时间:2023-09-22 15:32:24
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇最新医药行业动态范例。如需获取更多原创内容,可随时联系我们的客服老师。
我的医药营销之路,总体上来讲,可以分三步来评说:
一、 懵懂入行,新奇和喜悦
进入医药行业,我并非别人那样目标明确,就是冲着这个行业来的。相反,
和大多数刚参加工作的年轻人一样,我的入行之路却有几分戏剧性色彩。
记得刚从学校毕业,我作为系里营销专业的佼佼者,几乎没有费什么力气就进入了当时令其他同学羡慕不已的国有企业网通公司,从事电信增值业务工作,并很快通过努力从普通员工成长为一个业务开发和推广部的经理,事业发展似乎一帆风顺,羡煞旁人!
可是,不到两年时间,网通那种陈旧的管理和松散的工作作风就使我产生了厌倦。最终在一次和领导就市场推广方案进行激烈的争吵之后,年轻气盛的我选择了离职。当时我的这个举动让很多人惊奇,包括和我争吵的主任。尽管他们极力挽留我,可我还是离开了网通,开始了第一次再就业。我的目标很明确,找和电信相关的行业和企业工作,家电之类的营销企业也可以考虑,唯独有两个行业不予理会,就是医药和快销。
然而,这个时候上天却给我开了一个很大的玩笑。当我踌躇满志的在找这些工作的时候,却一时间变成了无人问津的人。一个偶然的机会,我委托一个在网吧上网的同学给我投几分简历,当然具体什么内容我现在都不知道,只知道这次掀开了我医药营销之路的新篇章。
而真正进入医药行业还有一个小插曲,因为不是我对企业投的简历,当企业通知我参加面世的时候,我先是一愣,然后很迷茫的胡乱答应 。至于是哪个企业,办公地点在哪里,应聘的什么岗位,我是完全不知道。当然,第一次我也没有去参加面试。第二天,企业又通知我面试,并询问我为什么没有参加昨天的面试,我只能胡乱编织了一个理由搪塞。这次没什么好说的了,按照要求的时间去参加企业的面试。当然,因为完全不懂得医药方面的知识,在面试完了之后,我没有任何想法,唯一的感觉就是:即使天上会掉馅饼,也不会砸中我这样的家伙。
结果,事实再一次让我惊讶:我通过了初试要马上参加复试。同样,这次我还是没有去,因为内心里我还是不想从事这个行业的工作。可是,市场部经理连着给我打了三个电话才促使我去参加复试,复试的主考官是分公司总经理,我最后也成功通过了复试正式成为了企业的一员。
后来问起我的部门经理为什么要那么执着给我打电话要我面试的时候,他淡淡的说“因为确定了名单,如果人没有来不好跟老总交差”就是这么这样一个戏剧性的理由,我进入了我医药营销之路的第一站:辅仁药业集团。
二、 奋力探索,艰辛而欣慰
辅仁毕竟是个大企业,人员、品种、营销手法等等对于我这个刚入行的门外
汉来说,简直是看花了眼,光是那一串串的西药产品名称,我就足足看了一个礼拜才勉强掌握。因为什么都不懂,什么都不会,再加上我的无所谓态度作怪,最初的半个月我都是在茫然之中度过的,直到有一次参加企业组织的培训,我才懂得了什么是事业、什么是敬业,于是我开始认真学习行业知识,并不断学习进步。
那个时候企业的经营还是在进行招商市场配合商业流通为主,逐步转型掘金第三终端市场。因为这个过程需要大量的人,这样一个契机造就了像我一样的一大批医药行业的实战人员。我做为市场专员,经常是连续几个月在市场上与业务人员一起跑县级医药公司联系促销活动,把握乡镇的实际情况召开第三终端会议,并维持会场的秩序。晚上在办事处,要就当天会议的情况召开总结会,及时总结情况,并就下一场方案进行策划和实施。
在企业大力开发第三终端的两年时间里,终端推广会不知开了多少场,各种类型的县市级商业公司不知道打过过少交道。当然,这样一种锤炼也增长了自己的见识和市场把握能力。而任何工作都是有成功的喜悦又有失败的懊悔的,我们曾经取得过一次开会销售30万被公司通报嘉奖的壮举,同样也有一场订货会花费6000多元,而只销售了8000多元的糟糕成绩(产品的利润点只有15%)。实际市场的这段时间是辛苦的,也是充实的。虽然很累,但是很欣慰,因为我确实掌握了很多东西!
