时间:2022-08-20 12:35:52
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇电子设备论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
关键词:电子设备电磁兼容性干扰源有效抑制
1引言
随着电子技术的迅速发展,现代的电子设备已广泛地应用于人类生活的各个领域。当前,电子设备已处速发展的时期,并且这个发展过程仍以日益增长的速度持续着。电子设备的广泛应用和发展,必然导致它们在其周围空间产生的电磁场电平的不断增加。也就是说,电子设备不可避免地在电磁环境(EME)中工作。因此,必须解决电子设备在电磁环境中的适应能力。电磁兼容性(EMC)是一门关于抗电磁干扰(EMI)影响的科学。目前,就世界范围来说,电磁兼容性问题已经形成一门新的学科。电磁兼容的中心课题是研究控制和消除电磁干扰,使电子设备或系统与其它设备联系在一起工作时,不引起设备或系统的任何部分的工作性能的恶化或降低。一个设计理想的电子设备或系统应该既不辐射任何不希望的能量,又应该不受任何不希望有的能量的影响。
2电磁干扰源的分类
各种形式的电磁干扰是影响电子设备电磁兼容性的主要因素,因此,它是电磁兼容性设计中需要研究的重要内容。
2-1内部干扰
内部干扰是指电子设备内部各元部件之间的相互干扰,包括以下几种。
(1)工作电源通过线路的分布电容和绝缘电阻产生漏电造成的干扰;(与工作频率有关)
(2)信号通过地线、电源和传输导线的阻抗互相耦合,或导线之间的互感造成的干扰;
(3)设备或系统内部某些元件发热,影响元件本身或其它元件的稳定性造成的干扰;
(4)大功率和高电压部件产生的磁场、电场通过耦合影响其它部件造成的干扰。
2-2外部干扰
外部干扰是指电子设备或系统以外的因素对线路、设备或系统的干扰,包括以下几种。
(1)外部的高电压、电源通过绝缘漏电而干扰电子线路、设备或系统;
(2)外部大功率的设备在空间产生很强的磁场,通过互感耦合干扰电子线路、设备或系统;
(3)空间电磁波对电子线路或系统产生的干扰;
(4)工作环境温度不稳定,引起电子线路、设备或系统内部元器件参数改变造成的干扰;
(5)由工业电网供电的设备和由电网电压通过电源变压器所产生的干扰。
3干扰的传递途径
当干扰源的频率较高、干扰信号的波长又比扰的对象结构尺寸小,或者干扰源与扰者之间的距离r>>λ/2π时,则干扰信号可以认为是辐射场,它以平面电磁波形式向外副射电磁场能量进入扰对象的通路。
(2)干扰信号以漏电和耦合形式,通过绝缘支承物等(包括空气)为媒介,经公共阻抗的耦合进入扰的线路、设备或系统。
如果干扰源的频率较低,干扰信号的波长λ比扰对象的结构尺寸长,或者干扰源与干扰对象之间的距离r<<λ/2π,则干扰源可以认为是似稳场,它以感应场形式进入扰对象的通路。
(3)干扰信号可以通过直接传导方式引入线路、设备或系统。
4电磁兼容性设计的基本原理
4-1接地
接地是电子设备的一个很重要问题。接地目的有三个:
(1)接地使整个电路系统中的所有单元电路都有一个公共的参考零电位,保证电路系统能稳定地干作。
(2)防止外界电磁场的干扰。机壳接地可以使得由于静电感应而积累在机壳上的大量电荷通过大地泄放,否则这些电荷形成的高压可能引起设备内部的火花放电而造成干扰。另外,对于电路的屏蔽体,若选择合适的接地,也可获得良好的屏蔽效果。
(3)保证安全工作。当发生直接雷电的电磁感应时,可避免电子设备的毁坏;当工频交流电源的输入电压因绝缘不良或其它原因直接与机壳相通时,可避免操作人员的触电事故发生。此外,很多医疗设备都与病人的人体直接相连,当机壳带有110V或220V电压时,将发生致命危险。
因此,接地是抑制噪声防止干扰的主要方法。接地可以理解为一个等电位点或等电位面,是电路或系统的基准电位,但不一定为大地电位。为了防止雷击可能造成的损坏和工作人员的人身安全,电子设备的机壳和机房的金属构件等,必须与大地相连接,而且接地电阻一般要很小,不能超过规定值。
电路的接地方式基本上有三类,即单点接地、多点接地和混合接地。单点接地是指在一个线路中,只有一个物理点被定义为接地参考点。其它各个需要接地的点都直接接到这一点上。多点接地是指某一个系统中各个接地点都直接接到距它最近的接地平面上,以使接地引线的长度最短。接地平面,可以是设备的底板,也可以是贯通整个系统的地导线,在比较大的系统中,还可以是设备的结构框架等等。混合接地是将那些只需高频接地点,利用旁路电容和接地平面连接起来。但应尽量防止出现旁路电容和引线电感构成的谐振现象。
4-2屏面
屏蔽就是对两个空间区域之间进行金属的隔离,以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。具体讲,就是用屏蔽体将元部件、电路、组合件、电缆或整个系统的干扰源包围起来,防止干扰电磁场向外扩散;用屏蔽体将接收电路、设备或系统包围起来,防止它们受到外界电磁场的影响。
因为屏蔽体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗)、反射能量(电磁波在屏蔽体上的界面反射)和抵消能量(电磁感应在屏蔽层上产生反向电磁场,可抵消部分干扰电磁波)的作用,所以屏蔽体具有减弱干扰的功能。
屏蔽体材料选择的原则是:
(1)当干扰电磁场的频率较高时,利用低电阻率(高电导率)的金属材料中产生的涡流(P=I2R,电阻率越低(电导率越高),消耗的功率越大),形成对外来电磁波的抵消作用,从而达到屏蔽的效果。
