科学与技术学院每年暑假期间累积派遣教师58人/次前往百度、中兴、科大讯飞、神舟数码及江苏传智播客公司等进修培训。同时已经在固定时间邀请相关企业讲师到学校进行人工智能方面的项目教学。建立起了具有地方区域特色的师资队伍及校企协调的实践教学模式,从而避免人工智能导论课程实践与企业实际脱节。⑵“双导师”负责制人工智能导论实践课程实行“双导师”制,邀请企业中实践经验丰富的人才任教或任职,校企合作建立实践教师指导团队,改革教学策略及教学方法,以项目为牵引,将人工智能导论实践课程作为第二课堂学分。还要积极制定人工智能相关的科技作品竞赛的奖励机制,积极引导学生参加各种人工智能相关的比赛,从而进一步提高学生在创新实践方面的能力。⑶采用案例教学法以案例导入进行教学,提高学生兴趣。首先,从人工智能竞赛的部分赛事中、(如百度的人工智能大赛,“2020年全国人工智能大赛”,“2020中国高校计算机大赛人工智能创意赛”等)中选取贴近实际问题的案例作为人工智能导论实践课程的案例来源。然后,采用目前主流的人工智能开发软件进行算法代码的编写,引导学生采用Python语言调用第三方接口库进行算法的实现。最后,让学生使用主流的编程语言(如C++、Java等)开发完善算法或进行系统设计与实现。

4结束语

在新工科背景下,人工智能导论作为智能科学与技术专业的基础核心课程,人工智能人才培养应注重提高学生解决问题的能力。在这种背景下,笔者结合近年来了解到的企业需求和上课的实际,对人工智能导论实践教学模式进行初探,具体如下:①校企合作,构建人工智能实践平台;②建立案例库,优化实践的内容;③校企“双导师”制,采用案例教学,从而进一步提高学生在创新实践方面的能力。

参考文献:

[1]杨晴,王晓墨,成晓北等.新工科背景下的新能源科学与工程专业——哈佛大学工科教育在学科交叉方面的启示[J].高等工程教育研究,2019.S1:23-24,33

[2]李明媚,成希,罗娟.人工智能时代的高等教育之变与不变[J].黑龙江高教研究,2020.2:41-44

[3]陈义明,刘桂波,张林峰等.智能科学与技术专业课程体系建设的理论思考[J].计算机教育,2020.309(9):103-107

[4]刘永,胡钦晓.论人工智能教育的未来发展:基于学科建设的视角[J].中国电化教育,2020.2:37-42

[5]姚琳,石志国.人工智能课程体系与教学方法研究[J].中国大学教学,2019.10:19-22

第4篇

关键词:人工智能;教学改革;教学方法

引言

人工智能(ArtificialIntelligence)是一门研究和模拟人类智能的跨领域学科,是模拟、延伸和扩展人的智能的一门新技术。由于信息环境巨变与社会新需求的爆发,人工智能技术的日趋成熟。随着AI3.0时代的到来,大数据、云计算等新技术的应用也愈发广泛,对于管理类人才来说,加强对人工智能知识的深入学习,不断将人工智能技术与管理知识结合起来,对其未来职业生涯的发展有着重要作用。人工智能是一门前沿学科,管理学院开设人工智能课程的目的是为了更好地培养学生的技术创新思维与能力,基于其覆盖面广、包容性强、应用需求空间巨大的学科特点,通过概率统计、数据结构、计算机编程语言、数据库原理等基础课程的学习,加强学生解决实际问题的能力,为就业打下基础。本文基于社会对于人工智能领域的人才需求,结合诸多长期从事经管类专业课程教学的老师意见,针对管理类人才的人工智能课程教学内容与方法进行探讨,以期对中国高校人工智能课程教学改革研究提供帮助与借鉴。

1、教学现状与问题

作为一门综合性、实践性和应用性很强的理论技术学科,人工智能课程内容及内涵及其丰富,外延极其广泛。学习这门课程,需要较好的数学基础和较强的逻辑思维能力。针对管理类人才,该课程在课程教学过程中存在几个较为突出的问题。(1)课堂教学氛围枯燥目前,中国大多数大学仍采用传统的课堂教学模式,在教学过程中照本宣科,忽略与学生的互动,并且缺乏能够有效引起学生学习兴趣与加深知识理解的教学环节设置,如此一来大大降低了学生自主思考的能力。在进行人工智能相关课程知识讲解时,随着章节的知识难度不断增加,单向介绍式的枯燥教学方式无法反映人工智能学科的全貌,课堂讲解难以同时给以学生感性和理性的认知,部分学生因乏味的课堂氛围渐渐无法跟上教学进度,导致学习动力不足。(2)基础课程掌握不牢管理类专业的学生大部分都会走向更加具体化的管理岗位,具有多学科的素养,但这也导致很多学生所学知识杂而不精。学生在基础不夯实的情况下去学习更高层面的知识,给学生学习与老师教学都造成了很大困扰。人工智能课程知识点较多,涵盖模式识别、机器学习、数据挖掘等众多内容,概念抽象,不易学习。一些管理类专业的学生未能熟练掌握高等数学、运筹学、数据结构、数据库技术等先修课程,缺乏一定的关联思考和研究意识,导致课程学习难度增加,产生学时不足和教学内容难点过多的问题。(3)教学与实际应用脱节当下,人工智能广泛应用于机器视觉、智能制造等各个领域,给学生提供了大量的现实案例,使得人工智能不再是高深莫测的理论,而是现实中可以触及的内容。例如,在机械学科领域,人工智能技术是电气工程、机械设计制造、车辆工程等方向的重要技术来源;在医疗领域,是医疗器械的创新生产源动力;在能动领域,是高端能源装备与新能源发展的重要驱动;在光电信息与计算机工程领域,技术的发展时刻推动着智能科学与技术核心价值的提升。然而,对于管理类专业的学生来说,现阶段的人工智能教材涵盖许多智能算法及相关理论,在教学过程中常常涉及到很多从未接触过的抽象理论和复杂算法,书本中的应用实例大多纸上谈兵,缺乏专门适用于管理类专业知识与人工智能技术相结合的教学实践,加上一些教师授课方法单一,不利于引导学生将人工智能算法应用于现实生活。另外,大学生对知识的理解能力差异很大,教师采用统一的方式教给他们,这使一些学生无法跟上和理解,教师也无法控制学生的学习状况,导致学生缺乏动力。因此,如何结合学生的现实情况,提高他们的动手能力和实践经验也是人工智能课程教学要考虑的问题。