三、 稳定发展,掌握前进的脉搏
在我的医药行业职业生涯起到重要一步的是2006年的郑州全国药品交易会
的召开。借助集团大手笔的投入和推广,我所在的分公司也围绕集团方向,成立了以分公司总经理和部门经理牵头,我主持的参会小组。用一系列完善的参会方案和活动,得到了公司总部的表扬,我也顺利的成为了新成立的集团调研部负责人,配合集团总部实施更大规模的市场经营战略。
在调研部工作的这段时间,我跑遍了大半个中国,仔细研究着各地不同的产品需求和结构、渠道模式和运营手法、市场状况和发展方向……调研议题一个个被提出,一个个完成。从第三终端市场操作走过来的我,在这些临床、商业流通、招商、OTC渠道市场更加认真的研究,不断丰富自己的知识和能力。直到我离开辅仁的今天,我依然很怀念这段经历,因为我是在市场操作和接触中成长起来的,我是一个不折不扣的实战营销人士。
【论文摘要】本文基于我国10个行业上市公司连续5年的面板数据分行业建立的动态调整模型。研究发现:我国上市公司的资本结构存在显著的行业差异;资本结构影响因素对不同行业的影响力的大小和方向也存在很大差异;同时各行业受宏观 经济 因素的影响,资本结构的调整成本和资本结构的适宜度也各不相同。
本文运用面板数据构建了我国上市公司分行业资本结构动态调整模型,通过对多个行业上市公司连续五年数据的分析,试图对我国上市公司资本结构行业差异进行较全面的分析,并对产生这些差异的原因进行解释。
一、模型变量与动态调整模型
1.模型变量的选取。本文选择了与行业经营特点紧密相关的盈利能力、公司规模、成长性、资产可抵押性、非债务税盾和收益波动性等指标作为影响公司资本结构的因素纳入动态调整模型,指标代码及 计算 方法见表1:
对于资本结构的度量,学术界普遍采用三种方式:总负债/总资产,总负债/股东权益,长期负债/总资产。本文采用总负债/总资产(debt)来衡量 企业 的资本结构。由于采用市场价值计算企业资产价值存在较大困难,本文的debt指标采用账面价值计算。
2.动态调整模型。以上分析表明企业的最优资本结构是由多个因素综合作用的结果,因此最优资本结构可以表示为:
debt*it=β0+β1pr oit+β2sizeit+β3gr owit+β4tangit+β5ndtsit+β6invait+εit(1)
然而,由于企业在调整资本结构时存在调整成本,并不是将资本结构调整到最优值,而是遵循一个动态目标并运用如下调整模型:
debtit-debtit-1=δ(-debtit-1)(2)
其中: debt*it表示公司第t期的最优资本结构;debtit和debtit-1分别为第t年和t-1年的实际资本结构;系数δ用来度量资本结构的调整成本,δ越小,表明企业承担的调整成本越高。将式(2)调整为debtit的函数再代入式(1),并加入时间固定效应变量tt和个体特定效应控制变量μt,以控制与公司个体相关但未被模型包含的其他资本结构影响因素,最终建立资本结构动态调整模型如下:debtit=β0+β1proit+β2sizeit+β3growit+β4tangit+β5ndtsit+β6invait+(1-δ)debtit-1+tt+μt+εit(3)
模型中tt表示时间固定效应变量,可以理解为宏观经济因素变动对资本结构调整的影响;εit为未被观察到的随时间和截面个体同时变化的剩余误差项。本文所采用的模型与肖作平(2004)和王皓、赵俊(2004)所采用模型的原理基本一致。因同行业企业一般具有大致相同的特征,因此模型中并未包含企业特征效应变量。
二、样本的确定及数据来源