(2)当干扰电磁波的频率较低时,要采用高导磁率的材料,从而使磁力线限制在屏蔽体内部,防止扩散到屏蔽的空间去。
(3)在某些场合下,如果要求对高频和低频电磁场都具有良好的屏蔽效果时,往往采用不同的金属材料组成多层屏蔽体。
4-3其它抑制干扰方法
(1)滤波
滤波是抑制和防止干扰的一项重要措施。滤波器可以显著地减小传导干扰的电平,因为干扰频谱成份不等于有用信号的频率,滤波器对于这些与有用信号频率不同的成份有良好的抑制能力,从而起到其它干扰抑制难以起到的作用。所以,采用滤波网络无论是抑制干扰源和消除干扰耦合,或是增强接收设备的抗干扰能力,都是有力措施。用阻容和感容去耦网络能把电路与电源隔离开,消除电路之间的耦合,并避免干扰信号进入电路。对高频电路可采用两个电容器和一个电感器(高频扼流圈)组成的CLCMπ型滤波器。滤波器的种类很多,选择适当的滤波器能消除不希望的耦合。
(2)正确选用无源元件
实用的无源元件并不是“理想”的,其特性与理想的特性是有差异的。实用的元件本身可能就是一个干扰源,因此正确选用无源元件非常重要。有时也可以利用元件具有的特性进行抑制和防止干扰。
(3)电路技术
有时候采用屏蔽后仍不能满足抑制和防止干扰的要求,可以结合屏蔽,采取平衡措施等电路技术。平衡电路是指双线电路中的两根导线与连接到这两根导线的所有电路,对地或对其它导线都具有相同的阻抗。其目的在于使两根导线所检拾到的干扰信号相等。这时的干扰噪声是一个共态信号,可在负载上自行消失。另外,还可采用其它一些电路技术,例如接点网络,整形电路,积分电路和选通电路等等。总之,采用电路技术也是抑制和防止干扰的重要措施。
5电磁兼容性问题的规范和标准
干扰特别委员会(CISPR),主要研究无线电系统中干扰噪声的测量。1976年,CISPR开始制订电磁干扰的EMI标准。1900年10月在几经修订基础上公布再版标准,随后该委员会还与国际无线通信资询委员会一起审议,为电子产品电磁兼容性的检测制订数据要求及具体方法。制订了以信息技术装置噪声为对象的“工业、科学及医疗用无线电仪器的干扰特性允许值及其测量方法”(标准11号);“车辆、机动船和火花点火发动驱动装置无线电干扰特性的测量方法及允许值”(标准12号);“无线电和电视接收机的无线电干扰特性的测量方法及允许值”(标准13号)等。直至1992年中期,国际EMI标准才最终完善起来。CISPR推荐的容限已为世界上许多国家所采纳,并作为其国家条例的基础。
无线电发射机功率电平是影响周围无线电电子设备,产生干扰电平的一个重要因素。因此无线电发射机功率电平应该受到限制。例如,根据无线电通信咨询委员会357-1号建议,在卫星通信系统和地面微波中继通信线路共同使用的(5800~8100MHz)频段上,当给到天线上的功率不超过13dBW时,应该限制微波中继通信线路的发射机有效辐射功率(即发射机功率和天线增益的乘积)数值为55dBW。建议同时限制卫星通信的地面站的功率及通信卫星辐射功率通量密度。许多其它的无线电业务,例如业余无线电爱好者的,移动通信系统等的发射机功率的最大值也应该受到限制。
频率规划在全国和全世界范围内已被广泛采用,是提高射频资源利用率的一种途径,也是保证无线电电子设备电磁兼容性的重要措施之一。因此应严格按照国际协议(无线电频率分配表)和全国文件,实行国家、地区的频带划分和业务之间的频带分配。根据频率—空间分配的原理进行无线频道分配。频率规划必须保证每个无线电电子设备干扰电平最小,或消除干扰,由国家无线电管理委员会负责协调。
近年来,我国许多部门都在开展电磁兼容性的试验研究和有关技术标准的制定工作,制定了一系列标准和规范。例如,国家标准GB3907-83为工业无线电干扰基本测量方法;GB4824.1-84为工业、科学和医疗射频设备无线电干扰允许值;GB6279-86为车辆、机动船和火花点火发动机驱动装置无线电特性测量方法及允许值等。国家无线电管理委员会对工、科、医等电子设备的使用频率、带宽和最大辐射场强都作出了具体规定。这对保证电子设备的正常工作和人民的正常生活以及促进现代科学技术更迅速发展,都起了重要的作用。
6一些典型电磁兼容性问题的解决
由于电子技术在各行各业中的广泛应用,在人类活动的空间无处不充斥着电磁波,因此,电子设备不解决电磁波干扰问题,就不能兼容工作。在实际应用中,人们在研究抗干扰技术方面也积累了大量的经验,不断地研究出许多实用的方法来消除电磁干扰。
实验发现汽车工作时,电磁干扰相当突出,严重时会损坏电子元器件。因此,汽车电子设备的电磁环境最为恶劣,汽车电子设备的电磁兼容性问题也特别受到人们的重视。汽车点火所产生的高频辐射最为突出。日本和美国等先进国家的环保部门为防止汽车电气噪声对环境的污染,规定只能使用带阻尼(如碳芯)的屏蔽线作为点火线,实践表明这是很有效的措施。
为了解决微电技术,尤其是计算机在汽车上的应用和推广,根据需要和实际要求,可以设计出效果良好的滤波电路,置于前级可使大多数因传导而进入系统的干扰噪声消除在电路系统的入口处;可以设置隔离电路,如变压器隔离和光电隔离等解决通过电源线、信号线和地线进入电路的传导干扰,同时阻止因公共阻抗、长线传输而引起的干扰;也可以设置能量吸收回路,从而减少电路、器件吸收的噪声能量;或通过选择元器件和合理安排电路系统,使干扰的影响减小。