2、管理类人才的人工智能课程教学改进策略

课程教学改革是一项提高大学教学效果和人才培养质量的重要手段。如何在时代背景下应用新技术和新思想进行实施课程教学改革是高校亟待解决的问题。对于高校的教学工作而言,教学目标、教学内容和教学方式的变化不再是课程资源的简单数字化和信息化,而是充分利用时代信息资源优势的新型教学模式。针对管理类专业人工智能课程教学过程中存在的问题,可以从教学方法改进和教学内容设置两个方面进行课程教学改进。

2.1教学方法改进

教师对学生具有引领作用,其教学方法的改进能够带动学生改进自身学习方法。(1)启发式案例教学案例教学法就是教师根据教学目标、教学内容以及教学要求,通过安排一些具体的教学案例,引导学生积极参与案例思考、分析、讨论和表达等多项活动,是一种培养学生认知问题、分析和解决问题等综合能力的行之有效的教学方法。启发式案例教学以自主、合作、探究为主要特征,调动学生的学习积极性,并紧密结合人工智能领域的相关理论与方法,有效理解知识要点及其关联性,适用于管理类专业学生的教学。具体而言,高校基于其问题启发性、教学互动性以及实践有用性等特点,可以建立基于人工智能知识体系的教学案例库,虽然这项建设将极具挑战性与耗时性,但具有很强的积极效果:培养学生较强的批判性思维能力,更多地保留课程材料,更积极地参与课堂活动,对提高教学质量、培养具有人工智能背景的管理类人才具有重要意义。例如,通过单一案例教学,让学生掌握相关基础知识原理及应用;通过一题多解的案例使学生思考如何获取最有效的解题方法;通过综合案例的设计,启发学生全方位地探索问题的解决方案。(2)研讨互动式教学研讨互动式的各个教学环节是逐渐递进、有机结合的。研讨是基于学生个体的差异性,在课堂讨论的过程中对学生做出评判,从而对不同类型的学生开展针对性的教学。互动则是在研讨的基础上,通过老师与学生、学生与学生的互动,让学生主动参与到课堂教学的过程中来。在人工智能课程教学过程中,教师通过课堂讨论了解学生对于知识点的掌握情况,可以有针对性地设计教学内容,例如,对于学校积极性不强的学生,将人工智能理论内容与学生个人兴趣范畴、社会产业发展及研究现状联系起来,能够极大程度地提高学生学习的自主能力;对于基础知识较为薄弱的学生,可以在教师的指导下查阅相关文献资料,根据自己的理解撰写心得报告,并在课堂或课外进行师生互动。像这样研讨与互动相结合的模式。有助于增强学生的探索和求知欲望,建立起浓厚的学习氛围。(3)有效激励式教学人工智能是引领未来的战略性技术,人才需求量极大,对教师的教学水平也提出了更高要求,因此,进行有效激励极为重要。在学生激励方面,可以举办各类人工智能竞赛项目,设置相应项目奖学金,吸引学生参与实践,调动学生做研究、发论文的积极性。例如,教育部主办的中国研究生人工智能创新大赛,围绕新一代人工智能创新主题,激发学生的创新意识,提高学生的创新实践能力,为人工智能领域健康发展提供人才支撑。高校也可以借鉴这种模式,在各学院乃至全校开展此类竞赛项目,激发学生的创新能力与团队合作能力,鼓舞更多学生加入到人工智能课程的学习中来,激发其学习兴趣。在教师激励方面,在教师聘任和提升过程中把参加学生课程制定、课堂与课外作业、课程项目和论文指导等看作教学任务的一部分,鼓励教师积极参与这些活动。(4)学科渗透式教学人工智能学科知识融合程度较高,学科交叉性强。基于人工智能的学科交叉性特点,增强管理类人才对学科应用的领悟,可以采取开展学科渗透式教学的方法。从2015年起,国务院和教育部先后印发了《国务院关于积极推进“互联网+”行动的指导意见教育》、《高等学校人工智能创新行动计划》等文件,“互联网+”、“智能+”已经渗透到各个领域,人类进入数字经济时代,社会需求“技术+管理”的高端复合人才。例如,基于工业4.0和强国战略,人工智能技术在智能制造的应用极为广泛。上海理工大学非常重视少数民族预科班的教育质量。为增强少数民族管理类人才对该领域应用的认识,我们请机械工程、能源动力领域的相关专家以授课或讲座的形式,进行相关领域知识和发展趋势的讲解,使学生理解更为透彻。此外,在教学实践过程中,还可以用举办人工智能知识交流会、线上人工智能论坛等形式,促进不同专业间老师、学生对于人工智能知识模块的见解,相互交流、渗透和学习,从而推动人工智能课程教学的改进。

2.2教学内容设置

世界一流大学在人工智能课程内容设置根据不同国家的教育体系设置,肯定会有不同,但颇有共通之处。本文借鉴世界顶尖大学经验,针对管理类专业人工智能课程教学内容进行研究,结合中国教育体系设置,认为应从以下几方面进行改进。(1)核心内容设置为避免学生因为知识点过多而出现杂而不精的问题,势必要精化教学内容。在互联网时代,我们可以使用云计算和其他方式来实现数据信息的传输、存储和处理,通过在线收集和整合网络课程相关数据,挖掘和丰富教学资源,并在整合课程资源的基础上,进行研究方法和前沿知识的扩展。在核心内容设置方面,可以通过收集到的数据资料,选择人工智能领域具有代表性且难易程度适中的知识作为重点,使学生能够在有限的学时内掌握人工智能的知识脉络。例如,编写针对管理类人才的人工智能教材,内容涉及绪论、知识表示与推理、常用算法、机器学习、神经网络等方面的同时,重点增加相应知识点在管理上的应用案例,加强学生对知识点的理解。同时,根据管理类专业偏向领域,开设关联程度较大、应用较广泛的人工智能选修课程,以便学生根据自己的兴趣与需求选修具体方向的课程。(2)注重学生的数理及编程基础良好的数理及编程基础是学习人工智能的前提。只有具备了这些基础,才能搞清楚人工智能模型的数量关系、空间形式和优化过程等,才能将数学语言转化为程序语言,并应用于实验。管理学院人才的数理及编程基础相对薄弱,因此,在安排学生学习人工智能课程之前,建议开设面向全体管理类专业学生的微积分、线性代数、概率论等专业基础数学课程以及C语言、python等编程基础课程,使学生具备数学分析的基础与一定编程基础,为学习人工智能课程打下坚实的基础。另外,可以推进MOOC平台建设,在平台上开设人工智能网络课程,帮助学生掌握人工智能知识基础及专业技能。(3)实验建设为了加强学生对于人工智能知识点间的关联性理解,可以基于不同的应用模块,设计具有前后铺垫、上下关联的综合性实验,设计不同层次的项目要求,同时基于相同的实验课题,让学生分组对实验课题进行攻克,并设置多元化的实验评价体系,通过实验教学过程中反映出的不同进度,让教师能对学生的学习水平做出准确评判,及时进行教学反思,以便更好地开展下一步工作。例如,针对人工智能课程应用中很广的遗传算法,在某一管理规划的具体应用上设置理解-实现-参数分析-具体应用-尝试改进-深度拓展的不同层次的项目要求,在这些项目层次中规定必做项与可选项,让学生基于同一实验课题进行合作学习,然后通过个人自我评价、小组成员互相评价以及教师评价的方式进行打分,对小组整体能力以及个人能力进行综合评估,以期培养学生的自主思考能力。

