时间:2023-09-21 16:39:01
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇化学与材料工程专业范例。如需获取更多原创内容,可随时联系我们的客服老师。
关键词: 高分子材料与工程专业 有机化学 教学现状 教学改革
有机化学是化学学科中的一个十分重要的组成部分,它的主要研究对象是有机分子,从有机物结构入手,研究有机化合物的化学性质,在分子水平上探知未知世界的基础学科。在我校,有机化学是面向化工学院、药学院二年级,以及海洋学院一年级学生开设的专业基础课程,是“大类培养”的主干课程。通过有机化学课程的学习,可使化学类学生掌握有机化学领域的基本理论、基本知识和实验操作技能,把握有机化学发展领域的新概念、新动向和新技术,同时为后续专业课的学习打下坚实的基础。
1.教学现状
在工科院校,有机化学的教学课时“缩水”,如我校有机化学虽然是“大类培养”的重要专业基础课,但是其课时数被压缩到64个学时,教师必须在一个学期之内完成教学。而有机化学作为高分子材料与工程专业的基础课,是高分子化学、高聚物合成工艺学、高分子材料学等后续专业课的基础,学生必须在有限的课时数里掌握《有机化学》这门课程,难度大,任务重。
另外,由于江苏省高考制度,较大部分的学生高中阶段选修的“物生”,进入大学后化学知识特别是有机化学基础知识非常薄弱,一个教学班级里,学生的化学知识水平参差不齐。通常是刚进入大学的第一学期学习无机化学,对于选“物生”的学生来说,没有化学基础,一开始就挫伤他们学习化学的自信心。学习有机化学时,多数学生对有机化学的学习有畏惧感。如果入校时对专业认知不够,不能看到有机化学学习对高分子材料与工程专业学习的重要性,更是对有机化学失去兴趣。
再者,有机化学课程自身的特点,由于有机物数量多,结构多变,机理难掌握。而工科院校的有机化学课时数又被压缩,教师为了教授完大纲的教学内容,不得不采取“满堂灌”教学方法,使得学生缺乏主动获得知识的能力,被动“填鸭式”教学必然导致教学效果不理想。一学期教学结束,发现学生知识掌握不好,除了少部分拔尖的学生,大部分学生对这门重要的专业基础课一知半解,学到的有机知识很少。
2.教学改革
结合有机化学学科规律,针对高分子材料与工程专业特点,对教学内容进行优化、取舍;改进教学手段,选聘高年级本科生、研究生做助理班主任,让他们参与本科生教学,形成多元化的本科生教学队伍;改革考核方式,实现高分子材料与工程专业有针对性的考核方式,教考分离。
(1)改革教学内容
有机化学的教学关键是引导学生“有机”这一学科,不同于其他几门基础化学课,有机化学基本不涉及计算,不涉及公式,说的是图片的拼接,化学键的断裂与重组,以构建新的有机分子。那么,在教学过程中如何引导学生使用“有机思维”思考问题才是关键。当我们谈到如何面对课时数被压缩这个问题,如果抓住“引导学生进入有机化学这个学科”这个关键问题,就能依据高分子材料与工程专业的培养方案,深入分析研究教学大纲和教学目标,对教学内容进行取舍。
在改革教学内容时,还要考虑以下两个方面问题:一是研读多种版本的教材,最新版本的中、英文有机化学教材和专著等,从不同研读、分析深度的教材方面,准确把握“基础有机化学”教学重点、难点,结合高分子材料与工程专业的特点来取舍教学内容。二是关注高分子领域的研究前沿,发展动态,结合传统的知识,推陈出新,把最新的知识信息教授于学生,引导学生了解最新的前沿,激发他们的兴趣,使之感觉到目前所学知识的有用性。
(2)改革教学手段
我校近年实施了一项“班主任助理”制度,选派高年级本科生、研究生担任本科生班级班主任助理,取得了很好的教学效果。高年级本科生、研究生参与本科生教学,形成多层次、多元化的本科生教学队伍。
高年级本科生已经学习了有机化学专业基础课,经历过有机化学的学习和考核,有自己的学习方法和技巧;他们已经进入高分子材料与工程专业课程学习,对哪些知识对专业课学习重要有切身体会;他们与低年级学生同属于一个年龄阶段,有更多的共同话题,沟通交流更容易,帮助学生及早发现自己的优缺点,扬长避短。
高分子材料与工程研究方向的研究生,通常具有扎实的专业基础知识,已经接触了专业的前沿研究方向,可以对高分子材料与工程专业低年级学生的学业、思想及心理等方面给予关心和指导。而且本科生可以在研究生的带领下主动做一些创新创业项目,这使得本科生更清楚自己在课堂学习中哪方面有不足,增强本科生对基础知识学习的热情,使他们在有机化学课堂学习中更积极、努力。
(3)改革考核方式
良好考核方式可以极大地促进学生的学习热情,提高他们学习的积极性。目前,我院不同专业实行统一考试,如环境工程、化学工程、安全工程和高分子材料与工程等专业统一出卷,流水阅卷、统一登分,做到公正、准确。但是,这种“统一”的方法抹杀不同专业对有机化学需求的不同,使得教师和学生忽视基础课对后续专业课的影响,结果是为了考试而学习,不能真正掌握自己专业需求的有机化学知识。
为了提高学生的整体素质和学习积极性,我们应实现不同专业单独出卷、单独考核的方式。卷面上可以体现出适合高分子材料与工程专业的题目,结合他们的后续专业课程。哪些知识是有机化学这门课程必须掌握的基础知识,哪些知识是关联高分子材料与工程的专业知识。同时,建立针对性的有机化学试题库,使学生接触更多不同的题型,拓宽知识面。建立适合高分子材料与工程专业的有机化学试题库,有机化学课程理论考试按照一定的难度系数、教学要求、考试范围等,统一从试题库里抽调,实现教考分离。
3.结语
为全面提升高分子材料与工程专业的有机化学教学质量,我们要结合有机化学学科规律,针对高分子材料与工程专业的专业特点,从学生的实际出发,认真分析总结,精选教学内容,创新教学手段,改革考核方式,不断激发学生的学习兴趣,以提高高分子材料与工程专业的人才培养质量。
参考文献:
[1]黄杰,周冕,李又兵,王选伦.高分子材料与工程专业《有机化学》教学改革探索与实践.广州化工,2014(42):186-187.
[2]陶传洲,刘玮炜,曹志凌,史大华,王建,程青芳.环境工程专业有机化学课程教学现状及改革.中国科教创新导刊,2010(34):78.