微机设备的软件抗干扰主要是稳定内存数据和保证程序指针。微机是一个可编程控制装置,软件可以支持和加强硬件的抗干扰能力。如果微机系统中随机内存RAM主要用于测量和控制时数据的暂时存放,内存空间较小,对存放的数据而言,若将采集到的几组数据求平均值作为采样结果,可避免在采集时因干扰而破坏了数据的真实性;如果存放在随机内存中的数据因干扰而丢失或者数据发生变化,可以在随机内存区设置检验标志;为了减少干扰对随机内存区的破坏,可在随机存储器芯片的写信号线上加触发装置,只有在CPU写数据时才发。软件抗干扰的措施也很多,如数字滤波程序、抗窄脉冲的延时程序、逻辑状态的真伪判别等。有时候,必须采用软件和硬件相结合的办法才能抑制干扰,常用的办法是设置一个定时器,从而保护程序正常运行。
近年来,电子仪器向着“轻、薄、短、小”和多功能、高性能及成本低方向发展。塑料机箱、塑料部件或面板广泛地应用于电子仪器上,于是外界电磁波很容易穿透外壳或面板,对仪器的正常工作产生有害的干扰,而仪器所产生的电磁波,也非常容易辐射到周围空间,影响其它电子仪器的正常工作。为了使这种电子仪器能满足电磁兼容性要求,人们在实践中,研究出塑料金属化处理的工艺方法,如溅射镀锌、真空镀(AL)、电镀或化学镀铜、粘贴金属箔(Cu或AL)和涂覆导电涂料等。经过金属化处理之后,使完全绝缘的塑料表面或塑料本身(导电塑料)具有金属那样反射(如手机)。吸收、传导和衰减电磁波的特性,从而起到屏蔽电磁波干扰的作用。实际应用中,采用导电涂料作屏蔽涂层,性能优良而且价格适宜。在需要屏蔽的地方,做成一个封闭的导电壳体并接地,把内外两种不同的电磁波隔离开。实践表明,若屏蔽材料能达到(30~40)dB以上衰减量的屏蔽效果时,就是实用、可行的。
由于电子技术应用广泛,而且各种干扰设备的辐射很复杂,要完全消除电磁干扰是不可能的。但是,根据电磁兼容性原理,可以采取许多技术措施减小电磁干扰,使电磁干扰控制到一定范围内,从而保证系统或设备的兼容性,例如,通信系统最初设计时,就应该严格进行现场电波测试,有针对性地选择频率及极化方式,避开雷达、移动通信等杂波干扰;高压线选择路径时,应尽量绕开无线电台(站)或充分利用接收地段的地形、地物屏蔽;接收设备与工业干扰源设备适当配置,使接收设备与各种工业干扰源离开一定距离;在微波通信电路设计中,为了减少干扰,可采用天线高低站方式调整微波电路反射点,并利用山头阻挡反射波,使之不能对直射波形成干扰。另外,微波铁塔是独立的高大建筑物,应采用完善的接地、屏蔽等避雷措施。
关键词:雷击雷电波形SPD
近年来,电子信息设备和计算机系统已深入各行各业,由于这类设备的工作电压和耐冲击电压水平低,极易受到雷电电磁脉冲的危害,从而使雷电灾害由电力和建筑物这两个传统领域扩展到几乎所有行业,特别是通讯、信息技术数据中心,计算机中心以及微电子生产行业等由于雷电造成的危害尤为重要。另一方面,因为雷击是机率事件,这种影响尚未引起人们的注意,很多人认为只要按照国家的建筑物防雷设计规范做好避雷针(带)、引下线和接地装置等建筑物内外的防雷工作就“万事大吉”了。但实际上,当雷击现象发生时,建筑物的外部防雷装置确实有效地抵御了雷击对建筑物的破坏,同时均匀的避雷引下线与建筑物接地的均压环也起到法拉第网笼的作用,保证建筑物内的人员不致因跨步电压升高而导致触电事故。
但这时当雷电击中建筑物防雷装置或击中附近其他建筑物的避雷针(带)并由引下线导人大地时,瞬间内在引下线自上而下的产生一个很强的变化磁场。处在这个电磁场作用下的导体,便会感应产生电压,其数值也可达数十千伏,处在这个磁场作用范围的电气、信号、电源及它们的传输线路都因相对地切割了这个变化的磁场磁力线而产生出感应高压,从而将用电设备击坏。如图1所示,如果导体的形状是开口环形感应电压,便会把几厘米长的空气间隙a、b击穿发生火花放电。如果导体是一个闭合回路,感应电压会造成一个电流通过,假如回路上有接触不良的接点,这些地方就会局部发热。再有,由于雷电冲击波的能量集中在工频附近几十赫兹到几百赫兹的低端,雷电冲击波能量就容易与工频回路发生耦合、谐振,于是雷电冲击波从电源线路进入电子设备的机率要比从信号线中进入的机率要高很多,据统计,约有8%的雷击损坏电子设备的事故是由电源引入的,因此应特别加强系统中设备电源的防雷措施。
l雷击电子设备的途径及损坏机理
雷击过电压损坏设备可分为两种情况,一种是受雷电直击,另一种受感应雷影响所致。据统计电子设备受雷电直击而损坏的机率很小,而绝大多数损坏为感应雷造成,雷电行波通过传输信息的电路线传至电子设备使其某些电子元件受损。
还有一种情况值得重视的是电子设备附近的大地或其他设备的接地体,因受直击雷引起的电位升高,会使电子设备造成反击,使之对地绝缘击穿。根据传统经验电子设备的地线与电源设备的地线分开设置是减少这种雷电侵入途径的有效措施之一。所以凡联结有输人或输出线路的电子设备应考虑以上三条侵入途径。不论那种途径侵入的雷击过电压加在电子设备上冲击引起两种过电压,一种是:使平衡电路某点出现超过允许的对地过电压,称为纵向过电压,地电位上升引起的反击也属于从地系统侵入的纵向过电压;另一种是平衡电路线间或不平衡电路线对地出现的过电压称为横向过电压。使用对称传输线的设备,横向过电压是因线路两线间存在不同的纵向过电压;或因纵向防护元件放电性能的分散性(如动作时间有快慢的差别)是造成横向过电压的原因,如果在平衡线路上的两个纵向防护元件,其中一路故障或失效这就造成了横向过电压的极限情况。对不平衡电路如对连接同轴电缆的电子设备其纵向过电压即横向过电压。雷电冲击过电压可导致绝缘击穿,也可产生过电流。进行纵向雷击试验的目的,在于检验设备在纵向过电压下元器件对地的绝缘。横向雷击试验则是检验两线间出现冲击过电压时设备耐受冲击的能力。