第5篇

2016年1月,美国佐治亚理工学院计算机学院的教授AshokGoel,借助IBM的Watson人工智能系统创建了一个在线机器人JillWatson,并将其作为课程教学助理。其目的是帮助教师回答学生通过在线论坛提出的大量课程问题。通过几个月的反复调试,JillWatson的回答已经能够达到97%的正确率。现在,机器人助教已经可以直接与学生沟通,不需要真人助教的帮助。这项人工智能在教育中的使用,解决了AshokGoel教授的助教人数不够,难以及时回答学生提问的困境,增加了学生参与在线学习的兴趣,提高了在线学习的留存率。

这只是人工智能在教育领域的小试牛刀。虽然有专家预测在未来十年内不会看到人形机器人替代教师进入课堂,不过地平线报告2016年基础教育版和2107年高等教育版都预测未来五年内人工智能将会在教育行业普及。

教育行业已有的人工智能研究和应用

Woolf等人在2013年提出了人工智能在教育领域应努力解决“五大挑战”:①为每一个学习者提供虚拟导师:无处不在地支持用户建模、社会仿真和知识表达的整合。②解决21世纪技能:协助学习者自我定位、自我評估、团队合作等。③交互数据分析:对个人学习、社会环境、学习环境、个人兴趣等大量数据的汇集。④为全球课堂提供机会:增加全球教室的互联性与可访问性。⑤终身学习技术:让学习走出课堂,进入社会。

过去十年,一些研究者对人工智能在教育领域中的应用做了大量的探索。相关的研究成果包括:①跟踪学习者的思维步骤和解决问题的潜在目标结构(Anderson等,1995);②诊断误解和评估学习者的理解域(VanLehn,1988);③提供及时的指导、反馈和解释(Shute,2008);④促进高效学习的行为,如自我调节、自我监控和自我解释(Azevedo&Hadwin,2005);⑤以合适的难度水平和最适当的内容来规划学习活动(VanLehn,2006)。

这些研究,基本上使用到了人工智能的每一项技术——自然语言处理、不确定性推理、规划、认知模型、案例推理、机器学习等。“智能导师系统”就是基于这些研究和技术而开发的人工智能教育应用。类似的成熟产品包括Tabtor(hellothinkster.com)、CarnegieLearning(carnegielearning.com)和FrontRow(frontrowed.com)。2014年,加拿大西蒙弗雷泽大学的一项试验发现用智能导师系统的学习者比使用其他教学方法的学习者获得的成绩更高。

人工智能在教育行业的新发展

教育行业的三种类型(内容、平台和评估)的服务商都在经历着一场变革。内容出版商面临纸质印刷到数字出版和开放教育内容的挑战。学习平台正试图区分自适应、个性化和数据分析的功能。评估供应商则继续探寻从多项选择题测试转向更具创新性的问题类型。人工智能将为这三种类型教育服务商带来新的发展思路和契机,同时也惠及教育生态系统中的所有利益相关者。学生通过即时反馈和指导提高学习效率,教师将获得丰富的学习分析和个性化指导经验,父母能够低成本地为孩子改进职业前景,学校能够规模化提高教育质量,政府能够提供负担得起的教育。2017年,人工智能将在以下领域发挥其效益。

1.人工智能批改作业

批改作业和试卷是一件乏味的工作,这通常会占据教师大量的时间,而这些时间本可以更多地用于与学生互动、教学设计和专业发展。

目前,人工智能批改作业已经相当接近真人教师了,除了选择题、填空题外,作文的批改能力已经大幅提高。美国斯坦福大学已经成功开发出一种机器学习程序,能够批改8~10年级的作文。随着图像识别能力的大幅提高,手写答案的识别也接近可能。就连占有美国标准化考试60%市场份额的全球最大教育企业——培生公司也认为,人工智能已经可以出现在教室并提供足够可信的评估。据培生公司近期的报告IntelligenceUnleashed推测,人工智能软件所具有的广泛的、定制的反馈能够最终淘汰传统测试。

2.人工智能实现一对一辅导

自适应学习软件已经能为学生提供个性化学习支撑。据2011年VanLehn的一项研究发现,人工智能在某些特定主题和方法上比未经训练的导师更具有效性。进一步的研究发现,人工智能导师能在学生出错的具体步骤上给予实时干预,而不是就整个问题的答案给予反馈(Corbett&Anderson,2001;Shute,2008)。

自适应学习在拉美地区正在兴起。AndréUrani市政学校的学生使用人工智能软件Geekie观看在线课程(视频和练习)。Geekie为学生提供每一步的实时反馈,并随着学习的进展来传授更为精细的课程内容。

早在1984年,本杰明·布卢姆的研究就提出一对一辅导能带来更好的学习效果。而人工智能技术可以模拟一对一辅导,以更好地跟踪、适应和支持个体学习者。这将是人工智能在教育中更高层次的个性化学习应用。例如,比尔·盖茨看好的人工智能聊天机器人或个人虚拟导师,能在学生面临挑战时提供强有力的支持,随时随地回答学生的提问;还可以为学生订制学习方案和规划职业发展路径,并引导学生走向成功。更重要的是,人工智能可以匹配聊天机器人或虚拟导师的面孔和声音来满足学生个人喜好。对比网页界面的自适应学习系统,这才是真正做到了一人一导师。