关键词:培养计划;培养目标;材料科学与工程;麻省理工学院
欧美国家在20世纪60―70年代开始设立材料科学与工程系。名称变更反映了对材料领域研究认识的变迁,即“材料研究需要依据其行为和特征,而不是依据材料类型来进行”。1998年教育部对材料类本科专业目录进行了调整,将原来划分过细的十多个材料类小专业合并成了现在的冶金工程、金属材料工程、无机非金属材料工程、高分子材料与工程、材料物理、材料化学等六个专业。同时,在引导性专业目录中还设置了材料科学与工程一级专业。虽然以材料科学与工程一级大学科来设置专业是必然趋势,但材料科学与工程人才培养模式仍在探索之中[1]。同济大学当年就设置了材料科学与工程本科专业,期望以欧美的模式来培养材料学科人才。实际上,早在20世纪80年代,当时的同济大学建筑材料工程系就为建筑材料专业的本科生开设了材料科学导论、断裂力学、表面物理化学和传热、传质与动量传递(简称三传)4门基础课程。近几年因为参与学院材料科学与工程专业培养计划的修订工作,查阅了国内外许多大学这个专业的培养计划,国内高校在材料科学与工程专业培养计划上的认识一直存在争议。美国麻省理工(MIT)材料科学与工程专业本科培养计划的公开信息最多,不仅有课程列表和学分要求,还有课程的详细简介。尤其是麻省理工的开放课程服务(OpenCourseWare),使得我们还能够进一步了解课程大纲和部分内容。此外,MIT材料学科是USNews全美排名第一的,他们的培养
计划应该具有更好的借鉴意义。本文在反复仔细研究其有关本科培养的各种公开资料的基础上,对其培养计划进行了分析,结合自己的教学工作实践,总结了一些心得体会,希望与国内同行共享。
一、麻省理工材料科学与工程专业的培养计划
MIT材料科学与工程系设3个专业(Course)。其一为一般意义上的材料科学与工程专业(Course 3),学生所得学位是材料科学与工程理学学士(Bachelor of Science in Materials Science and Engineering),其所授学位是被ABET(Accreditation Board for Engineering and Technology,美国工程与技术鉴定委员会)授权的,绝大部分学生都选读这个专业。其二为课程选择度更大的一般专业(Course 3-A),这个专业的毕业生将获得没有特别指定专业领域的理学学士(Bachelor of Science without specification)学位,系里并不寻求ABET对这个学位的授权,只有很少学生选择这个专业,常常是医学、法学、MBA预科生选择这个专业。第三是考古与材料专业(Course 3-C),学生所得学位是考古与材料理学学士(Bachelor of Science in Archaeology and Materials),系里也不寻求ABET对这个学位的授权。从系里是否寻求对所授学位授权就可以看到,MIT材料科学与工程系本科生的主要专业是一般意义上的材料科学与工程专业(Course 3)。后面的讨论主要针对Course 3的培养计划进行。
1. 课程和学分要求
该培养计划的要求包括:(1)MIT的一般要求,共17门课程,其中自然科学6门,人文社科8门,限选科技课程2门,实验课程1门。(2)交流能力课程(Communication Requirement)4门。(3)系内课程,包括一套核心课程(Core subjects,共10门课),一个论文或2个实习以及4门限选课程,合计184~195学分。其2011―2012版本的课程和学分要求见表1,表中课程名称前面的数字表示课程号,后面跟表示学分的数字、课程性质、前修或同修课程号。MIT每门课程的学分由三部分组成,表示学习课程所需要的时间分布,中间用短线隔开,第一个数字表示讲课时间,第二数字表示实验、设计或者野外工作时间,第三个数字表示预习的时间,是以中等学生所需要时间估计的。1个学分大约相当于一学期需要14小时的学习时间。从表 1可见,一般专业课程,预习所需时间是讲课时间的2~3倍。
备注
*可以代替本先修课程的其他先修课程列在课程描述页面。
(1)这些课程可以算作必修课程或者限选课程的一部分,但不能同时计算。
(2)可以选9-12学分。
(3)通过申请,可以被类似课程替代。
2. 限选课程的选择
中列出了21门限选课程,每个学生只需要选择4门课(48学分)。理论上,学生可以在21门课程中任选48学分,甚至经过批准,还可以选择其他系的课程或者研究生课程来代替。实际上,由于材料的范围很广,这些选修课程是根据主要的研究领域来设置的,它们是: 生物与聚合物材料(Bio-and Polymeric Materials),电子材料(Electronic Materials),结构与环境材料(Structural and Environmental Materials),基础与计算材料科学(Fundamental and Computational Materials Science)。
因此,在MIT材料学院的网页上,曾经列出了各领域推荐的限选课程。网页上还列出了每一个方向的咨询教授,以方便对上述领域某一方面更感兴趣的学生选课。
3. 部分课程大纲和教学情况分析
(1)材料科学与工程基础课程
这个课程为15学分(5-0-10),总是与“材料实验”一起选修。课程安排也是交叉进行,实验周不上课,一共有4个实验周。这样,材料科学与工程课程讲课时间就缩短为9周(一个学期14周,最后一周为考试)。其课程安排为周一、三、五各2小时的讲课(lecture),周二和四各1小时的复习课(recitation)。所以一共27次讲课,18次复习课。实际讲课为24次,另外3次课为测验和考试。最后一次考试并不是考全部课程内容,即每次测验和考试都是分段内容。
这个课程由两个教授分别讲授,每个教授都是24次课,因此可以推论,每次每个教授将讲1小时。一个讲授结构和化学键(Structure and Bonding),一个讲授热力学和统计力学学(Thermodynamics and Statistical Mechanics)。
两部分课程分别布置6次作业,每部分每次都是2~3个题目,都有交作业的期限,没有按期交作业的,该次作业成绩为0。作业答案在交作业期限过后就会立即公布。课程总成绩由作业成绩占20%、三次测验占80%构成。得分标准为:总评80分以上A,70~79分为B,55~69分为C,低于55分为不及格。
(2)实验课程
MIT材料系内有2门必修的实验课程,即材料实验和材料综合实验。这两门课程同时还是加强专业交流能力培养的课程,所以,教学过程特别注意专业交流方面(包括论文写作、口头技术报告等)的形式要求。材料实验与材料科学与工程课程同时选修,在2年级第一学期进行。材料综合实验课(Materials Project Laboratory)基本上就是几个同学合作的科研项目,在3年级下学期进行。下面以二年级的材料实验为例,介绍其教学和考评办法。
如前所述,材料实验共4个实验周,实验周没有其他专业课。实验内容包括量子力学原理演示、热力学和结构,同时囊括了几乎全部现代材料分析研究方法(XRD、SEM/AFM、DSC、光散射等),并通过口头和书面方式加强交流能力培养。从教学内容看,这门实验课承担了教授材料研究方法的任务。
一般将50个左右学生(2011年的2年级学生只有43人)分成6个组。每个实验周有3个实验主题,每个主题下面2个实验,2个组共选一个主题,每组选做其中一个实验。6个实验同时进行。一周3次实验,每次4小时。因此,每个组每周只做3个实验(每个主题做1个实验),共12个实验。由于每个组只做了一半的实验,对另一半实验的了解,通过每周2次的1小时交流课程(recitation sections,一般隔天举行)来实现。交流课上,大家各自在黑板上即兴介绍实验的发现,回答教师和同学的提问。
该实验课由3个教授上,其中一个总负责。课程成绩评分标准
二、分析和讨论
1. 关于必修课和选修课
系内必修课程除毕业论文或企业实习外,共有10门。大学一般要求的17门课,理论上可以自由选择,但从表1系内课程的先修课程可以看出,微积分I和II,物理I和II是需要先修的,大学一般要求的6门自然科学课程就去掉了4门,能够自由选择的大学自然科学课程剩下2门。从系里建议的选课表(roadmap)可以看到,另外2门自然科学是化学和生物。所以,自然科学的必修课程实际上相当于14门。
限选课程要求包括GIR类型2门和48学分的系内选修课。有3门系内课程(共39个学分)可以作为GIR课程来选,但不能同时作为系内课程要求的学分。大多数系内选修课程的学分为12分,这样的话,系内限选课48学分需要选读4门。所以,每个学生可以有6门专业选修课程。有意思的是,在表1中只有21门限选课程,而该系主要的研究领域(或者说相当于我们的专业方向)有4个,平均每个方向只有5.25门课。如果去掉2011―2012年新增的2门课程,过去几年只有19门课,平均每个方向只有4.75门课程。看来,MIT材料科学与工程专业的课程设置,并不鼓励学生选单一专业方向的课程。实际上,在以前分专业方向限制选修课时,每个专业方向仅仅提供2~3门课程,进一步的分析见下文。
反观我们的培养计划,我们的专业方向必修课程有5门(14学分),选修课程应选4门(8学分),合计9门课程22学分。因为我们的学分是按照每周上课学时数计算的。如果按照MIT的学分计算方法,学分约为每周上课学时数的3~4倍,考虑到我们的上课周数为17~18周,而MIT才14周,因此,我们的专业方向应选学分至少相当于MIT的88学分,比其4门课程(48学分)的要求多了5门课程(40学分)。可见,我们的培养计划更加注重学生专业方向知识和技能的培养。