本文采用的行业分类标准为证监会2001年4月的《上市公司行业分类指引》,即13个行业大类,各行业大类下进一步分行业门类。本文同时对制造业下的各行业门类也分别进行分析,以考察相似行业的资本结构差异情况。按照2001年证监会官方公布的分类结果,首先选择在深沪两市1998年12月31日以前上市的所有非 金融 类a股上市公司;为避免异常值的影响,样本中删除了1999~2003年中曾被st和pt的公司及在任何一年中负债率大于1的公司;同时为了保证模型估计的可靠性,考虑到统计中对样本的最低要求,对于样本小于30家的行业不加以分析;最后取得数据完整的588家公司1999~2003年连续5年的完整数据,共2 940个观察单元。样本分属6个行业大类,其中制造业公司338家,分属5个行业门类。各行业样本分布情况见表2:
三、实证分析
1.资本结构行业差异的统计描述与假设检验。将各行业资产负债率整理后统计描述如表3所示。从表3中可以发现,行业间各期负债率的平均值存在较明显的差别。分行业来看,代码为j的房地产业的负债率最高,5年的平均值为0.534,然后依次为批发零售贸易业、综合类行业、信息技术业、制造业和电力、煤气及水生产供应业。房地产业的负债经营特征明显,批发零售贸易业存在大量的短期负债,而电力、煤气及水生产供应业投资需求较少,因而负债率也相对较低。从制造业下的各行业门类来看,机械设备仪表行业的负债率最高,而食品行业的负债率最低。除制造业2003年的标准差大于0.2外,其他各行业各期的标准差均小于0.2,这说明各行业负债率的集中度较高。同时,各行业的负债率在5年中均出现了不同程度的增长。
2.行业间影响资本结构选择的各因素分析。模型中包含有不可观察的公司特征效应μt被解释变量的滞后项,同时本研究的时间维度只有5年,因此直接采用lsdv方法进行模型估计是有偏差的。arellano&bond(1991)研究证明运用gmm技术可以获得无偏估计,kiviet(1995)给出了lsdv估计纠偏方法,其研究同时证明在样本较小和时间维度较小时采用纠偏方法的lsdv估计的方差比gmm估计的方差要小得多。本文中分行业进行模型估计时,部分行业的样本量不大,因此本文采用kiviet(1995)中的lsdv估计纠偏方法,对lsdv估计值进行纠偏。运用eviews 5.0软件分别对各行业大类和制造业下各行业门类按模型(3)进行估计,整理后得到纠偏后的估计结果见表4、表5。
从对模型的统计检验来看,决定系数均大于0.9,除电力、煤气及水生产供应业外,其他行业的d-w检验值均大于2,表明这些行业模型的估计均取得了很高的拟合度,原因可能是利用面板数据建立模型有效地减少了回归变量间的多重共线性,自由度的增加提高了参数估计的有效性,同时相同行业影响资本结构的各因素具有同质性,同一行业的产品市场及其他经营环境也相同。
时间虚拟变量在不同行业的表现也存在明显的差异。行业大类中的批发零售贸易业和综合类行业的时间虚拟变量不显著,这两个行业一个属于完全竞争行业,一个的业务存在多样性,它们的资本结构选择一般受宏观 经济 因素的影响较小。制造业下的食品行业的时间虚拟变量也没有通过显著性检验。
从各影响因素来看,各行业大类和制造业下各行业门类的盈利能力(pro)的系数均为负值,且除电力、煤气及水生产供应业的系数不显著外,其他行业该系数均在1%的水平上显著,这个结果支持了myers和majluf(1984)的啄食顺序假说,与ross(1977)信号传递理论则相背离,表明这些行业在选择融资结构时很少顾及信号传递的影响。而电力、煤气及水生产供应业的该系数未通过检验,这与其投资需求少、贷款政策性强的特点相符。虽然各行业的盈利能力对资本结构的影响方向相同,但作用力的大小却存在较大差别。
成长性(grow)方面,信息技术业具有较高的成长性,但成长性相关系数却没有通过显著性检验,原因可能为信息技术业资金需求量大, 企业 在获取资金时考虑更多的是能否获得足额资金,而获取资金的方式具有随机性;食品行业成长性相关系数不显著;其他行业的成长性相关系数均显著为正,其中医药行业的成长性具有最大的显著为正的相关系数,这与该行业成长性高、资金需求量大的特点是相符的。