3.人工智能关注学生情感

2016年地平线报告高等教育版把情感计算列为教育技术发展普及的重要方向。也就是说,人工智能不仅限于模拟人类传递知识,还能通过生物监测技术(皮肤电导、面部表情、姿势、声音等)来了解学生在学习中的情绪,适时调整教育方法和策略。例如,机器人导师捕捉到学生厌烦的面部表情时,就可以立即改变教学方式努力激发他们的兴趣。这种关注情感的人机交流为学生营造一个更真实的个性化学习环境,更好地维持了学习者的动机。美国匹兹堡大学开发的AttentiveLearner智能移动学习系统就能通过手势监测学生的思想是否集中。突尼斯苏斯国家工程学院的研究人员正在研究开发基于网络的人工智能教学系统。该系统能够识别学生在任何地方开展科学实验的面部表情,以优化远程虚拟实验室的教学过程。

进一步的研究发现,人工智能还可以关注学生的心理健康。当前已经有使用人工智能来为自闭症儿童提供有效支持的案例。例如,伦敦知识实验室在Topcliffe小学开展试验,让自闭症学生与半自动虚拟男孩安迪开展互动交流,研究人员发现患有自闭症的学生在社交能力方面有进步。

4.人工智能改进数字出版

教科书等课程材料并非总是完美,传统印刷出版让课程的修订变得过于缓慢。这不仅是生产工艺的问题,更主要的是纸质课程材料无法快速获取使用者的反饋来识别缺陷所在。而数字化出版在人工智能的支撑下能彻底改变这一现状。

人工智能可帮助使用者快速识别课程缺陷。大规模网络开放课程Coursera的提供者已经将这一想法付诸实践。当发现大量学生的作业提交了错误的答案时,系统会提示课程材料的缺陷,进而有助于弥补课程的不足。

另一项人工智能在数字化出版的应用是自动化组织和编写教材。这是基于深度学习系统能模仿人类的行为进行读和写。ScottR.Parfitt博士的内容技术公司CTI就依据这项技术帮助教师定制教科书——教师导入教学大纲,CTI的人工智能引擎能自动填充教科书的核心内容。

随着自然用户界面和自然语言处理在人工智能领域的成熟应用,课程材料的数字化出版也会有更新的形态——不再局限于书本或网页的形式,聊天机器人和虚拟导师将成为内容表达的更好的方式。

5.人工智能作为学生

多年的研究表明,教会别人才是更好的学习,即learning-by-teaching。美国斯坦福大学教育学教授DanielSchwartz正基于这一理念来开发新的人工智能产品。他联合了多个领域的专家一起开发了人工智能应用——贝蒂的大脑(Betty’sBrain),让学生来教贝蒂学习生物知识。试点研究发现,使用这一方法来学习的学生比其他学生成绩更好,且在科学推理上也更胜一筹。

类似的研究和开发还有瑞典隆德大学的TimeElf和美国卡内基梅隆大学的SimStudent,这两个人工智能产品也是基于learning-by-teaching而开发,让学生在教会机器人知识的过程中深化对知识的理解。

另外,人工智能还推动其他教育方法和技术更好实现。如让虚拟现实学习环境更具沉浸感;给学生带来更多动手实践的机会;提供基于丰富学习分析的仿真和游戏化学习场景等。

第6篇

关键词:人工智能;高职;技能培训

一、人工智能概述

人工智能(Anificail Intelligence)是指利用计算机软件技术与自动化处理的技术,让计算机能够模拟与扩展某些人类特定智能的学科,最近几年来发展非常迅猛,在智能接口,数据挖掘,主体系统等方面取得了丰硕的成果。智能接口技术是研究如何实现人类与机器的便利沟通,现在已经实现了文字,语音,自然语言理解等方面实用化的功能。数据挖掘则是如何从大量不完备的数据中自动生成可应用的知识的技术,在大数据时代里将会有非常广泛的应用;主体系统则是指的让计算机具备愿望,能力,选择等心智状态的实体,实现计算机的自主性。从当前的应用发展趋势来看,在未来的5~10年内,人工智能将会应用在教育,医疗,管理,生产等绝大多数的社会领域中,将推动社会的全面发展与进步。在本文中,作者将以高职技能教育为切面,分析人工智能在该领域内应用的前景,并提出建立一套基于人工智能的高等职业技术辅助教学系统的思路,方便进行人工智能应用的相关人士研究与借鉴。

二、人工智能在高职教育教学领域的典型应用及其不足

将人工智能应用到教育方面是很久以来的教育现代化的热点,从最近几年来的人工智能在教育方面的应用来看,主要有三种应用的层面:一是智能计算机辅助教学(ICAI),它是将人工智能的技术引入至CAI系统中来,实现更加智能化的教学支持,减轻教师的工作量。二是智能,即让某些特定的课程与教学的内容,由人工智能来取代教师进行授课,即时答疑,提高教学的效率;三是智能数据库,对于课程相关的网络教学资源数据库,应用人工智能的方法进行数据分析,提高数据库的访问速度与交互功能,便于快速搜索与整理数据。但是对于高等职业技能教学来说,上述的三大应用领域还有些不够契合,主要体现在如下的方面:

(1)对于学习者的活动流程的监控与记录能力不够。传统的CAI系统,侧重于对理论思维知识的辅助教学,而对于学习者的身体活动的记录能力不佳,这样无法即时准确地保存技能学习过程中与身体活动相关的数据。众所周知,技能的教学是与学习者身体的活动相关联的,行动数据的获取量不足就会导致无法对学习者的技能及其效果进行评估与纠偏。

(2)与使用者的交互功能不佳。传统的人工智能交互是文本与图像,虽然简单直观但形式单一,还无法通过生动的语音和动作与使用者进行交互。这样在教学辅助方面的效果不尽如人意。

(3)智能水平有待于提升。现代的人工智能辅助系统,虽然已经能够实现教学数据的排序、统计、汇总等简单的操作,但是离真正智能化的工作还有一定的差距。系统无法根据学生操作的具体情况做出个性化的情况统计分析,提出个性化的建议。在即时交互方面也还有很大的提升空间。

三、高职技能辅助教学系统的设计思路

针对上述教学人工智能应用的不足,结合高等职业技术学校的教学情况,特地提出一套人工智能辅助系统的设计思路:

(1)使用高级的智能接口技术实现行动数据的采集。

智能接口是为建立和谐的人机交互环境,使得人与机器之间的交流像人与人之间的交流一样自然和方便。学习者在进行练习的过程中,无法像传统的人机交互方式一样将数据录入至计算机中,而是需要智能系统通过摄像头,运动传感器等等高级的智能接口技术来感知学习者的活动,对活动进行分析与统计,并转化为大数据存放至海量数据库中。至于具体采用哪种智能接口技术,需要根据具体的学习内容而定。

(2)应用专家系统对于学习者在技能操作中产生的大数据进行分析。专家系统是目前人工智能领域最有实效的一个领域,它是利用人工智能的技术让计算机能够实现特定领域内的大量知识与经验的系统。利用它来对技能学习过程中产生的大数据进行分析和挖掘,从中提炼出具有个性化的知识体系,发现学生与老师都没有发觉到的某些特殊的学习状态,能够为进一步的学习反馈做好充分的准备。这样可以使得学习的针对性更强,效率更高。

(3)使用智能检索与生成技术对于分析结果进行输出与展示。通过使用人工智能的检索系统,可以快速地对分析的结果进行展示,可以利用网络的环境,用生动形象的方式将结果展现在学习者或教师面前,方便掌握学习的过程。

四、辅助教学系统的应用展望

通过应用了上述的基于人工智能的辅助教学系统,将对于高职院校的教学产生非常强大与积极的影响。首先,该系统可以将教师从重复机械的日常教学环境中解放出来,不再通过传统的测验,考试,交流等方式获知学生的学习状态,由系统监控学习者在技能培训过程中的一举一动,自动进行学习效果的定性与定量的分析,积极地反馈给教师,从而使得教学更具备了明确的方向。其次,该系统也会增加技能教学的趣味性,将培训的活动转化为类似于电子竞技的效果,学生在学习的过程中随时可以观察到自己的学习状态,以及与其他同学的差异,更能够培养自学的能力。第三,该系统可以与现有的高职院校校园网实现无缝的对接,将全院校的数据进行统一的智能加工与挖掘,可以更加方便高职院校的管理工作,也可以方便地扩展成为完备的高校智能管理系统。

参考文献:

[1]邱月,人工智能技术在计算机辅助教学中的应用[J].福建电脑,2007(08).

第7篇

当前高职教育中为计算机专业学生所开设的人工智能课程很大程度上沿用了普通高等教育环境下的教学方式和内容,这显然与高职教育本身培养人才的目标和方式不一致。高职教育的最终目标是要培养适应生产需要的技能型、应用型人才,而高职教育在教学方式上应更为注重实践教学,包括各种实验、实训、实习和设计。因此,人工智能课程中单纯的理论讲授并不能有效地适应高职教育的实际教学环境要求,有必要对人工智能课程在教学内容和方式上加以改革。三个改革途径(一)引导学生阅读应用研究文献

高职教育强调培养学生的知识应用技能,其中重要的一点是要培养学生把理论知识应用到实际生产中的能力。然而在教学实践过程中,学生普遍反映由于人工智能课程理论性强,难于从课本理论联系到实际的专业应用上,这样对激发学生的学习兴趣,提高技能应用水平是不利的。

实际上,人工智能涉及的应用领域极为广泛,其中在专家系统、模式识别、智能控制、数据挖掘、自然语言理解等方面尤为突出,每一种应用都能够很好地体现出人工智能学科的基本理论方法特点。因此,在课程学习的开始阶段,应让学生按照个人兴趣自行选定某个应用领域,在一定的提示和引导下通过检索有关文献,访问相关的科研院校网站等方式获取资料,了解当前该领域的发展现状和具体产品的开发和使用情况,最后在课程的结束阶段以学习报告的形式在课堂上加以演示和共同讨论,这样可以大大激发学生学习人工智能课程的主观能动性,开阔学生的知识视野。资料的收集阅读与思考是知识应用的首要环节,对于培养应用型人才的知识应用技能很有帮助。(二)安排学生对经典算法程序进行实验

与普通高等教育相比,高职教育更加强调实践教学的重要性。从实践中学习和理解理论知识,并且把所学知识运用到实践中,这是高职教育的重要特点。人工智能课程内容抽象而概念性强,单纯的理论讲解学生难以从中得到启发,也难以体现出高职教育突出实践教学的特点,为此需要安排学生动手实验,从实践中理解人工智能科学的理论原理和应用途径。

在人工智能科学的发展过程中,先后提出了一些经典的优秀算法程序,如A*算法、遗传算法、神经网络的BP学习算法等,在科研和工程实际中得到了广泛的应用,在实践教学中同样有着重要价值。根据教学要求和实际情况,学生并不需要自行设计关于这些算法的具体程序,在提倡开放和共享源代码的今天,通过网络能够获得大量相关的程序代码资源。同时,一些软件平台也集成了一些工具箱,如遗传算法工具箱、神经网络工具箱等,只需设定相关输入参数和数据,便可通过调用工具箱函数实现算法,极为简便而易于理解。

学生应通过对这些程序作验证性实验来理解所学内容。为安排学生有效地进行实验,教师应结合当前阶段所讲授的内容准备相应的算法程序,当该部分内容结束后在课堂上讲解和演示算法程序的运行方法。学生获得该算法程序以及具体的实验任务后在课后完成实验并提交实验报告。

例如,在讲授启发式搜索时,可向学生提供A*算法求解八数码难题的算法程序,并对某个学生给定某个初始棋盘状态,要求学生动手运行程序并记录由算法扩展所得的每个棋盘状态的估价函数计算结果,以及相应的OPEN表和CLOSED表的变化情况,从中理解A*算法的原理特点。又如,在讲授BP学习算法时,可根据学生的实际情况对内容进行调整,强调BP神经网络的实际工程应用价值,而对BP算法的基本原理只作简单介绍。向学生提供利用BP神经网络学习特定目标函数的MATLAB程序代码后,要求学生动手运行该程序,并且记录和对比神经网络在训练前后对目标函数的逼近效果。