另外,MIT材料科学与工程系的研究领域非常广泛,关于其主要研究领域的介绍出现在3个网页上。其一是在该系的学位要求中关于限选课程的介绍网页,4个主要的研究领域分别是生物与聚合物材料、电子材料、结构与环境材料、基础与计算材料科学。其二是在MIT的招生网页,4个主要的研究领域分别是:半导体材料和低维系统(Semiconductor materials and low-dimensional systems)、能源材料(Materials for Energy)、纳米结构材料(Nanostructures)、材料的生物工程(Bioengineering of Materials)。在介绍全体教师(Faculty)的网页,列出了30个研究方向(discipline),共122人次(有重复计算,因为实际教师只有35人),平均每个研究方向4.07人次(或1.17人)。少的方向仅1人如微技术、半导体,最多的是纳米技术,23人次。上面列出的生物工程(包括生物物理和生物技术)9人次,能源材料(包括能源与环境、储能)9人次。人数比较多的研究方向还有结构与环境材料9人次,高分子材料7人次,电、光和磁材料7人次。
可见,尽管MIT研究的材料类型很多,但其本科生培养计划中,涉及具体材料类别方向的课程特别少。
2. 关于考核与成绩
MIT很多课程的成绩评定都包括平时作业和出勤与课堂参与情况。有的课程,考试以外的项目在成绩评定中所占份额可达到50%,有的实验课程则更是高达85%这在一定程度上反映了MIT对大学生平时学习的管理是非常严格的,与我们头脑中关于国外大学生“自由”学习的图像截然不同。
3. 关于选课进度安排
MIT材料系没有规定统一的选课进度表。但从其推荐的选课安排(roadmap)看,具有如下特点:
(1)8门大学一般要求的社科课程(GIR)分布在8个学期选修,即每学期选修1门社科课程;
(2)一年级把大学要求的6门自然科学课程(GIR)学完,包括数学、物理和化学。
(3)二年级起全面进入专业学习。第一学期学习材料科学与工程基础、材料实验2门课程,两门课交叉进行,实验周不上课。上课周每天都有材料科学与工程基础课,实验周每天都有实验或交流,学习安排非常集中。
(4)每学期的课程一般为4门,其中1门为社科课程。
MIT二年级第1学期就学习专业基础课程,这比我们的教学计划提前很多。国内的教学计划进度安排曾经强调,前两年不安排专业课,以至于我们的材料科学与工程课程被安排在第5学期,材料研究方法更是被安排在第6学期,使得高年级学习特别紧张,深入接触专业知识和方法的时间被推迟。
4. 关于培养计划的修订
从网页上能够追溯到MIT材料系1998年的培养计划,其培养计划在2003年做了很大的调整。两者的比较
这两个培养计划的最大差别在必修课,课程名称几乎完全变了。但对比课程名称和教学内容可以发现,新培养计划中的“材料科学与工程基础”包含结构与化学键、热力学与统计力学两大部分内容,分别由两位教授讲授,似乎代替了原来的“材料热力学”、“材料物理化学”和“材料化学物理”3门课程,因为其教材之一仍然是物理化学(Engel, T., and P. Reid. Physical Chemistry. San Francisco, CA: Benjamin Cummings, 2005. ISBN: 9780805338423)。“材料实验”应该与原先的“材料结构实验”对应,“材料综合实验”应该与原来的“材料加工实验”对应。“材料的微结构演变”与原来的“材料结构”相似。取消了“材料力学”、“材料工程中的输运现象”2门课程。增加了“材料的电光磁性能”、“材料的力学性质”、“有机和生物材料化学”、“材料加工”4门课程。取消2门,合并2门,增加4门,课程总数不变。
选修课变化较小,只是增加了若干课程,特别是生物材料和纳米材料的课程。其实,两门生物材料课程是2000年增加的,当时选修课由4方向增加为5个方向。选修课的最大变化是理论上不再分专业方向,学生可以任意选课。但实际操作时,仍然向学生推荐各专业方向的课程组合。无论如何,每个专业方向的课程不足4门,学生必然需要选修其他方向的课程。
从2003年至今,必修课没有变化,选修课则有一些小的调整(表5)。其中2005年减少了高分子化学、化学冶金学(Chemical Metallurgy)2门课程。增加了2门数学,材料热力学(原来的必修课),先进材料加工,衍射和结构,材料的对称性、结构和张量性质,材料选择,共7门课程。可见,增加的这些课程仍然是与具体材料种类无关的。2007年和2011年分别增加了1门生物材料方面的课程。可见,即使是选修课的调整,仍然在继续加强有关材料行为特征方面的课程,减少有关具体材料种类的课程。
5. 关于培养目标与课程设置
过去,MIT材料科学与工程系培养目标分四类,研究型学位(Course 3)、预科型学位(Course 3A)、实践型学位(Course 3B,2003年取消)和考古型学位(Course 3C)。其中,研究型学位与实践型学位培养要求的唯一差别是不变的,即前者在四年级做毕业论文,后者在二年级暑假和三年级暑假做2个20周的企业实习,其他课程要求完全相同。现在把实践型学位取消了,但仍然保留了学生向这个方向发展的渠道,即学生仍然可以选择做毕业论文或者企业实习,学位合并在研究型学位(Course 3)中。
从2003年培养计划大调整来看,MIT材料科学与工程专业(Course 3)的主要培养目标是让本科毕业生继续深造。也可能是社会需求的变化促使MIT对培养计划进行调整。这从MIT选读实践型学位人数变迁或许可以看出一些端倪(表6)。从1998年到2002年,实践型学位人数多于研究型学位的人数,2002年突然降低,与研究型学位相当。查看大学2年级实践型学位学生注册数,从2002年起突然减少,由原来每年约20人突然减少为6人。2003年培养计划调整当年,还有5人注册为实践型学位,这应该是此前培养计划延续所致。
那么,没有了实践型(Course 3B)学位,是否还有学生仍然会选择实习代替论文呢。下面从2002~2008年MIT材料系本科毕业生去向分析。除了一些研究生院,网页一共列出了38家企业和17家政府部门或咨询机构。统计2002年以后(至2005年结束,当年仅剩下1人)各年4年级实践型学位人数(也约等于当年毕业人数)总和恰为38人,与毕业生去向统计的企业单位数刚好相同。这难道是巧合?是否可以推论,2003培养计划修改之后几乎就没有学生选择去企业实习了?
MIT材料专业取消实践型学位,以及此后可能几乎没有人选择实习代替毕业论文事实,一方面可能与美国产业向国外转移,本国企业对工程师的需求减少有关;另一方面,MIT培养计划中的课程设置调整也起了一定作用。因为选择实践型学位人数锐减在前(2002年),培养计划调整在后(2003年)。培养计划中去掉的必修课“材料力学”和“材料工程中的输运现象”,显然属于工程类课程。因此,其培养计划课程中增加材料研究型基础知识、减少工程知识的倾向十分明显,也说明其培养计划随社会需求进行了及时调整。
另外,尽管2003年培养计划中的必修课有较大调整,但选修课调整比较有限。而且调整前后,没有改变其材料类本科生宽专业培养的模式。
但在选修课中,把专业方向的基础课程去掉,仍然让人有点匪夷所思。例如,高分子化学在高分子材料领域历来就被认为是专业基础课。MIT在2005年却把这门课从本科生培养计划中去掉了。查看其高分子方向研究生培养计划核心课程,可以看到高分子物理化学、高分子合成、高分子合成化学等基础课程。可见,MIT把专业方向的一些基础知识培养放在了研究生阶段。
以上似乎给人这样的印象,如果不继续读研究生,则专业方向的基础知识是不太够的,无形中将人才培养的周期拉长到研究生阶段了。但从我自己教学的经验来看,学习高分子物理就可以了解高分子材料的行为和特征,未必需要清楚地知道高分子材料的合成与制备方法。我的一些研究生以前从未学习高分子方面的课程,为了让他们在研究中能够理解和使用高分子材料,我就是先给他们讲授高分子物理的基本知识。
另外,注意到MIT材料专业研究生数量是本科生数量的2.2倍,有很多研究生来自校外,特别是来自国外。所以,MIT材料专业培养计划中对专业方向选修课程的调整,结合研究生阶段的课程安排,既考虑到了本科宽专业基础的培养模式,又打通了本科生培养与研究生培养之间的关联,在研究生阶段加强专业方向基础知识的培养,也便于接受其他教育背景的学生来读研究生,还是十分合理的。
MIT材料专业的本科培养计划,不断强化了按照材料大类进行培养的模式,必修课和选修课都加强了材料基本行为知识的课程,减弱了材料类别基础知识的课程,把后者移到研究生教育阶段。这说明国外关于“材料研究依据其行为和特征,而不是依据材料类型来进行”的认识形成30多年以来,不仅没有改变,还在进一步加强。MIT在2003年对培养计划大调整时,加强了材料研究基础知识课程,减少了工程类课程,其本科生的主要去向是进一步深造,直接到企业就业的比例急剧减少。本科生阶段加强研究基础知识课程,把专业方向基础知识培养放在研究生阶段,加强了研究生的知识培养,可能是其材料研究能够长期在美国名列前茅的原因之一。
关键词:电化教学;材料科学与工程专业;生产实习;改革;作用
中图分类号:G642.44 文献标志码:A 文章编号:1674-9324(2013)52-0040-02
贵州大学材料科学与工程专业生产实习教学是安排在学生学习《材料科学基础》、《热处理原理及工艺》等专业基础课程后进行。然而实习内容多,概念抽象,理论性强,理解困难,常常缺乏成分-结构-性能-用途相互之间的连贯性,综合分析能力欠缺。还有实习安全责任、设备老化、生产环境、经费不足、技术更新等诸多因素,往往使得实习难以深入开展,流于形式,很容易引发学生失落心理,缺乏专业兴趣。生产实习是培养学生工程意识、创新意识和工程实践能力的不可替代实践教学环节。电化教学具有知识表达的多样性、交互科学性、反馈性、以及教学管理的开放性、灵活性等突出的特点。在这种背景下,电化教学在生产实习教学迎来了创新式发展,必将对实践教学改革有着积极的作用。