在电子设备中,易受雷击过电压损坏的元部件,大多数是靠近设备的入口端,如纵向过电压会击穿线路和设备间起匹配作用的变压器匝间、层间、或线对地绝缘等。横向过电压可随信息同时传至设备内部,损坏设备内的阻容元件及固体元件。设备中元器件受损的程度,取决于元器件绝缘水平,即耐受冲击的强度,对具有白复能力的绝缘,击穿只是暂时的,一旦过压消失,即可恢复。有些非自复性的绝缘介质,冲击时只有小电流流过,一次冲击不会立即中断设备,但经过多次冲击,随着多次冲击的累积可能会使元件逐渐受损最终导致毁坏,这就是为什么在试验时要试验冲击次数,极性和间隔的原因所在。
电子元件受雷击损坏的情况,概括起来不外下列三种:(1)受过电压损坏的,如电容器、变压器及电子元件的反向耐压。(2)受过电压冲击能量损坏的,如二极管PN结正向损坏,冲击危险程度在于流过元器件的过电流大小和持续时间,即能量大小。(3)易受冲击功率损坏的,对元件的危害决定于冲击电压峰值和由此而产生的过电流。
2雷电波形
有关雷电冲击波的描述是用波形参数说明,它有峰值波前时间和下降半峰值时间。如图2所示。观测的数据和波形均具有统计特.硅,服从某种分布规律,从而统计出雷电流幅值,波头、波尾、陡度、能量等概率分布。多年来,国内外在对线路结构上或进人电子设备的雷电冲击波形进行了很多观测工作,获得了大量的观测资料。
一些国家通过现场观测发表了很多测试结果。因观测的地理环境和条件的不同。即使在同样条件下,观测得到的数据也不尽相同。早先,有些国家观测得到的几百个波形中,对主放电波形的叙述,当不区另别第一次放电或随后各次闪电时,一般认为雷电流在1—4微秒上升到幅值,然后在40一50微秒内下降到幅值的一半。这就是所谓传统的雷电流波形。正极性闪电的电流波形一般较负极性闪电的波形平坦一些,持续时间较长,上升到幅值的时间约数十微秒,下降到半值时间约为数百微秒。
图2雷击参数定义
在对雷电的研究中,需要在千千万万的实波形中找出典型波形并转化为用数学式表示曲线。比较流行的代表曲线有两种:
1.波头部分用两个指数曲线之差表示,其公式为:
用这公式表示的波形如图3a,当i=0时,电流上升速度di/dt最大;而当电流逐渐增大时,di/dt逐渐减小;到了i=Im时,di/dt变为零。
2.波头部分用余弦曲线表示其公式为:
用这公式表示的波形如图3b,当i=0时,di/dt=0;随着电流上升,di/dt也上升;当I=Im/2时,di/dt到达最大值;然后di/dt减小;当i=Im时,di/dt降为零。
一般习惯于用两个指数曲线之差的形式来表示雷电流波形,并且认为这种表示方式和大多数实际测得的波形比较相似。但是经过近年的观测得到大多数的第一次主放电电流波形在其上升到幅值之前时比较缓慢,然后再转入陡的部分,其波头接近于用余弦来表示的波形。用余弦曲线表示时,因为雷电流最大陡度出现在Im/2处,以此进行雷击的电位计算时可以得到较高的结果而偏于可靠。但是,余弦曲线计算较为繁琐,因而往往简化为直线,也就是用斜角波来表示,通过最大陡度和平均陡度的转化,可以使采用斜角波的计算结果和采用余弦波的计算结果基本一致。
对于雷电流波形的各个量的标志方法各国也不是统一的。典型的雷电流波形是以IEC规定的如图4所示,在幅值Im以前叫波头部分,幅值Im以后叫波尾部分。早先规定由O点到幅值的时间叫波头长度,由0点到波尾半幅值的时间叫全部波长。但是在实际测量中发现,0点及幅值这两点的时间很难精确测定的。为了避免测量中出现的含混,IEC建议测量脉冲电流的实测值按下列方法定义:实效波头时间T1:脉冲电流的实效波头时间,是指脉冲电流在10%幅值及90~/6幅值两个瞬间之间的间隔时间再乘以1.25倍(两个瞬间点A和B见图4(a)。实效半幅值时间T2:脉冲电流的实效半幅值时间T2,是指实效原点O-与波形下降到半幅值的瞬间之间的间隔时间。
测量脉冲电压的方法与脉冲电流相似,所不同的只是选择参考点A的方法不一样。脉冲电压的实效波头时间T1是指从脉冲电压在30~/6幅值及90~/6幅值两瞬间之间的间隔时间乘以1.67倍。实效原点O。是指A点之前0.3T1的一点,如图4b。一般以分式符号表示波头时间及半值时间(又称波尾),例如1.5/40便是指波头时间为1.5微秒,半值时间为40微秒的波形。通常将雷电流由零增长到幅值这一部分称为波头,只有几个微秒;电流值下降的部分称为波尾,长达数十微秒到几百微秒。
在1995年的EIC61312—1中的典型10/350us和8720us雷电流波形。10/35us波是直接雷的电流波形,其能量远大于8/20us波,用这种波型来确定接闪器的大小尺寸。8/20us波是感应雷和传导雷电的电流波形,用这种波形来检验防雷器件耐雷击能力的一种通用标准。它代表雷电电流经过分流、衰减的电流波,又是线路静电感应电压波和防雷导体通过雷电流时对其附近电气导线的电磁感应过电压波。例如防雷的引下线,建筑物LPZI区及其内部计算雷电流的波。
由于雷电参数值随地理环境不同,传输线的结构不同,关于国际标准所规定的波形只是推荐,容许各国根据本国实际情况加以引用或制订。由于我国尚无这方面的资料,故直接引用了IEC和ITU的推荐波形。对于架空明线的波形采用了我国邮电部门的观测资料制订。