(三)启发学生引入人工智能理论方法对毕业设计加以创新

毕业设计是高职教育的重要环节,学生通过毕业设计对以往所学知识作系统性总结,通过毕业设计能进一步加强学生的技能训练,提高学生的技能应用水平。从实践教学的角度来讲,毕业设计不仅仅要求学生对已学知识和技能的简单重复运用,更重要的是强调学生能够主动独立地分析实际问题,对问题的解决方法提出新的观点并付诸实践。然而从教学的实际来看,在毕业设计中学生创新的主动性不足,往往停留在继承和模仿阶段,毕业设计作品少有突破和创新。究其原因,并非学生所学知识和技能不足,而是学生未懂得如何分析已有问题,在其基础上引入新的解决方法或提出新的应用内容。

第8篇

1 引言

能够透彻地了解人类智能行为产生的机理并制造出可以模拟智能行为的智能机,是人类长久以来一个美好而强烈的愿望。从世界各国的古老传说到近代科学的不断尝试,都表明了人类希望征服自然进而征服自己的决心。人工智能学科的出现及迅速发展,为这一愿望的实现带来了希望的曙光。它的研究延长了人脑的功能,深化与拓展了人类的智能劳动,使科学技术革命的发展速度空前。目前,人工智能(Artifical Intelligence,简称AI)已被应用到社会生活的各个方面并已取得了令人瞩目的成就。

虽然体育实用计算机科学在短短十几年中已经取得了迅猛的发展并有力地促进了体育事业的进步,但是,我们也不得不冷静地看到,体育实用计算机技术还远远滞后于计算机科学的发展,在以“知识工程”为主的人工智能诸学科取得巨大成功的时候,体育实用计算机技术还在坚持“数据结构+算法=程序”的传统程序设计方式,显然已是大大落后于时代了。怎样在系统分析的基础上有步骤、有顺序地将计算机科学的最新发展成果应用到体育领域中来,从更大程度上挖掘计算机科学的潜能从而促进体育科学再上新台阶,就成了体育科研工作者一个重要的课题。本文分析了体育实用人工智能的现状,展望了体育实用人工智能的未来。目的是引发广大体育工作者对体育实用人工智能的兴趣,吸引更多的人参与到这项工作中来。

2 人工智能及其解题思路

人工智能是一门前沿学科,是在计算机科学、控制论、信息论、系统科学、哲学等多种学科基础上发展起来的。它的出现及所取得的成就引起了人们的高度重视,从而被称为是继第三次产业革命之后的又一次革命。尽管如此,目前还没有一个关于人工智能的确切定义。我们可以这样理解:人工智能是一门研究如何构造智能机器(智能计算机)或智能系统,使它能够模拟、延伸、扩展人类智能的学科。通俗地讲,人工智能就是要研究如何使机器具有能听、会说、会看、会写、可思维、会学习等人类思维能力的一门科学。

人工智能的研制者通过知识获取过程将专家知识变成计算机可以识别的代码(知识库),然后通过计算机程序设计使计算机模拟人类所特有的推理思维过程(挑选知识的过程),从而完成只有人类才能解决的智能问题。由于人工智能可以融合多个专家的知识并吸取了人类的直觉和经验,所以,人工智能更适合于解决现实中需要人的思维判断而难以量化的问题。对于体育领域而言,不论是运动员的选材、训练计划的安排、运动处方的制订还是运动技术的诊断,体育专家的知识和经验都有着举足轻重的作用,如果智能系统可以完成这些工作,对体育科学的发展将产生深远的影响。

3 体育实用人工智能的现状

象所有处于发展之初的学科与研究方向一样,人工智能与体育科学的完全交汇融合还有相当长的路要走,还需要我们保持清醒的头脑,采取实事求是的系统分析方法来对待它。惟有如此,我们才会既能发现不利因素而不至于盲目乐观,又能看到有利条件而不至于悲观失望,才能有的放矢地把握体育实用人工智能的发展进程。

3.1 体育实用人工智能发展过程中的问题

1.对大多数体育工作者而言,人工智能技术还相当高深,它需要开发者不仅具备专项知识,还必须具备系统工程、软件开发等多个领域的综合素养。这些条件不仅对缺乏计算机操作能力的许多工作者来说十分苛刻,即便是具有一定计算机应用水平的科研人员,对知识工程理论与方法的缺乏也会使其成为人工智能的门外汉。智能系统的核心和基础是人类的知识和经验,要想开发智能系统,就必须从传统的以数值计算为中心的程序设计转变到以知识符号处理为中心的程序设计上来。这种思维与观念的转变显然不是轻而易举的。此外,智能系统的开发是一个复杂的、旷日持久的系统工程,不仅需要相当的技术和足够的软、硬件支持,而且需要开发人员长期、艰苦的努力。与那些更易在短期内取得成果的研究方向相比,体育实用人工智能技术的研究可能更容易被人们所忽略。

2.人工智能与体育科学两学科发展的相对独立性阻碍着两者的交汇融合。掌握人工智能技术的科研人员还没有看到其在体育领域应用的广阔天地,人工智能的应用成果还集中在工业控制领域、社会经济系统或军事决策过程——相对来说,这些领域更易取得明显的经济效益和社会效益。体育实用人工智能研究的巨大潜力还没有被挖掘出来。与此同时,相当一部分体育工作者还在沿袭着传统的以“经验技能”为主的教学、训练模式,保守的思想也使他们看不到或是轻视或是不愿接受科技发展的新成果,这就加大了体育实用人工智能普及的难度。总的来说,相互渗透、相互吸引是两者的必然趋势,但目前人工智能与体育科学仍处于若即若离的境地,两者的交叉还需要一个强有力的桥梁和纽带。

3.人工智能技术本身的不完备性。尽管自80年代以来,对机器学习、分布式人工智能、知识表示、常识推理等基础性研究取得了可喜的成果,特别是人工智能的重要分支——专家系统的应用研究成果已取得了重大突破,但是从总体上来看,人工智能距其完善还有相当长的路要走。我们不得不看到,人工智能的大部分分支,如自然语言理解、模式匹配、可视化研究等等都还不完善、不成熟,许多研究成果还仅仅停留在实验室和书面报告里,并没有转化到应用上来,即使是在专家系统中,专家知识获取这一“瓶颈”技术也阻碍了它的进一步发展。

此外,我们也不得不考虑一下计算机软、硬件和资金方面的限制。一般一个大型的智能系统的开发需要强有力的计算机软、硬件支持和足够的资金投入,基本上以个人微机为主的体育科研及捉襟见肘的体育科研经费可能会从很大程度上限制着体育实用人工智能的发展。