一、运用电化学教学,激发学生的实习兴趣
兴趣是对客观事物选择的态度,是积极认识某种事物或参加某种活动的心理倾向,表现出高度集中的注意力和较强的求知欲。电化教学能创设生动、形象、直观、视听结合的教学环境,以其新颖性、多样性、生动性、趣味性易吸引住学生的注意力,激发学生的学习兴趣。精心筛选学院专业教师、企业校友研究成果简介和科研项目。以形象、直观、生动的“看图识知”方式向学生介绍材料在生产、生活、社会发展中的重要性。学生通过大信息、多角度的授课模式,感受到“材料与社会生活息息相关”,树立学好材料学科的决心和信心。学生观看本专业教师研制的新型GDL-1汽车齿轮、新型GDL-2钎杆、EA4T高速重载列车车轴、大型燃油退火炉等产品制备过程图像,了解材料制备、检测、使用过程须用的知识,深刻体会新材料可以推动社会经济文明发展,科技创新生活,明确自己将从事材料领域工作必有良好的专业基础,从而激发学生对材料学科的学习兴趣和求知欲,自觉地提高了学生对实习教学内容的重视。
二、利用电化学教学,增设实习教学内容,突出重点难点
电化学教学能克服实习环节时空的局限性,将图像、文字、声音、动画等信息有机融合,形象生动、直观突出重点、难点、疑点,注重物理、化学内容有机糅合,不断优化充实实习内容。实习电化教学按照成分-结构-性能-用途主线的科学性和逻辑性,将多学科零散的知识点连贯熔融起来,化静为动,化虚为实,化远为近,化抽象为直观,由表及内,深入浅出,解释疑惑。比如在贵阳某钢厂实习钢材的制备过程以及中航集团某公司表面处理车间的化学表面处理过程时,用电化教学讲解GDL-1汽车齿轮、GDL-2钎杆、EA4T高速重载列车车轴等材料冶炼、铸造、锻打、塑性变形、热处理/表面处理、检测、使用等程序。在对应的程序里巧妙地串联产品生产、检测设备以及使用过程中的操作步骤和方法,把虚构球形化原子间的物理化学作用机理融解于组织结构、性能演变、理论分析等重点、难点内容,让人一目了然。在较短实习时间内,电化教学提供大量无法从实习过程中直接获取的知识,多学科知识贴近材料实物的生产实践,解决传统实习教学无法讲清、难以理解的重点、难点内容,更加充分地、清晰地揭示材料生产过程的本质。学生在实习中发现材料生产问题,用抽象-具体-形象的思维加以分解,逐层展示,由易到难、突出重点、剖析难点,步步深入理解多学科的有机交融统一,拓宽渠道获取更多知识。
三、利用电化教学,提高实习教学质量
电化教学使微观世界宏观化,抽象内容具体形象化,活跃了实习教学气氛,增加了实习改革教学的感染力,提高了实习效果和质量。如模拟仿真软件,演示新型GDL钢材料制备-过程处理-组织观察-性能测试的生产过程,以虚构的球形化原子来展示微观运动的特点,演绎不同成分GDL钢材料冶炼-凝固相变、塑性形变、表面化学处理等过程中相应的组织、性能演变,来理解GDL钢不同的用途要求。抽象化生动,让学生清晰地认识、分析材料设计、制备、检测、使用全过程。以材料用途为目标,微观世界宏观化、具体形象化,学生能独立地步步深入,多角度综合分析选取材料以及生产过程,有利于巩固、吸纳相关学科知识,理解材料成分-组织-性能-用途内在联系,清晰地认识材料学科的整体性、复杂性以及关联性,树立了正确的材料学科观念,培养学生用辩证唯物主义的物质运动、变化、发展的观点,合理地、系统地、创新地解决问题的能力,有效地保证实习教学改革质量和效果,也为学生将来就业、工作增添了自信心和竞争力。
四、利用电化教学,全面提高学生的素质
电化教学可以有效地培养学生的综合素质。在实习电化教学过程中,齿轮、钎杆、高速重载列车车轴等典型材料成功生产案例,潜移默化塑造学生正确的人生观、价值观、世界观。典型材料成分-组织结构-性能-用途交替对应演示,强化学生唯物辩证的工程意识,激发学生的专业兴趣,主动积极地去获取交叉学科知识和发展智力,有力地培养了学生的观察能力、思维辩证能力、分析问题能力、解决问题能力和创新能力。在中航集团公司某热处理车间实习期间,以军工企业文化熏陶塑造人,6~8位学生一组的形式参与某液压泵零件热处理工艺培训教材的动漫插图比赛,全面训练了学生用脑、眼、手的基本技能。学生触发多种感官功能后,能持久保持学习兴趣,最大限度地调动实习教学的积极性。学生十分愿意接触学习现代先进技术和知识,调动了学习材料与计算机学科知识的主动性,求知欲热情高涨,激发了他们的想象力和创造力。学生间通力合作,充分发挥聪明才智,培养了学生的团队合作与竞争创新能力。
实习电化教学改革,有效地激发了学生的实践积极性,充分发挥其主动获知的精神。学生能在短时间内掌握专业实习重点、难点,加深理解材料学科的辩证统一内在联系本质,吸收消化更多学科知识,开阔视野,发展智力,提高了实习质量。反之,有力促进电化教学在实习教学改革中创新地发展。
参考文献:
[1]付建民,陈国明.安全工程专业生产实习模式探讨与实践[J].安全与环境学报,2006,6(7):37-39.
[2]李芳英.电化教学在外语教学中的应用[J].山东师范大学外国语学院学报,2003,(3):76-77.
[3]孙妍.试论如何培养大学生对英语学习的兴趣[J].齐齐哈尔医学院学报,2009,30(17):2192-2193.
[4]郑晓华.浅谈直观教具和电化教育在英语教学中的作用[J].伊犁教育学院学报,2000,(6):93-94.
【关键词】化工原理实验 实验教学 教学改革
【中图分类号】G642 【文献标识码】A 【文章编号】2095-3089(2016)04-0170-02
一、材料科学与工程专业化工原理实验教学目的与要求
1.化工原理实验教学目的
该实验课程主要讲述化工原理中单元操作所涉及的各种设备,以巩固学生加深对化工实际生产的理解,由实验数据和实验现象得出结论并提出自己的见解,增强创新意识,同时,对学生的科学研究能力、创新能力的培养也起着十分重要的作用[1-5]。
2.化工原理实验教学要求
通过实际操作使学生验证有关化工单元操作的理论,熟悉实验装置的结构、性能、工艺流程,掌握化工单元操作方法,培养学生从事实验研究的能力,其中包括:分析和观察实验现象的能力、正确选择和使用测量仪表的能力、利用实验的原始数据进行数据处理以获得实验结果的能力、运用文字表达技术报告的能力[4-5]。
二、化工原理实验中存在的不足
1.人数较多,仪器装置较少,学生动手能力受到限制,由于连年的扩招,每个班的学生人数基本都是35人以上,而实验仪器的台套数并没有增加, 7-8个学生用一台装置的现象非常普遍,个别学生根本没有机会动手操作仪器。
2.学生被动的做实验,完全按照实验书上的照搬照抄,“照单抓药”式的教学,学生花大量的时间写预习报告,来到实验室也不知道到底为什么做实验,怎么做实验。
3.学生工程实践性意识淡薄,不知道化工原理实验的重要性,只是为了学分被动的做实验,达不到理论联系实践的作用。
三、化工原理实验的教学改革与思考
1.化工原理实验教学模式的改革与思考
针对“僧多粥少”的问题的教学模式,材料科学与工程专业化工原理实验充分打破以往“大水漫灌”、“放羊”式的教学模式,分小班、小组教学,每一个小组为3-4人,每一位同学在实验中都有不同的分工, 比如过滤实验(恒压过滤),一个学生要负责压力阀、料浆阀、料液阀的畅通,一个学生负责记时,一个学生要看滤液量和记录,大家还要共同清洗滤布,倾倒滤渣,每组学生只有默契合作,才能将实验做完,这样就充分调动了学生的积极性、参与性和团队合作意识,老师再根据实验操作和小组合作进行现场打分,教学效果明显提高。
2.化工原理实验教学方式的改革和思考
每次课授课之前,给学时留20-30min的时间熟悉实验装置的结构、性能、工艺流程,掌握化工单元操作方法,正式讲课时,以分组提问的方式让学生自己讲解工艺流程和操作步骤,以引导的方式把理论课本上讲解的内容和实际操作中遇到的问题相结合,比如传热实验(强化管传热),改变原来只做实验、测数据的单一教学手段,通过强化管的强化方法,引申到化工中常见的传热设备的改进方法,讨论如何从材料的角度降低成本,从传热的角度提高传热速率等,学生积极参与发言,各抒己见,当实验中出现的现象和理论不符时,引导学生从实验的源头到实验过程中分析误差,充分解决“照单抓药”式的教学模式。
3.化工原理实验教学内容的改革与思考
充分联系课本理论知识,让学生感觉化工原理实验非常实用。比如传热实验,告诉学生热电偶温度计的测温原理,温度计冷端温度补偿的含义,用电脑记录数据的方法,通过数据处理,双对数作图、线性回归等方法,了解计算机技术在化工原理实验中的重要性,实验结束后,学生要对实验数据进行处理,还要总结和分析,分析实验数据误差产生的原因等,根据实验报告上的数据处理为依据,数据处理主要以电脑处理为主,可以锻炼学生应用Word、Excel、Origin等办公软件的能力。
以上教学内容和教学方法的改革充分调动了学生的实验积极性,增强了工程观念,充分做到了理论联系实际。
参考文献:
[1]焦纬洲,刘有智,袁志国,祁贵生,高Z.基于工程实践能力培养的化工原理实验教学模式的研究与探索[J].实验技术与管理,2014,31(3):166-168.
[2]戴益民,李浔,张跃飞.基于创新与实践能力培养的化工原理实验研究性教学模式的探索与实践[J]. 化工高等教育, 2012,6:31-34.
[3]胡秀英,郑纯智.开放式化工原理实验教学模式研究实验科学与技术[J].实验科学与技术,2011,2(9):111-113.