资产可抵押性(tang)方面,行业大类中电力、煤气及水生产供应业和批发零售贸易业、房地产业、制造业的资产可抵押性均与负债率有着非常显著的正相关关系。而信息技术业的资产可抵押性与负债率呈显著的负相关关系,该行业的固定资产大多为 计算 机等 电子 产品,抵押价值不高,折旧速度快,拥有较多的固定资产意味着较大的非债务税盾。而房地产业和综合类行业的资产可抵押性与负债率呈弱相关关系,且系数较小。制造业下只有金属非金属行业与负债率呈显著的正相关关系,对传统资本结构理论形成支持。机械设备仪表行业的资产可抵押性系数显著为负,而食品行业、化学行业、医药行业三个系数均未通过显著性检验。
收益波动性(inva)对各行业资本结构的影响表现出了很大的差异性。行业大类中电力、煤气及水生产供应业和综合类行业表现为在1%水平上显著正相关;制造业表现出弱的正相关性,制造业下的机械设备仪表行业的系数显著为正。对这种波动性越大越能获得贷款现象进行解释是非常困难的,myers(1977)提出的高风险公司具有低成本的解释也只是表达了企业股东的贷款意愿,更有可能的解释是我国银行并不能依据贷款者的资信调整利率,而银行对上市公司放贷的偏好使得上述行业波动性大的企业能以较低成本顺利获得所需贷款。信息技术业和批发零售贸易业两个完全竞争行业的相关系数显著为负,对传统风险规避理论给予了支持。房地产业和制造业下的另外四个行业门类的相关系数没有通过显著性检验,表明收益的波动性并不影响这些行业的资本结构选择。
3.行业间资本结构适宜度的比较。根据各行业模型的估计结果,依据我们计算出各企业各期的最优资本结构,即在各因素约束下企业最为合理的负债水平,再将最优资本结构除以实际资本结构,计算结果大于1表明实际资本结构小于最优资本结构,企业表现为负债不足。按行业求出各期的最优资本结构比实际资本结构的平均值(见表6),以考察各行业的资本结构适宜度。
表中数据表明,各行业普遍表现出负债不足的迹象,这与我国债券市场不发达的现实是相符的,但各行业实际资本结构偏离最优资本结构的差距却存在差异。其中电力、煤气及水生产供应业的实际资本结构与最优资本结构的差距最大,这与其拥有相对最低的负债率的现实是相符的。批发零售贸易业、食品行业和机械设备仪表行业的实际资本结构与最优资本结构较为接近,而综合类行业则表现出实际资本结构围绕最优资本结构上下波动的迹象。
四、结论与启示
通过对我国上述行业上市公司连续5年的面板数据的统计分析和分行业动态调整模型的建立,我们得到了以下主要结论与启示:
1.我国各行业上市公司的资本结构均呈逐年上升的趋势;各行业大类存在显著的差异性,统计检验证明这种差异不是由个别行业的异常值引起的,而是普遍存在于各行业间;同一行业大类下行业门类间的资本结构差异性不如行业大类显著。
2.各因素对行业资本结构选择的影响存在很大的差异,这种差异不仅表现在影响力的大小上,还表现在影响力的方向上。这说明以往研究中仅以哑变量区分行业特征,致使所建模型很多因素的影响力由于行业差异而相互抵消,这必然影响到模型的解释力和信息量。
3.宏观经济因素对行业资本结构的影响存在着显著的差异;同时证明我国上市公司行业间的资本结构调整成本存在较大差异;部分行业的实际资本与最优资本结构的差距较小,各行业不同时期的资本结构适宜度也存在差异。
由于受样本限制,本文的研究对象并没有包括所有行业门类,这使得本文的结论对整个资本市场的解释力受到影响,同时以往研究表明股权结构等因素对企业的资本结构调整存在影响,本文将这种影响归入了未被观察到的影响因素中,并没有对其进行单独考察。
主要 参考 文献
①王娟,杨凤林. 中国 上市公司资本结构影响因素的最新研究.国际 金融 研究,2002;8
②郭鹏飞,孙培源.资本结构的行业特征:基于中国上市公司的实证研究.经济研究,2003;5
③肖作平.资本结构影响因素和双向效应动态模型——来自中国上市公司面板数据的证据. 会计 研究,2004;2
④吕长江,韩慧博.上市公司资本结构特点的实证分析.南开管理评论,2004;5