建筑物防雷设计规范(GB50057-94)规定了防雷保护区的概念,便于设计者利用系统的层次分析各防雷保护区界面处的金属导体等电位联接和装设过电压保护器去分流和限压的措施,使侵入波干扰信号不断减少。这同我们过去的多道防雷的保护是一致的,在不同防雷保护区的界面上有不同层次的结合,就是要求注意各个介面处内外系统的相互关系与相互作用,即要根据流过电压保护器的电流波形,残压特性和大小,过电压保护器的伏秒特性以及雷电流通过后产生的工频续流大小等选择过电压保护器才是合理的。
3防雷元件性能
防雷元件的冲击特性与试验方法的关系甚为密切,它是规定防雷元件技术参数标准的基础之一。但试验方法又与雷电波形有联系。因为电子设备大都在一定的频率范围内工作,不同频率范围的通路,对冲击波有着不同的响应。因此,对雷电冲击波形进行频谱分析,无论对电子设备的防雷设计和试验都是有意义的。
防雷元件种类繁多,概括起来可分间隙式的(如放电间隙、阀型避雷器、放电管等)和非间隙式的(如压繁电阻、齐纳二极管),再推广一下像扼流线圈、电阻、电容……也可归人这一类,从动作时间来说有快慢的区别。
使用在电涌保护器(sPD)中几类元件的有关参数,虽然有厂家产品说明,但在选用时有的参数还须注意了解。例如放电管的伏秒特性:表征放电管点火电压与时间的关系。它反映了各种不同上升速度的电压波作用在放电管上其点火电压和延迟时间的关系。由伏秒特性曲线可以判断放电管的防护能力。放电管属间隙式,有空气间隙、气体放电管等。再如氧化锌压敏电阻,是一种对电压敏感的元件,是一种陶瓷非线性电阻器,有氧化锌、氧化硅。这种元件,其电压非线性系数高、容量大、残压低、漏电流小、无续流、伏安特性对称、电压范围宽、响应速度快、电压温度系数小等特点。并且有结构简单,成本低等优点,是目前广泛应用的过电压保护器件。适用于交流电压浪涌吸收和各种线圈,接点间过电压的吸收和灭弧,在电子器件过电压保护中广为应用。在选用时关注的是通流容量;按规定的电流波形,在一定的试验条件下施加的冲击电流值,压敏电阻所能承受冲击电流的能力。我国对压敏电阻的考核一般以8/20us波形,在室温条件下,间隔5分钟单方向冲击两次后,5分钟内测试压敏电阻的起始动作电压Vlma值的变化率在百分之十以内时,冲击电流的最大幅值定为通流容量。压敏电阻的残压(LJres):压敏电阻通过电流时,在其两端的电压降谓之残压。通常均以规定的波形,通过不同的电流幅值进行残压测试。目前采用8/20us电流波形,以100A、1000A、3000A、5000A及该元件的满通容量进行残压
试验。另外还有半导体浪涌抑制器件:如瞬间二极管,它是一种过箝压器件,简单TKS,利用大面积硅园锥P-N结的雪崩效应实现过箝位,TRS响应速度快、漏电流小,是极佳的过电压吸收器件。齐纳二极管较为常用,其无极性,正反向具有相同的保护特性,但器件的工作电压至少要为联端的工作电压三倍。其适用于交直流回路,常应用于自动化控制装置的输出回路,即继电器线圈或电磁间线圈两端并联应用。
以上各类间隙式,非间隙式和抑制式器件都是通过浪涌电压产生非线性元件瞬时短路的方式实现防雷保护。
4对电子系统及电子设备的防雷看法
由于电子信息设备是集电脑技术与集成微电子技术的产品,它的信号电压只有5~10伏,这种产品的电磁兼容能力较差,很容易感受脉冲过电压的袭击,它受雷击的概率又比较高,受雷电损坏的可能性就大。但是,电子信息系统是由信号采集、传输、存储、检索等多环节组成。鉴于系统环节多、接口多、线路长等原因,给雷电的耦合提供了条件。系统的电源进线接口,信号输入输出接口,接口的线路较长等是感应脉冲过电压容易侵人的原因,也是过电压波侵入的主要通道。
基于以上原因。电子系统及电子设备的防雷保护重点是感应雷。防雷的方法和措施,是按照现行的防雷规范规定的各个防雷分区的交界处安装SPD设备。将整个系统的雷电防护看成是一个系统工程,综合考虑,全方位保护,力求将雷击灾害降低到最低。为此,规范里阐述了三级网络防雷概念。在线路上三级网络防护是逐步减少瞬态浪涌电流幅值的。最后一级将浪涌过电压限制在设备能安全承受的范围内。一般元件可承受两倍其额定电压以上之瞬间电压,约700V左右的峰值过电压。700V的耐压值在欧洲防雷方面被广泛引用。当然,浪涌电压被限制得越低,则设备越安全。因此,我们在工程设计时分别将第一级SPD尽量靠近建筑物的电源进线处,第二、三级SPD尽量靠近被保护设备。第一级过电压限制在1.5-1.8kV,第二级将残压限制在0.9~1.2kV,第三级将残压限制在0.4~0.TkV。通过这三级限压和对浪涌电流的泄放,最后加载到设备上的过电压通常都不会对设备和系统产生影响。现在防雷防电磁脉冲的保护器件还比较贵,技术性能都有差别,有些防雷产品通过保险只是为了促销,设计者不能盲目地认为是可靠的产品,而应按防雷规范的要求进行设计。
参考文献:
1维修性设计准则的提出
维修性设计准则是为了将产品的维修性要求、使用约束和保障约束转化为具体的设计而确定的通用或专用设计准则。技术人员在设计产品时应遵循和采纳相应维修性设计准则的条款。制定维修性设计准则是维修性工程中一项非常重要的工作,也是维修性设计与分析过程的主要内容。维修性设计准则的作用体现在:1)指导设计人员进行产品设计;2)便于在设计阶段进行设计评价;3)便于分析人员进行维修性分析和预计。维修性设计准则的主要内容包括[1,6]:简化设计,可达性和可操作性设计,模块化、标准化和互换性设计、防差错和标示设计、维修安全性设计、维修性人机工程设计和测试诊断设计等。不同类别和不同层次的产品,其维修性设计准则差别较大,制定某类产品的维修性设计准则可参照的有:1)产品的维修性要求;2)相似产品的维修性设计准则和已有的经验教训;3)适用的标准、设计手册。主要流程见图1。