关键词: 研究生培养;材料科学与工程;化学
材料是人类文明与社会进步的物质基础与先导,是实施可持续发展战略的关键;材料技术是现代高科技与新经济的三大重要组成部分,在以高科技为主要特征的知识经济时代,世界各国在产业政策、科学研究、教育与人才培养等方面都给予了材料科学重点支持、优先发展的政策。随着我国社会经济和科学技术的发展,对材料科学与工程专业人才的知识结构与实践能力提出新的要求,因此,高校材料科学与工程专业人才培养方案需要做出相应的调整,以满足社会经济发展对材料科学与工程专业人才的需求。
我国材料科学与工程教育改革迅速发展,几乎全国所有设有材料专业的院校均已不同程度地参与了材料科学与工程教育改革,借鉴欧美诸国材料科学与工程教育模式与体系,培养模式由“专业培养”向“学科培养”发展,从狭窄的专业教育向全面的素质教育转变,从钻研狭窄的单科教育向建立工程意识教育转变;同时,吸收欧美国家的“材料学科共同基础知识”作为重要的教学内容,课程设置从学科式课程向整合式课程转变,专业课程从中心地位向载体地位转变,课程内容从以学科发展为中心向以培养学生为中心转
变[1]。总体来说,我国高校材料教育正在不断打破旧的专业范围的约束,向其它专业甚至其它一级学科渗透。在这样的背景下,深化我校材料科学与工程领域人才培养方案的改革成为必然的选择。
一、国内材料与化学学科研究生培养现状分析
调研对象为国内“985”高校的材料与化学学科研究生最新培养方案,学科涵盖材料科学与工程、化学两个一级学科,材料学、材料物理与化学、材料加工工程,高分子化学与物理、应用化学五个二级学科[2]。调研结果分析表明,国内高校材料与化学学科研究生培养方案中,课程设置具有如下特点:
(1)除了政治、英语、数学等公共必修课外,课程设置的基本模式为:专业基础课+专业选修课(包括必修的学术活动、专业外语等)。
(2)专业基础课的数量少,且必修,或者提供少量课程供选择;所设课程都为各方向的基础和共性的理论、测试方法、制备技术和实验技能等。
(3)专业选修课根据各自的研究方向提供很多课程供选择。大部分学校开设的专业选修课都在10门以上,如天津大学为材料学硕士生开设了24门专业选修课;哈尔滨工业大学分别为材料科学与工程硕士生和博士生开设了35门和14门专业选修课;上海交通大学为材料学、高分子化学与物理和应用化学博士生都开设了20门专业选修课;南京大学为应用化学硕士生开设了26门专业选修课。
(4)对学术活动(读书报告、参加学术会议、听学术讲座)、前沿进展或专题研讨、外语文献阅读提出了越来越高的要求和标
准[3]。几乎所有高校都将上述课程列为必修,并对其考核标准提出了更高要求。如哈尔滨工业大学规定研究生参加跨学科学术讲座5次,并在全系范围内做学术报告2次(其中至少1次使用外文),并鼓励参加国际学术会议。
(5)各高校均倾向于按一级学科设置课程[3,4]。如中南大学、浙江大学、上海交通大学、哈尔滨工业大学、清华大学等均按材料科学与工程一级学科设置了硕士生和博士生的课程体系;四川大学、华东理工大学、北京理工大学、南开大学等按化学一级学科设置了高分子化学与物理、应用化学的硕士生课程体系。
(6)规定或鼓励跨学科修课,以提高综合素质,拓宽知识面和优化知识结构。
二、我校材料学科研究生培养现状分析
我校材料类人才培养源于1953年成立的哈尔滨军事工程学院“金工金相”专业,至今已有55年的办学历史。随着“哈军工”主体南迁长沙,学校原专业体系进行了相应的调整,材料类与化学类合并组建材料工程与应用化学系,先后开设了“金属材料”、“复合材料”、“军用材料工程”、“应用化学”等专业,为国家和军队培养了大批优秀的高级技术人才。
随着高新技术发展对材料科学与工程人才培养需求的变化以及国内外材料科学与工程教育改革的不断深入,我校材料学科研究生的培养现状越来越不能适应新的历史条件下国民经济发展和军队现代化建设对材料科学与工程专业高级人才的需要,突出表现在如下几个方面:
(1)按二级学科设置培养方案,与学科交叉融合的大趋势不相适应。我校材料类研究生培养按“材料学”、“材料物理与化学”、“材料加工工程”3个二级学科设置培养方案,此外,还有“高分子化学与物理”、“应用化学”、“军事化学与烟火技术”3个化学类二级学科硕士点,涉及6个二级学科,分布在“材料科学与工程”、“化学”、“化学工程与技术”、“兵器科学与技术”4个一级学科中。而近年来,随着我校材料学科与化学学科相互交叉融合,逐渐形成了以化学基本原理为学科基础,材料工程为专业方向的特色学科体系,涵盖结构材料(耐高温与轻质复合材料)、功能材料(光电功能材料)、材料化学(电池能源材料)、军事化学(含能推进材料)4个特色学科方向。上述6个二级学科交叉融合于这4个特色学科方向中,且各二级学科间的界限逐渐模糊,如结构材料方向不仅具有“材料学”的学科属性,还具有“材料加工工程”与“高分子化学与物理”的部分学科属性。因此,这种按二级学科设置的研究生培养模式不再代表我校材料学科特色学科方向发展。
(2)专业方向划分过细,不利于教学资源的合理配置。我校材料与化学类6个二级学科硕士点涉及的研究生培养专业方向达19个,而每年的招生规模小于40人(2008级博士研究生13人,硕士研究生25),并且培养规模有逐年减少的趋势,这样每个专业方向年招生规模在2人左右。这必然带来两个方面的弊端:一是要开设数量众多的专业课程(如每个专业方向开设1~2门专业课程,则专业课程的数量达38门之多),而听课的学员可能只有1~2人,这既加重了教员的负担,又浪费了日益紧缺的教学资源;二是过多的专业方向不利于教学条件的建设。
(3)课程体系不够优化,不能满足跨学科培养的需求。我校自2004年开始暂停“军用材料工程”专业的本科招生计划,而材料学科又是我校的优势学科,所以本校“应用化学”专业的本科生绝大多数选择报考材料类研究生,呈现较普遍的跨学科培养现象。应用化学专业的本科生由于材料科学基础理论知识缺乏,必然会影响其研究生阶段的课程学习与后续的论文研究,而在培养方案的课程设置中并没有将材料学科共同基础知识作为主要的教学内容,反而是各类专业课程处于中心地位,这必然会制约人才培养的质量。此外,在课程设置中过于重视理论教学,而忽视了实践性课程教学,不利于学员创新思维与动手能力的培养。
三、我校材料科学与工程研究生培养方案的改革
在全国材料科学与工程教育改革的大趋势下,为了适应新的历史条件下国防和军队现代化建设对材料类专业高级人才的需要,结合我校材料学科与化学学科交叉融合的学科特点,开展材料科学与工程研究生培养的改革,包括人才培养模式、课程体系、实践性教学环节等内容。主要工作体现在如下几个方面:
(1)突破学科界限,按一级学科组织人才培养。顺应国内外材料科学人才培养改革的主流,突破材料与化学学科界限,按一级学科的模式组织人才培养,不再按二级学科进行区分,而是按“大材料”的思想,下设“结构材料”、“功能材料”、“材料化学”、“军事化学”4个特色学科方向。在课程设置上,摒弃材料与化学相互独立的模式,跨材料科学与工程和化学两个一级学科设置课程体系,将材料与化学共性的基础理论作为基础课程的主体,突显材料与化学的交叉融合。具体课程体系结构如表1所示。
上述课程体系的构建是基于材料与化学学科的内在关联性,将化学定位于材料的基础学科,而材料学科定位于化学学科的工程化方向之一。因此,材料与化学类研究生完全可以采取大学科群培养模式,跨材料和化学两个一级学科设置课程体系,完全打通材料与化学课程,不再区分学科门类。这种培养模式虽然在国内同类高校中还不曾采用,是一种培养模式的创新;但和国内众多重点高校鼓励研究生跨一级学科选修课程的精神是相符的。因此,材料与化学大学科研究生培养模式应该是一种有益学科融合,增强研究生学科基础知识的不错选择。
(2)优化课程体系,强化实践性教学环节。按照学科知识体系优化设计研究生课程,课程体系和内容的设计力争做到体现学科内涵、学科基础和学科前沿。在专业课程设置上,大幅压缩专业课程数量,有针对性地开设高水平专业课程,实现专业课程从中心地位向载体地位转变。〖JP2〗如表1所示,每个学科方向限设专业课程3~4门,且可以跨学科方向选修。在教学内容的编排上,充分考虑“复杂电磁环境”等信息化条件下联合作战的重大需求,用科学技术进步、军事训练和武器装备发展的最新成果充实更新教学内容,如将《功能材料》课程改造成《信息功能材料学》,增设《伪装隐身技术》、《生物材料学》、《含能材料性能计算原理》等课程。〖JP〗
在实践性教学环节方面,注重研究生动手能力的培养,除开设大量的课程实验外,还增加了《高等合成化学实验》和《材料制备实验》2门实验课程。在实验内容的选取上紧密结合我校科研特色,如聚碳硅烷制备与有机硅树脂合成实验、C/SiC复合材料制备与聚合物复合材料构件制备实验、功能陶瓷材料制备与性能表征实验等。这不仅培养了研究生综合应用所学知识解决实际问题的能力和创新精神,而且使研究生提前熟悉科研设备,对后续科研工作的开展也是大有裨益的。
(3)强调自学和研讨,强化研究生学术活动。突出强调研究生的自学能力,要求研究生参加各种学术研讨活动,且明确参加学术会议、学术讲座、专题研讨等学术交流活动的等级和次数要求,如博士研究生必须参加不少于20次(硕士研究生为10次)的学术交流活动(其中至少有4次为跨学科交流活动),本人至少主讲3次。至少应参加一次国际学术会议或全国性高水平学术会议并。并要在参加每次学术交流活动后,撰写不少于500字的总结报告。同时强化研究生文献查阅能力,明确要求博士研究生在开题报告前应至少全文阅读相关技术文献资料80篇(硕士研究生为50篇),其中外文文献资料不少于阅读总量的1/2,达到熟练的文献检索和综述能力,能够对文献进行分析总结,提出该研究方向的发展动态和发展潜力以及需要进一步研究的关键问题,并写出不少于7000字的文献综述报告。
四、结束语
我校材料科学与工程学科通过本轮人才培养方案的改革,基本理顺了人才培养与学科建设的关系,达到了更新人才培养观念、优化课程体系、改善创新环境与增强自主学习之目的。但人才培养的改革是一项长期的工作,需要持续不断地创新与实践,才能永保人才培养方案的科学性与时代性。
[参考文献]
[1] 材料科学与工程教学指导委员会.材料科学与工程人才培养规格与模式的演变规律[J].教育部高等学校教学指导委员会通讯,2006,(1).