3.2 体育实用人工智能发展的有利条件

尽管一系列理论与实际问题阻碍了体育实用人工智能的发展,但是我们也没有理由对体育实用人工智能产生悲观情绪,更多、更有利的条件则为人工智能技术在体育领域的应用开辟了道路。

1.计算机技术在体育领域的广泛应用以及它对运动成绩的巨大推动力,已经使越来越多的人们认识到程序设计的美妙前景。显然,体育实用计算机程序的设计就是对体育工作者脑力劳动的解脱。这不仅仅是已尝到程序设计甜头的教练员和运动员的迫切要求,也是广大体育科研人员的努力方向。

2.近年来,我国的体育教育,特别是高层次的体育教育取得了很大的进展,培养出一大批年富力强、有很强科研能力的硕士和博士研究生。他们大都具有较强的计算机应用能力和学习能力,对他们来说,掌握人工智能技术也并不是遥不可及。青年体育科技工作者的不断发展与壮大,为体育实用人工智能的发展提供了必要的人才支持。

3.“全民健身计划”的推广与实施,不仅使我国的群众体育走上了正规化的道路,而且吸引着越来越多的人参与到体育活动中来。这其中当然包括人工智能领域的研究人员,他们会在锻炼中逐渐认识体育、了解体育、发现体育中的问题并不断尝试用本领域的技术方法来解决它(事实上,许多行之有效的体育实用方法和技术都是非体育专业科研人员引进到体育领域中来的)。人工智能会象现在已经在体育领域得到广泛应用的灰色理论、模糊数学、系统工程一样,逐渐地被广大体育工作者所承认、理解和接受,进而逐渐渗透到训练、选材、规划、教学等日常的体育工作中。因此,“全民健身计划”的出台与推广,又为体育实用人工智能的发展创造了有利的外部环境。

此外,体育科研触角的不断伸展、体育科技投入的逐渐增加、体育科研人员素质的不断提高和人工智能技术的不断完善,都会在一定程度上加快体育实用人工智能的步伐。

4 体育实用人工智能的发展方向

就目前人工智能领域而言,人工神经网络技术与集成分布式智能系统是研究的热点。前者是以研究大脑的结构和认知模型为主,用以对智力活动进行模拟或处理海量信息。后者是一种大规模的集成环境,即把各种不同的专家系统、神经网络、数据库、数值计算软件包和图形处理程序进行有机集成,以解决复杂问题,是“大成智慧工程”。虽然这两者也可作为体育实用人工智能的研究方向,但对当前体育领域而言,应用性研究,即将各种已经成熟的智能技术应用到体育实践中来,有着更加重大的现实意义。

4.1 各种体育实用专家系统的开发与研制

专家系统是利用具有相当数量的权威性知识来解决特定领域实际问题的计算机程序系统。它根据用户提供的信息、数据或事实进行自动推理判断,最后给出结论及结论的可信度以供用户决策之用。之所以选择专家系统做为体育实用人工智能研究的突破口,是因为不论从理论上、技术上,还是从应用上,专家系统都可以算得上是人工智能最成熟的一个分支。一些成功的专家系统开发实例(包括已开发的体育实用专家系统)可以提供技术支持,各种理论研究又使开发过程有章可循。体育实用专家系统的开发,能够促使体育实用人工智能不断地从抽象走向具体,引导体育工作者循序渐进地了解和掌握智能技术,逐渐开发出智能化程度更高的智能系统来。惟有如此,才能符合事物发展的客观规律,才能保证体育实用人工智能健康、有序地发展。

4.2 体育领域自身智能技术研究人员的培养

由于受知识和技术的限制,在很长的一段时间内,体育实用人工智能的发展还必须依靠人工智能领域人员的引导。然而,只有培养出体育领域自身的智能技术研究人员,体育实用人工智能才会有光明的前途。新一代的开发人员,我们可以称其为智能工程师,应该首先是一个体育工作者,并已具有相当程度的体育专业知识和体育运动实践,再通过人工智能技术的学习和训练,就可以单独开发出自身领域高质量的智能系统。智能工程师及其工作,为人工智能技术向体育领域的渗透提供了必要的前提条件。

4.3 体育实用人工智能的基础理论研究

虽然体育实用人工智能技术和方法研究十分重要,而且往往能够在较短的时间内取得明显的效益,但是它们却根植于基础理论的研究,脱离了基础理论,技术和方法就会变成无源之水、无本之木。体育实用人工智能也只是昙花一现。知识只有形成体系,才能成为科学,一系列的技术只有被理论所串接和揉合,才会具有持久的生命力。因此,加强体育实用人工智能的基础理论研究(包括运动智能和竞技心理的形成、发展规律、技能知识的表达方式、体育专家的思维推理过程研究、技能知识的传递方式研究等),是这一新生学科存在和发展的根基所在。

5 结束语

体育实用人工智能离成熟还有很长的距离,还存在着一系列的问题,但同时又充满着希望,为迎接这一机遇与希望共存的挑战,广大体育工作者需要沿着正确的方向做出艰苦的努力。

主要参考文献

1 刘泉宝,等.关于人工智能的哲学思考.计算机科学,1995(2)

2 石纯一,等.人工智能原理.北京:清华大学出版社,1993

3 陆汝钤.专家系统开发环境.北京:科学出版社,1994

4 王永庆.人工智能—原理*方法*应用.西安:西安交通大学出版社,1995

5 刘有才,等.模糊专家系统原理与设计.北京:北京航空航天大学出版社,1995

6 Ming Rao,等.智能工程与控制技术:历史、发展与未来.控制与决策,1994(1)

7 高扬.体育院校课表计算机辅助编排系统的开发与应用.体育数学与体育.系统工程,1995(1~2)

8 程勇民,等.射击运动员肤纹特征及计算机选材模型的研究.体育科学,1995(5)

9 邵桂华,等.体育领域专家系统外壳的开发与研制.体育科学,1997(3)

10 邵桂华,等.赛艇项目技术诊断专家系统的开发与研制.系统工程,1997(4)

第9篇

1.1确保网络系统的稳定运行

在网络技术的管理中,有关工作者务必检测与控制一系列不同的网络资源,这样才能够保障网络运行的稳定。在此过程中,应有效把握系统资源的状况,并且进行合理分析,如果存在异常,需要异常关注,强化状态监控。通常而言,网络系统的运行状态都是高速化的,这就要求综合把握网络系统每时每刻的情况,人工智能可以有效地确保网络系统的稳定运行。

1.2具备非常强的协作能力

当今,计算机网络的规模日益庞大,系统结构日益复杂化。因此,单一管理网络系统越来越暴露出缺陷,这不利于计算机网络技术的进步,应用人工智能技术能够层次化地管理网络,确保计算机网络运行的稳定性.