经过以上流程,一方面选取了已有各种标准、规范、手册中适合的内容,另一方面结合电子类产品的功能、结构类型以及使用维修条件等特点,可得符合电子设备自身特点的维修性设计准则通用条款:1)设计要简化。在满足功能和使用要求的前提下,尽可能采用最简单的组成、结构和外形,减少零部件的品种和数量,另外还要注意简化、合并产品功能;2)符合可达性和可操作性要求。可达性是指在维修产品时,接近维修部位的难易程度,主要指视觉可达和操作可达。可达性设计是从维修空间和布局方面提高维修性。可操作性指产品在结构上应便于拆缷、组装,维修时应满足简单、省时、省力的要求;3)标准化和模块化设计。标准化指在满足要求的前提下,限制产品可行的变化到最小范围的设计特性,包括元器件、工具的种类以及术语、软件、材料工艺等。模块化设计是实现部件互换通用、快速更换维修的有效途径;4)保证测试诊断快速和准确。性能测试和故障诊断的难易程度,直接影响产品的修复时间,产品设计时应充分考虑故障检测诊断的方便性。5)维修工具通用化。产品在维修时对工具及设备的要求应尽量简单,并且应尽量减少专用工具、专用设备的使用。除了通用条款,对于部分特殊设备还可制定专用条款,如战场抢修设计和维修作业环境设计等。上述维修性设计准则可作为评价指标,对电子设备的设计方案进行维修性分析与评价,并根据评价的结果指导产品设计。
2实例分析
2.1定性分析
图2和3分别是某设备在模样阶段和初样阶段的2种设计方法,其变化之处是图2中印制板1、印制板2和安装板合并成图3中印制板3,箱内其它结构不变。其好处有3点:1)把具有相同或相似功能的结构进行合并,符合简化设计的要求,同时也减少了零部件的品种和数量;2)两图对比看出,图3方案的结构设计使箱体内空间更宽裕,便于工作人员进行观察和操作,大幅度提高了可达性和可操作性;3)在维修工具方面,图3方案的优势是对工具的要求简单,只需要普通工具就能完成设备的拆卸和装配。但是图2方案在测试诊断设计方面做得更好,通过对功能单元的合理划分,使得性能测试和故障诊断的难易程度大大降低,在一定程度上减少了设备的修复时间。由此可见,2种方案各有优劣,通过实际使用过程中的对比发现,整体上,图3方案的设计方法维修性能更优。图2模样阶段箱体内部布局图3初样阶段箱体内部布局
2.2定量分析
陈璐等[7]给出了一种定量评价产品维修性能的方法,本文以此为依据,并结合第1节中阐述的维修性评价指标,提出了一种适用于电子设备的维修性评价模型。美国军事标准MIL-HDBK-472Maintainabili-tyPrediction中定义了维修性评价指标的打分标准,以4,2,0三个等级分别表示每个评价指标的优、中、劣,该标准还定义了打分依据。需指出的是,各项评价指标之间并非相互独立,而是具有一定关联度,且任意两评价指标的关联度都具有矢量性。假定用4,2,0分值来表示两两之间的关联度强弱,结合电子设备的维修性设计准则(即评价指标)可得到表1.维修性评价模型综合考虑了各评价指标及其关联度,定义为WP=Ai(i=j)Tij(i≠j{)(1)式中,i和j分别为不同的维修性评价指标;Ai为各项维修性指标的打分值;Tij为维修性指标i相对于维修性指标j的关联度。积和式是矩阵的一个重要函数,其计算结果涉及了矩阵的每一项,能对矩阵进行准确的定量描述,设B为n阶方阵,B=(bij),积和式定义如下:per(B)=∑k1,k2,…,kn∈Pnnb1k1·b2k2...bnkn(3)式中,Pnn表示所有n元排列的集合。将维修性评价模型用矩阵积和式表示出来就是维修性综合指数,因此,维修性综合指数同样考虑了各种维修性指标及其关联度,定量地描述了设备维修性能的状况。综合指数越大,设备的维修性能越好,反之越差。为了简化形式,结合表1将部分关联度数值代入式(2),得到:WP=A1T12T13T14T150A20T24T250T32A30T35000A4T450T5200A5(4)上述矩阵用积和式表示如下:per(WP)=A1A2A3A4A5+T25T52A1A3A4+T24T45T52A1A3(5)现在用维修性评价模型对前面的实例进行分析。参照MIL-HDBK-472标准,对图2和3两种方案的维修性能进行打分,见表2。表2维修性指标打分值评价指标图2方案图3方案124224322442524结合表1各指标的关联度,可以得到2种不同设计方案的维修性评价矩阵:WP1=242440202202204000404002,WP2=4424404022022040002204004。代入式(5)可以计算出维修性综合指数,per(WP1)=256,per(WP2)=512,由此结果可以看出,图3方案的维修性综合指数大,维修性能好,应予以优先采纳,这与实际维修过程中得到的结论是一致的。上述方法非常简便、快捷,在对电子设备进行维修性评价时可以使用。
3结论
关键词:电子设备;安全试验;试验规范
引言
就电子设备的质量和可靠性而言,我们的设备在电磁兼容等方面取得了较全面、深入的进步;然而在安全试验和设计方面差距仍较大。只有先深刻理解了关于安全试验的标准与要求,才可能有针对性地做出设计和改进。
1电子产品安规试验的一般原则要求
试验之前应理解如下一些原则要求。
1)产品安全测试前,应首先确认设备的移动性、设备对电击的保护类型、与电源连接的方式、以及污染的等级等;
2)列出所有经过认证或未经认证的安规元器件的清单,确定是否应作为设备的一个组成部分,承受规范规定的有关试验;
3)除另有说明外均为型式试验,应在一个样品上进行,该样品应承受全部有关试验;