[2] 李小年.发挥专业优势培养创新型复合人才[J].化工高等教育,2005,(2).
[3] 藏兴兵,赖小莹.研究生创新能力培养路径探析[J].中国高教研究,2007,(3).
[4] 董兵海,王世敏.材料类专业人才培养方案及课程体系改革的探索与实践[J]. 湖北大学成人教育学院学报,2008,(2).
材料化学专业主要课程
在学习高等数学、化学、物理等基础理论知识及相关实验技能的基础上,本专业主要学习材料科学基础、结晶化学、高分子化学、高分子物理、现代材料分析技术、材料研究与测试方法、材料性能学、材料化学、材料工艺学以及材料基础实验、材料化学专业实验等专业基础课和专业课,接受计算机课程模拟及应用,实验技能、信息获取、工程设计、科学研究等方面的技能培训。该课程体系设置使学生既掌握了材料化学方面的扎实宽广的基础理论知识又具备材料专业特长。主要实践性教学环节:包括生产实习、毕业论文等,一般安排10--20周。
材料化学专业就业方向
本专业学生毕业后可在无机材料、高分子材料等材料及相关技术领域从事质量检验、产品开发、生产、教学及技术管理工作。
从事行业:
毕业后主要在石油、新能源、电子技术等行业工作,大致如下:
1、石油/化工/矿产/地质;
2、新能源;
3、电子技术/半导体/集成电路;
4、制药/生物工程;
5、原材料和加工;
6、其他行业;
7、建筑/建材/工程;
8、环保。
从事岗位:
毕业后主要从事研发、工艺、材料工程师等工作,大致如下:
1、研发工程师;
2、工艺工程师;
3、化验员;
4、质检员;
5、材料工程师;
6、销售工程师;
7、技术员;
8、实验员。
1.掌握数学、物理、化学等方面的基本理论和基本知识;
2.掌握材料制备(或合成)、材料加工、材料结构与性能测定及材料应用等方面的基础知识、基本原理和基本实验技能;
3.了解相近专业的一般原理和知识;
4.熟悉国家关于材料科学与工程研究、科技开发及相关产业的政策,国内外知识产权等方面的法律法规;
5.了解材料化学的理论前沿、应用前景和最新发展动态,以及材料科学与工程产业的发展状况;
关键词:能源化学工程专业;课程设置;专业建设
引言
我国“十三五”能源规划进一步突出了深化能源体制改革、增强能源科技创新能力、大力拓展能源国际合作、清洁高效开发利用煤炭、增强国内油气供应能力、建立能源可持续发展的政策标准体系等重点。随着社会经济的快速发展,能源消耗和环境污染的矛盾日益突出,解决这对矛盾已成为了关乎国家发展和安全的战略性问题。根据我国现阶段经济发展还主要依靠资源消耗的特殊性,2011年教育部新增了能源化学工程专业,各高校也陆续从2011年开始开设能源化学工程专业。该专业是国家战略性新兴产业相关本科专业,以开展化石资源优化利用为基础研究,面向可再生能源技术、低碳经济、清洁煤技术等领域的人才需求,重点解决高效催化剂研制及其产业化等重大问题;其主要关注怎么利用能源且对大自然造成最少的伤害[1-4]。我国专门解决能源与环境矛盾问题的相关专业开设较晚,能源化学工程专业的建设还处于起步阶段[4-6],因此,如何建设该专业课程体系,使其有助于达到人才培养效果,是能源化学工程专业教学过程中必须思考的问题[6,7]。西南科技大学于2012年开始筹建能源化学工程本科专业,通过充分的前期调研、在强大的硬件设施和师资力量的支持下于2013年获批,目标为培养厚基础、高素质、强能力,具有创新潜能和协作精神的高级应用型专门人才,培养学生扎实的化学化工基础知识和能源化学工程专业知识,使学生能够适应涉及化学、化工和新能源化学工程等领域的广泛需求。毕业生可在锂离子电池、碱性电池、燃料电池、太阳能电池等领域从事工艺设计、生产控制、科技管理以及新技术、新材料、新产品的开发与研究工作。文章通过总结西南科技大学3年来在能源化学工程专业核心课程建设方面的经验和积累,对该专业课程的建设进行探讨。
一、西南科技大学能源化学工程专业现有核心课程设置与建设情况
今年,我校能源化学工程专业在校本科生已达120余人,为达该专业培养目标,学生毕业总共需修满170学分,其中专业课程需修满86学分,占50.6%。根据专业建设培养目标和专业教师的知识背景,设置的现有专业课程可分为四个板块,即化学基础课程、电化学课程、分析测试课程和实践课程(见图1)。这样设置的依据在于能源化学工程专业涉及多学科交叉的课程,仅靠某一个学科知识很难培养出适合新形势发展需求的专门型人才。其中化学基础课程涵盖了有机化学、物理化学、无机化学、分析化学、化工原理、化学反应工程、工程制图(化学工程)、化工热力学、工业催化基础、化工安全工程化学等基础课程;电化学课程涵盖了电化学原理、能源材料基础、化学电源设计、应用电化学、太阳能电池概论、动力电池原理及应用、燃料电池技术等课程;分析测试课程包括材料分析与测试方法、仪器分析、电化学测试技术、材料分析与测试方法;实践课程涵盖了电化学基础实验(电化学原理实验、电化学测试技术实验)、化学电源设计与应用实验(化学电源设计实验)和能源化学工程实践(能源化学工程综合设计实验A、能源化学工程专业认识实习、能源化学工程专业毕业实习)等实践课程。我校课程的设置有如下优点:
(1)通过化学基础课程的学习,尤其是通过化学、物理、化工原理、化工催化等基础课程的系统学习,能够夯实学科基础,具备多学科知识交叉的背景
(2)完成化学基础课程群的学习之后,学生紧接着进入与电化学及电化学测试技术有关课程的学习,这样设置有利于学生较好地理解和掌握所学习的知识。此外,学生可在此基础上根据自己的兴趣选择相应的侧重新能源材料某一个方向的选修课,巩固所修的专业知识,成为某一个方向上的专门人才。
(3)对一些重要的基础课,如无机化学、分析化学、有机化学、物理化学、仪器分析、材料分析与测试方法等,都分别单独或者在课程学习中开设有实验课,有利于学生学以致用,加强了学生实践能力的培养。
(4)学生的实践课程合理而丰富。电化学原理实验、电化学测试技术实验、化学电源设计实验、能源化学工程综合设计实验的内容让学生掌握和学习从电化学基础实验到锂离子电池、超级电容器等器件从材料至成品的制作工程应用知识。此外,我校学生可在四川长虹新能源科技有限公司、四川长虹电源有限责任公司、四川久远环通电源有限责任公司等公司完成工程实践,体现了我校对学生第二课堂建设的重视。
二、存在的主要问题和建议
经过近三年的建设,我们发现在专业课程设置上仍存在不足之处,在21世纪及目前新形势下其课程建设还应注意以下问题。
(1)当前的体系过于偏重化学基础课程,轻材料科学基础学科课程,如固体物理、半导体物理或材料科学基础等以材料结构与性能之间关系的基础课程没有开设,不利于学生掌握相关器件材料的合成及其使用性能。
(2)在煤化工、石油化工及其绿色合成、污染控制与防治等可选修的基础课程上应完善。能源化学工程专业开设的最初目的是以化石资源优化利用为基础研究,解决能源与环境污染的重大问题。煤化工、石油化工在当今我国国民经济中还有重要地位,因此,课程设置在煤化工、石油化工及其绿色合成等选修课程上还应加强。这些课程可供学生学习专业基础课程后选修,拓宽培养人才的知识面和技能。
(3)创新意识和科学素养培养不足。创新意识和科学素养来源于对基础知识的扎实掌握及对行业的全面和前瞻性了解,当前课程还存在容量不够大、涵盖面不足、供学生选择的课程还不够丰富,需要在今后的建设中继续完善。其次,学生工程实践机会和场地还有待进一步挖掘和拓展,加强与更多的国内乃至国外知名公司合作更佳。因此建议能源化学工程专业在今后在发展中要不断完善专业课程的设置,进一步扩大课程体系容量。
三、结束语
能源化学工程专业课程的建设直接关系到培养出的专业人才质量以及人才专业素质能否满足社会需求,在当前国家和地方急需能源化学工程专业技术人才的大背景下,完善该专业课程的建设尤为重要。西南科技大学经过3年的建设,取得了一定的成果,但也应该看到专业课程的建设还需要进一步完善。希望文章对能源化学工程专业课程建设的阐述能为国内开设该专业的相关兄弟院校有借鉴和启迪作用,也希望有更多的研究工作能集中在能源化学工程专业课程的建设上,加快其完善的步伐。
参考文献
[1]陈秀,来永斌,陈明功,等.基于能源化学工程专业学生创新能力培养的多维创新实践平台建设[J].产业与科技论坛,2015,14(1):216-217.