1.3具备高效的非线性处理能力

以之前的网络控制理论作为视角而言,难以高效地管理计算机网络安全,这是因为网络系统具备复杂的拓扑结构,较难估计用户的操作行为,进而难以保障网络管理中的高度线性管控。人工智能具备非常强的模拟以及学习技能,因而能够有效地解决非线性问题。

2人工智能在计算机网络技术中的具体应用

人工智能在计算机网络技术中的应用,需要技术工作者在把握人工智能发展现状基础之上,坚持实用性与科学性的原则,基于多个维度出发,根据计算机网络技术的发展趋势和方向,促进高效、科学地应用人工智能技术。

2.1人工智能在计算机网络安全监控中的应用

在控制环节中应用人工智能技术,有效地实现了当前时期管理计算机网络工作的需要,在管理工作中应用控制技术的流程是系统化的。具体而言,应用人工智能控制技术先应采集和处理数据信息,在此过程中,以特定的形式储存有关的数据,方便之后提取与应用。为了便于应用信息和管理工作者实施人工操作,要求设置控制界面,以使良好的人机交互界面形式形成。并且,为了有效地处理突发的计算机网络管理现象,在人工智能控制组成部分中,应优化报警和监控部分,以实时监控计算机网络的一系列运行环节,保障如果存在运行缺陷,人工智能控制技术可以迅速和及时地进行识别,保障监控有效性。针对管理时存在的报警情况,能够以图像、电话、语音信息输出报警信息,通过各种各样的报警方式,提高了报警工作的有效性,管理工作者能够结合报警信息,实时解决一系列突发现象,以使技术损失减小。还能够应用人工智能控制技术设定权限,各种管理工作者因为工作岗位职责或管理工作水平存在不同之处,所以在设置管理权限的基础上可以有效防范管理工作者管理失误形成的风险。并且,也方便管理计算机网络管理工作者自身,以贯彻实施管理职责。

2.2人工智能在计算机网络数据处理中的应用

应用人工智能技术可以显著提高计算机网络处理数据的能力,人工智能技术能够进行计算机科学预测和动态模拟,进而以技术上支持开展一系列网络管理事宜,特别是针对预设性管理事宜,方便管理者进行管理活动,降低了额外投入的管理成本,奠定了之后处理数据和其它有关管理工作的良好基础。为了更好地在计算机网络数据处理中发挥人工智能技术的优势作用,工作者应立足于实际现状,切入人工神经网络,结合建构的人工神经网络机制,有效预测和处理一系列的网络信息。具体而言,人工神经网络可以结合实际运行的计算机网络状况,迅速取得网络运行的重点参数,且对比网络标准跟取得的参数,再输出对比结果,从而直观呈现计算机网络。通过神经元件的阈值和连接权衔接输出值、输入值,以使最理想的拟合函数形成,基于人工神经网络框架体系下,可以高效处理计算机网络运行中的一系列中心数据,特别是在阅读计算机网络中一系列技术参数和设备运行状况的基础上,确保人工智能技术可以迅速地预测管理过程中存在的缺陷,且高效设置应对缺陷的方案,此操作因为要求运算很多数据,为此,应前移数据信息处理工作,以建构计算机网络预测网络和动态模拟网络。

2.3人工智能在计算机网络模型中的应用

纵观实际运行的计算机网络状况而言,遗传算法相比较于其它算法,其也属于一种计算机网络数值模型,具备的优势是处理信息高效、模型简单等,并且属于一种人工智能被应用于计算机网络模型当中,从某种意义上来讲,遗传算法使智能化的模型实现。针对一些潜在的问题,遗传算法可以迅速地实施综合梳理和评估,提高了处理数据的有效性。在实际建构模型时,技术工作者应先调整编码环节,在优化编码的基础上,从技术上支持实现遗传算法,基于该思维模型的引导之下,工作者务必有效设置数学模型,以体现编码的价值。具体而言,在设置数学函数模型时,应兼顾计算机网络的评估适应性和初始状况,在处理以上两种数据信息的前提条件下,尽可能更科学地提升遗传算法评估计算的准确性。兼顾到遗传算法的技术特点,在管理计算机网络的情况下,能够耦合处理地理信息系统和遗传算法,结合地理信息系统的空间属性,实现遗传算法处理空间数据效果的持续提高,很好地发挥储存数据、分析数据、管理数据环节上遗传算法的价值,从而建构高效化的数据处理体系,真正使当前时期发展计算机网络的需要实现,将尤为高效、便捷的用户体验提供给用户。并且,切入遗传算法,可以实时监管计算机网络的工作状态,对于网络的运行而言,倘若存在有关的问题,工作者可以结合遗传算法迅速获得反映,从而奠定检修和排除故障的良好基础,以及实现计算机网络故障出现概率的显著减小,保障网络更加稳定地运行。

2.4人工智能在教育领域中的应用

在当今改革教学的进程中,课堂教学中业已日益普遍地应用先进的互联网技术。教育教学中应用人工智能技术,可以很好地激发学生的学习兴趣以及学习积极主动性,因而可以实现教学效率和质量的提升。结合当前时期的应用现状而言,人工智能的应用重点表现为早教方面,尤其是出现的AI智能机器人,推动早教向一种全新的教学视角转变,使教学并非仅仅限制在教材文本上。除此之外,互联网与人工智能的统一,还可以实时处理课堂教学中的一些问题,针对难以解答的问题,能够迅速、准确地搜索,从而实现更加理想的教学效果。

2.5人工智能在大众生活中的应用

基于社会经济的进步,人工智能技术业已逐步应用于人们平时的生活过程中,像是智能家居的出现大大方便了人们的生活,实现了人们高层次的生活需求。像是当今经常见到的窗帘智能控制、灯光智能控制,以及存在的智能家居远程控制系统等,都很好地呈现了人工智能的优势作用和极大的便捷性。因此,在人工智能将来的发展中,大众的生活中必将普遍地应用人工智能技术,从而将尤为优质的生活服务保障提供给人们。

相关文章
相关期刊