4)如果设备的设计和结构已清楚地表明某一试验对设备不适用,则该试验就不应进行;
5)当元器件未由公认的试验机构认证,该元器件应作为设备的一个组成部分,承受本规范规定的有关试验;当元器件已由公认的试验机构认证,符合与有关的国家标准或IEC元器件标准相协调的某一标准时,不承受有关的国家标准或IEC元器件标准中规定的那部分试验;
6)跨接在危险电路和安全电路间的封闭和密封的零部件、及灌封零部件,应承受相应的温度循环试验和潮湿处理试验,然后再进行抗电强度试验,检验其是否能提供足够的绝缘;
7)MOS器件和IGBT器件的封装材料属于已认证的材料,不进行耐热、防火及抗电强度的试验。
2电子产品安全试验项目与要求
2.1温度循环和潮湿处理试验
对跨接在危险电路和安全电路间封闭的、密封的、和灌封的零部件,应承受相应的温度循环试验和潮温处理试验,然后再进行抗电强度试验,检验其是否能提供足够的绝缘(吸湿材料的判定,必要时可通过潮湿试验处理后进行抗电强度试验来确定)。
该试验不做任何判定,仅用于抗电强度测试前对器件的处理。
2.2介电强度试验
检验设备中元器件使用的绝缘材料是否具有足够的抗电强度。在进行抗电强度试验前须进行模拟发热试验,使这些元器件和部件处于充分发热状态。
试验期间,绝缘不应击穿。当由于加上试验电压而引起的电流,以失控的方式迅速增大时(即绝缘无法限制电流),则认为已发生绝缘击穿。电晕放电或单次瞬间闪络不应算是绝缘击穿。
2.3机械结构试验
2.3.1机架稳定性试验
试验分下列4项,每项单独进行。
1)当使设备相对于其正常垂直位置倾斜10°时,该设备不应翻倒;
2)对落地设备,在距离地面不超过2m的最不利的高度上,沿任意方向施加大小等于设备重20%的力(但不大于250N),该落地设备不应翻倒;
3)对高度≥1m,质量≥25kg的设备,在距离地面不超过2m的最不利高度上,沿任意方向对设备施加大小等于设备重量20%的力(但不大于250N),该落?设备不应翻倒;
4)对落地设备,当将800N恒定向下的力,在最大力矩点处施加到任何水平工作表面上,或施加到距离地面高度不超过1m,具有明显支点的表面上,该落地设备不应翻倒。
如果各装置设计成固定一起、且不作单独使用的情况,则不须考虑单个装置的稳定性。
2.3.2部件恒定作用力试验
本试用来验检验设备的各部件是否具有足够的机械强度。
具体方法是,用试验探头对操作人员接触区内的整台设备、或内部的零部件施加30±3N的恒定力,持续5s。
对手柄、操作杆、旋钮、液晶的屏面不进行该试验。
2.3.3外壳的恒定作用力试验
本试验用来检验设备防护外壳的机械强度。
试验应使用能在直径为30mm圆形平面上,进行接触的适用试验工具,对固定在设备上的防护外壳施加250±10N的恒定力,持续5s。
2.3.4钢球试验
可取样品的完整外壳、或能代表其未加强的面积最大部分进行试验。
1)垂直冲击力试验样品以其正常的位置支撑好,用一个光滑的实心钢球,使其自由落到样品上进行试验;
2)水平冲击力试验将该钢球用线绳悬吊起来,并使其象钟摆一样,从垂直距离为1.3m处摆落下来进行试验;如果摆落试验不方便,则可以将样品相对于其正常位置转90°安装,进行垂直冲击试验,模拟对垂直或倾斜表面的水平冲击试验,以此来代替摆落试验;
必须注意钢球试验不应施加到设备的液晶显示屏和压板玻璃上。
2.3.5跌落试验
本试验仅适用于检验手持式设备和直接插入式设备的机械强度。
将完整试验样品从1m高度处,以其最不利结果的位置自由跌落到硬木表面上,样品应可承受3次跌落冲击。
2.3.6应力消除试验
由整台设备构成的一个样品(或由外壳、连同任何支撑框架一起构成一个样品),放入气流循环的烘箱内承受高温试验,烘箱温度要比温升试验时在外壳上测得的最高温度高10K(但不低于70℃),试验时间为7h,试验后使样品冷却到室温。
2.3.7把手及旋钮松动试验
如果把手、旋钮、夹具、操纵杆松动会引起危险时,则应以可靠的方式固定,以便使在正常使用时不会松动。不应使用封口胶和类似的化合物来防止转动;如果把手、旋钮等是用来指示开关或类似无转换位置的、而且它们置于错误位置时易引起危险时,则设计应保证不能被置于错误的位置上。
对把手、旋钮、夹具或操纵杆等元件,在轴向施加作用力1min,试验抗拉脱能力;试验中,把手、旋钮、夹具、操纵杆应不会松动、或不能被置于错误的位置上。
2.4耐热和防火试验
应注意,在进行耐热和防火试验时可能会冒出有毒的烟雾;所以在适当的情况下,试验可以在通风柜中进行,或者在通风良好的房间内进行,但是不能出现可能会使试验结果无效的气流。
2.4.1防火外壳的可燃性试验
对于总质量超过18kg的移动式设备和驻立式设备按如下要求进行试验。
1)应用3个样品进行试验,每一个样品由一个完整的防火防护外壳组成(或由防火防护外壳上代表壁厚最薄部分、而且要含有通风孔在内的切样组成)。
2)样品应按其实际使用的情况进行安装。在试验火焰施加点以下300mm处铺上一层未经处理的脱脂棉。试验火焰应加在样品的内表面,位于被判定为靠近引燃源,而有可能被引燃的部位。
对防火外壳的内材料也要进行如上的可燃性试验。
2.4.2大电流起弧引燃试验
本试验用来检验样品在大电流起弧条件下的可燃性。
用一对试验电极以及可变电感性阻抗负载,与交流220~240V,0~60Hz的电源串联进行该试验。引燃受试样品的飞弧平均数量对于V0级材料不应少于15,对于其他材料不应少于30。
2.4.3灼热丝引燃试验