[2]赵海,刘俊清,刘瑾,等.能源化学工程专业人才培养模式研究与实践[J].山东化工,2015,44(12):99-101.
[3]陈彦广,韩洪晶,杨金保,等.能源化学工程专业本科生创新能力培养体系的建立与实践[J].教育教学论坛,2013(15):228-229.
[4]刘淑芝,王宝辉,陈彦广,等.能源化学工程专业建设探索与实践[J].教育教学论坛,2014(6):209-210.
[5]孟广波,毕孝国,付洪亮.能源化学工程专业优化实践教学体系研究[J].中国电力教育,2014(3):145-147.
[6]陈彦广,韩洪晶,陈颖,等.基于国际化、工程化能源化学工程创新人才培养模式的评价及效果[J].教育教学论坛,2013(13):214-216.
1.1背景
武汉科技大学是由武汉钢铁学院等隶属于原冶金工业部的三所在汉高校通过合并和改名而来。1998年,根据国家高等教育管理体制改革需要,学校成为第一批实行“中央与地方共建,以湖北省人民政府管理为主”的划转院校。划归湖北省管理后,学校立足于湖北建设、面向中南地区、辐射全国。武汉科技大学化学工程与工艺专业始建于1958年,原名为“炼焦化学专业”,1985年改为“煤化工专业”。1992年,按“煤化工”、“城市燃气”和“炭素材料”三个专业分别招生。1996年,随着教育部大学本科专业目录的调整,“煤化工”、“城市燃气”和“炭素材料”三个专业归并为“化学工程与工艺”专业[1]。总之,化学工程与工艺专业以煤化工(焦化)为特色,是武汉科技大学的传统特色专业。武汉科技大学是我国焦化专业人才的摇篮,所培养的焦化专业人才遍布全国各地,且大多成为企业的技术骨干或领导。为了适应市场经济形势、进一步提高人才培养质量和扩大毕业生的就业面,需要不断完善培养目标,加强基础理论知识的教学和采用多学科复合型培养模式,对多学科交叉课程进行整合和调整;强化工程实践能力、动手能力和创新能力的培养;在采用宽口径和重基础培养模式的同时突显专业特色。
1.2目标
所构建的化学工程与工艺专业课程体系能适应社会发展的需要,培养出具有宽厚基础理论、合理知识结构、较强创新能力、较全实践技能和明显煤化工特色的复合型化工类高级工程技术人才。毕业生能在焦化、炭素材料、燃气、石油化工、精细化工、环境保护等行业从事生产管理、工程设计、技术开发和科学研究等方面的工作。
2课程体系建设
2.1整合与优化原有课程
2.1.1整合《工程力学》与《化工设备机械基础》
武汉科技大学化学工程与工艺专业在课程整合之前,所开设的《工程力学》学时数为82。《工程力学》是整个课程体系中学时数很大的课程之一,且有些内容对化学工程与工艺专业并不是十分重要。为了增加学生社会的适应能力,加大学生的知识面和提高综合素质,经过仔细研究和综合权衡,决定压缩一些已开设课程的学时和增加一些新的课程。《工程力学》就是这次课程体系改革的压缩对象。考虑到《工程力学》与《化工设备机械基础》关系最密切,就将压缩后的《工程力学》与《化工设备机械基础》整合成一门课程,取名为《化工设备与材料》。整合的《化工设备与材料》定位为化学工程与工艺类专业一门综合性的机械类技术基础课,其内容包括工程力学、化工设备材料与焊接和化工容器设计三大部分。其任务是使学生具备基本工程力学知识,了解化工设备的选材要求及常用材料的特性,了解和掌握化工设备的设计计算方法和过程及典型设备的结构设计与计算,强化化工类专业本科生对化工设备的机械知识和设计能力。整合后的《化工设备与材料》总学时数为46,其中工程力学部分由原来的82学时压缩到16学时,为其它课程腾出66学时[2]。
2.1.2整合《化工设计》与《化工技术经济》
很多学校将《化工设计》是列为化学工程与工艺专业的一门专业必修课。课程主要介绍化工工艺设计的基本知识和方法,包括原料路线、技术路线的选择,工艺流程设计,物料衡算、能量计算,工艺设备的设计和选型,车间布置设计,化工管路设计,非工艺设计项目的考虑和设计文件的编制等内容。学习该课程可提高综合运用已学过的化工原理、物理化学、化工热力学、反应工程、分离工程、化工工艺学和机械制图等方面知识解决化工工程实践问题的能力。武汉科技大学化学工程与工艺专业原来的课程体系中没有设置这门课,主要是因为受总学分和总学时的限制,没有富余学时来开设这门课,现在通过整合《工程力学》与《化工设备机械基础》腾出66学时,学时的问题已得到解决。所腾出66学时不能全部用于开设《化工设计》,经过仔细研究后决定将《化工设计》与已开设的《化工技术经济》进行整合,取名为《化工工程设计与技术经济分析》,定位为专业基础课,学时数由原来的18调整为54。
2.1.3优化《能源化学》
《能源化学》是化学工程与工艺专业的专业基础课,其前身为《煤化学》,为了拓宽学生的就业面,重新整理了传统课程的教学内容,在煤化学课程的基础上,将其它一些主要能源也引进来,从而形成了能源化学课程,总学时数为54,其中实验学时数为8。经过几年的教学实践后发现,由于教学内容较多,该课程的教学时数过于紧张,尤其是实验学时严重不足。在本次课程体系建设中,将该课程的理论教学内容和实验教学内容进行分离和单独设课。实验教学内容取名为《能源化学实验》,学时数为18;理论教学内容仍用原来的课程名称,学时数为46。
2.1.4优化《能源化学工学》
《能源化学工学》是化学工程与工艺专业模块1(煤化工模块)的主干专业课程,由《炼焦学》和《炼焦化学产品回收与加工》整合而成。以前的课程体系设置时为了强调重基础,对该课程的学时进行了大幅压缩,总学时数为54,其中实验学时数为18。经过几年的教学实践后发现,该课程的教学时数压缩过大,对教学效果产生较大影响,用人单位的反馈意见也证实了这一点。在本次课程体系建设中,将该课程的理论教学内容和实验教学内容进行分离和单独设课。实验教学内容取名为《能源化学工学实验》,学时数为18;理论教学内容仍用原来的课程名称,学时数为46。
2.1.5优化《高炭化学与碳材料工程基础》
如前所述,炭素材料曾是武汉科技大学化工类的招生专业之一。在化工专业课程体系中设置炭素材料类的课程也是一大特色,这种特色为化工类毕业生的就业提供了更多机会。每年都有化工类的毕业生在炭素材料行业中就业,在全国的主要炭素企业中都有武汉科技大学化学工程与技术学院毕业的校友。但有一段时间为了强调重基础,弱化了炭素材料课程的教学,仅开设了《碳材料工程基础》,而且还是任意选修课,教学时数只有28学时。根据毕业生和用人单位的反馈意见,在本次课程体系建设中,决定优化该课程的教学设置,将该课程定位为指定选修专业课,教学时数增至44,课程名称改为《高炭化学与碳材料工程基础》。
2.2增设《化工CAD绘图与识图》
工程图纸是工程技术上用来表达设计思想和进行技术交流的主要手段,任何工程技术方案的实施,都必须以其为依据,因而被喻为“工程界的技术语言”。很多学校的化工类专业都开设计《化工制图》这门课程,主要内容有化工工艺图和化工设备图两大部分,用于培养学生阅读和绘制化工专业图样的能力。同时,它也为学生完成毕业设计和适应今后工作需要提供了不可缺少的基本能力。武汉科技大学化学工程与工艺专业原课程体系中只设置了《机械制图》,没有开设《化工制图》。根据毕业生和用人单位的反馈意见,在本次课程体系建设中,决定增设《化工CAD绘图与识图》这门课程。该课程由《化工制图》和《Auto-CAD绘图》整合而成,内容包括:AutoCAD绘图软件及其应用、工艺流程图、设备布置图、管道布置图和化工设备图,教学时数为36,其中14学时为上机实践学时。
3教学方式改革
3.1在实践中培养学生的动手能力和创新能力
依托湖北省煤转化与新型炭材料重点实验室,通过开设本科生创新性实验与创新性研究等课外实践活动,为培养学生的动手能力、创新能力提供保障。鼓励和扶持本科生进行实验技能和化工设计竞赛。本科生从三年级开始下到实验室,参与到指导教师的实际科研项目中去,熟悉科研过程,锻炼实践技能,培养创新能力。
3.2组建和培养教学团队
原来大多数专业课都只有一名任课教师,待其退修或调离工作岗位后再找教师接替。现在每门课至少有两门任课教师,一般采取以老带新的模式,且任课教师都要有工程实践经验。如《能源化学》教学团队,由2名老教师、1名中年教师和2名年轻教师组成,其中3名教师具有博士学位,4名教师有正教授职称,2名教授为博士生指导教师。已有8名没有工程实践经验的年轻教师被派到河南、云南等地焦化企业进行了3个月实践锻炼,回校后教学效果有了明显提高。
3.3多种途径组织实践教学
近年来,化学工程与工艺专业建立了一批相对稳定的教学实习基地。考虑到专业特色和培养方向的要求,实习基地以武汉平煤武钢联合焦化有限公司为主体。该公司在国内具有技术力量雄厚,生产工艺先进的特点,并具有较高的管理水平。同时,该公司可以说是焦化的一部“百科全书”,建有4.3m、6m、7.63m焦炉,所采用的配套工艺也有多种,是一个相当理想的焦化特色化工专业教学实习基地[3]。但是现在化学工程与工艺专业的招生人数越来越来多,一年的招生人数达280人之多。一个焦化公司能一次接纳这么学生去实习已经勉为其难,实习过程只能用走马观花来形容,很难深入下去。为了解决这一问题,采取了一系列措施,如下厂前先给学生分工段介绍现场工艺流程和主要设备,播放现场录制的录像,开发主要设备的三维数字模型供学生在电脑进行自主观察、解剖和组装,购置计算机仿真培训软件供学生在电脑上进行仿真操作。
就其中的催化科学与工程而言,已经成为当今国际上最活跃的科技领域之一。据统计,与催化有关的产值约占国民生产总值的25%;催化剂是目前更新换代最快、经济产出比最大的技术产品之一。尤其是近年来,材料物理、表面科学、计算机模拟技术、绿色化学、生物化学和纳米技术的进步给催化科学与工程的发展带来新的活力,使之成为解决资源、环境、生命和材料等领域中科技问题的支柱科学技术。
培养目标:使毕业生适应国家经济与科技发展的需求,成为具备宽厚的理论基础知识,通晓化工生产技术的专业原理、专业技能与研究方法,能够从事过程工业领域的产品研制与开发、装置设计、生产过程的控制以及企业经营管理等方面工作的高素质科技人才。
主干学科:有机化学、物理化学、化工原理、化学反应工程、化工机械、精细有机合成原理等。
主要课程:无机化学、分析化学、大学物理、有机化学、物理化学、化工原理、化学反应工程和一门必选的专业方向课程。 另外辅修化工经济技术分析、电工电子等。
主要专业实验:有机化学实验、无机化学实验、化工热力学、化工传递过程、化学反应工程、化工过程系统工程、工业催化和应用化学等。
主要实践性教学环节:包括化学与化工基础实验、认识实习、生产实习、计算机应用及上机实践、课程设计、毕业设计(论文)(计算机应用要求较高)等。
专业发展方向:化学工程、化学工艺、精细化工。
1.华东理工大学 2.天津大学 3.北京化工大学 4.南京工业大学 5.大连理工大学
6.浙江大学 7.中国石油大学 8.华南理工大学 9.太原理工大学 10.四川大学
11.郑州大学 12.湖南大学 13.哈尔滨工业大学 14.西安交通大学 15.上海交通大学
16.江南大学 17.中南大学 18.南京理工大学 19.中国矿业大学 20.湘潭大学
大连理工大学化工系创办于1949年,1952年高等学校院系调整时,一批著名化学家汇集大工,形成了具有雄厚实力的化工学科。改革开放后,化工各学科发展很快,师资队伍和招生规模不断扩大,1984年发展为化工学院,学院设有化学、化学工程、生物工程、材料化工、化学工艺、工业催化、精细化工、高分子材料和化工机械等9个系,24个教研室。现有本科生2410人,硕士生494人,博士生241人,博士后科研人员7人。教职工370人,其中中国工程院院士1人,双聘院士3人,“长江学者奖励计划”特聘教授2人,博士生导师37人,教授53人,副教授80人,高级工程师17人。
化工学院现有化学工程与技术一级学科博士学位授予权,覆盖了其全部五个二级学科――化学工程、化学工艺、应用化学、工业催化和生物化工,并设有化学工程与技术博士后科研流动站。此外还有高分子材料、无机非金属材料及化工过程机械博士点和3个理科化学硕士点。生物化工、应用化学、环境学科设有“长江学者奖励计划”特聘教授岗位。学院拥有应用化学国家重点学科,化学工程、工业催化和生物化工三个辽宁省重点学科,精细化工国家重点实验室,分析中心及15个研究所,拥有400兆核磁共振,气/液质谱、飞行时间质谱、X射线衍射仪等大型分析仪器40余台,成为我国培养化工高层次人才和科学研究的基地。
化工学院作为大连理工大学的重要学院,50年来为国家培养了2万名毕业生,其中许多人成为国家各部委和省市领导,中科院院士,国家有突出贡献的专家以及大专院校、科研院所和厂矿企业的厂长、经理、总工及业务骨干,为适应社会需求培养了复合型、外向型高技术人才。
化工学院广泛开展国际学术交流和技术合作,已经与日本、韩国、美国、加拿大、澳大利亚、德国、奥地利、英国等国家的大学、研究机构或公司建立科技合作和学术交流。
化工学院办学宗旨是以人才为本、创新为先,办学思路是以贡献求支持,以改革促发展。重视面向社会经济建设的重大关键技术的基础研究和应用基础研究,每年都承担一批国家、省市级科学基金和“973”“863”及“九五”重点攻关项目,同时与企业建立产、学、研三结合紧密型协作关系,解决技术难题及高新技术和新产品的开发工作,化工学院每年科学研究经费达3000万元以上,近两年科技成果显著,获国家科技进步奖二等奖一项,省部级科技进步奖一等奖三项、二等奖三项。
问题1:化学工程与工艺专业的学生应掌握怎样的知识和能力?
1.掌握化学工程、化学工艺、应用化学等学科的基本理论、基本知识;
2.掌握化工装置工艺与设备设计方法,掌握化工过程模拟优化方法;
3.具有对新产品、新工艺、新技术和新设备进行研究、开发和设计的初步能力;
4.熟悉国家对于化工生产、设计、研究与开发、环境保护等方面的方针、政策和法规;
5.了解化学工程学的理论前沿,了解新工艺、新技术与新设备的发展动态;
6.掌握文献检索、资料查询的基本方法,具有一定的科学研究和实际工作能力。
问题2:化学工程与工艺专业的学生就业方向?
本专业毕业生知识面宽,可到工业部门从事化工类产品的设计、施工、生产管理、技术开发、应用研究以及贸易等方面的工作,也可到科研、商贸、行政等部门从事与化学工程相关的工作。
也可在化工、炼油、冶金、能源、轻工、医药、环保和军工等部门从事工程设计、技术开发、生产技术管理和科学研究等方面的工作。
还可以到化学工厂、大学、政府社团、保健服务、中学、医院、工业实验室、图书馆、医药公司、私人企业、实验研究所等从事相关的工作。
问题3:化学工程与工艺专业方向的不同有差异么?
化学工艺包括能源化工、材料化工、有机化工、环境化工、高分子化工、无机化工等众多领域,覆盖面广。它不仅涵盖了传统的基础领域,同时与材料、能源、生物、医药、环境等学科渗透融合,不断地培植出新的生长点。它既是一个历史悠久、曾作出重大贡献的学科,又是一个新世纪不可缺少的充满了生机与活力的学科。
化学工程是以化学工业及相关生产过程中所进行的化学、物理过程为研究对象,探究其所用设备的设计原理与操作方法以及最终实现过程优化所应遵循的共性规律。本专业方向学生主要学习化工流体流动与传热、化工传质与分离过程、化工热力学、化学反应工程、化工传递过程基础、化工数学、化工分离过程、化工工艺学、化工过程分析与合成、化工设计等课程。为拓宽专业面,增加适应性,还开设生化基础、石油炼制工程、环境化工、化工机械基础、ChemCAD等课程。
问题4:与化学工程与工艺专业相近的专业是什么?
制药工程(主要是化学制药)。
问题5:化学工程与工艺专业中的催化科学与工程具体是什么样的学科?
它是催化化学、材料物理及化学工程之间的交叉学科,具有理工结合的特点。
培养德、智、体全面发展的具有开拓能力的高级工程技术人才,业务培养目标为:培养具有催化科学技术基础和掌握化学反应工程理论,具备扎实的材料科学理论和技术知识,熟悉现代化学物理研究方法和技能,了解现代科技现状与发展前景,能胜任化工、能源、材料、医药、食品、环保等领域中相关的新工艺、新材料、新产品的研究、开发、设计和工业化的复合高等工程技术人才。