检验样品的可燃性。试验开始时,电路被通电以使电流通过热丝产生0.26(1±4%)W/mm的线性功率密度,试验将继续到试验样品引燃120s止。当引燃发生或已经通过了120s时,中断试验并记录试验时间。
对于绕线部分已经熔融但仍未引燃的样品,则当样品不再和所有热丝紧密接触时,试验应中断。
2.4.4灼热燃油试验
也是检验样品的可燃性。
将一个有完整防火防护外壳底部的样品,牢固地支撑在水平位置上。在该样品的下面约50mm处放一浅平底盘,盘上铺上一层大约为40g/m2的漂白纱布。
取一个带有浇注嘴和长勺把的金属小勺,在试样上的开孔上方约100mm处,以大约1mL/s的流量,将勺中的灼热油全部平稳地倒入该图形开孔的中央。
在这两次试验期间纱布不应被引燃。
2.4.5材料的可燃性试验
按如下项目分别进行。
2.4.5.1V0,V1或V2级材料的可燃性试验
先检验样品的可燃性级别,然后选取该材料或组件的10个样品,放至试验火焰上,任一样品上火焰燃烧的持续时间,对V0级不应超过10s,对V1级或V2级不应超过30s。
2.4.5.2HF1,HF2或HBF级泡沫材料的可燃性试验
先检验样品的可燃性级别,然后将一个样品平放在钢丝网上,样品的一端与钢丝网的上弯端相接触(对组合材料的样品,应将其泡沫塑料的一面朝上放置)。将样品放至试验火焰上,灯焰应移到样品的下方停留60s,然后将灯焰移开。
此后,应在另外9个样品上重复进行本试验。
2.4.5.3HB级材料的可燃性试验
先检验样品的可燃性级别,然后先用夹子将样品夹住,并使样品的纵轴线成水平方向,横轴线与水平方向成45°。将一块平整的钢丝网水平支撑在距样品最低缘以下,并使样品悬空端正好直接位于钢丝网边缘的正上方。
再将灯焰移到样品悬空端的规定位置停留30s,或者烧到25mm标记线为止,然后移去灯焰记录时间。燃烧或灼热燃烧从样品较低缘的25mm标记线燃延至100mm标记线为止,然后计算燃烧速度。
2.4.5.45V级材料的可燃性试验
先检验样品的可燃性级别,然后用安装在环形架上的夹子,将每一根条样从其上端夹住,而且应使试验条样的纵轴线成垂直方向。本生灯支撑在安装件的斜面上,使该本生灯的灯管相对于垂直方向处于20°的位置。试验条样的窄边应面对本生灯,在火焰施加点的下方300mm处铺上一层未经处理的脱脂棉。
火焰应与垂直方向成20°角施加到条样底部两个棱角中的一个棱角上,使蓝色锥焰的顶端能接触到试验条样。火焰应施加5s,然后移开火焰停烧5s。该操作应重复进行,直到每一根条样全都烧了5次为止。
2.5外形结构防触及试验
可通过本试验检验设备的防触及性(电击及能量危险)对外形结构的防触及性,在目测无法判定的情况下,可利用试验指和试验针进行试验判定。
2.5.1用试验指进行试验
试验时,首先将可拆卸零部件(包括熔断器座)卸掉,并使操作人员可触及的门、盖等打开,然后将试验指外壳上的开孔时,不应触及规定的危险零部件。
2.5.2用试验针进行试验
试验时,当试验针插到外部电气防护外壳的开孔中时,试验针不应触及带危险电压的零部件。试验时,可拆卸的零部件,包括熔断器座和灯应保持就位,操作人员可接触的门和盖罩是关闭的。
2.6接地电阻测量试验
接地电阻测量试验主要检验接地保护的可靠性。
测量时可利用专用测量仪表,或用测量接地点的电压和电流的方法经计算得到电阻值。
应测量保护接地端子或接地接触件与接地零部件之间的电压降,然后根据试验电流和该电压降计算电阻值。电源软线中保护接地导线的电阻值不应计入该电阻测量值内。
接地端子或接地接触件,与需要接地的零部件之间的连接电阻不应超过0.1Ω。保护接地导线不应串接开关或熔断器。
2.7电气间隙和爬电距离的测量试验
检验电气间隙和爬电距离是否满足要求。
2.7.1爬电距离测试方法
沿绝缘表面测得的两个导电零部件之间、或导电零部件与设备界面之间的最短距离。
2.7.2电气间隙测试方法
两个导电零部件之间或导电零部件与设备界面之间的最短空间距离。
2.8电源软线的拉力试验及通流量的测试
电源软线应承受规定的稳定拉力25次,拉力沿最不利的方向施加,每次施加时间为1s。
试验期间,软线不应受到损伤,可通过外观检查以及在电源软线导体和可触及的导电零部件之间的抗电强度试验来检验,试验电压为3000V。
试验后,软线的纵向位移量不应超过2mm,该软线的连接处也不应有明显的形变。
2.9接线端子导线安装试验
检验接线端子与导线连接的可靠性。
从具有适当标称截面积的软导线的端部,剥去约8mm长的绝缘层,使该多股导线中的一根线悬空,然后将其余线束完全嵌入并夹紧在接线端子内。
在不向后撕裂绝缘层的条件下,这根悬空的线应沿每一个可能的方向弯曲,但不要围绕隔离保护物锐弯。
2.10电源接口稳态输入电流测量
设备应在正常负载的条件下,以及在额定电压或额定电压范围中的最低电压的条件下,待输入电流达到稳定时进行测量。
预定直接由电网供电的设备,其电路的最小电源容差应按额定电压的10%来进行设计。
2.11温升试验
在正常使用时,设备及其零部件不应产生过高的温度。
一般应采用热电偶法来进行测定,而测量绕组的温度时可采用电阻法。
规定的最大温升限值是基于设备工作时室内温度为25℃的假设作出的。试验期间,室内环境温度不要求保持在某一规定值上,但须记录。
试验应在样品正常负载条件下进行,首先记录试验开始时的室内环境温度,然后打开电源,使样品工作在正常负载的状态,保持状态观察温度变化,当温度达到稳定时,记录此时零部件的温度以及环境温度。
2.12对地漏电流测量试验
检验设备电源部分对地漏电流是否符合要求。
对无保护接地的II类设备,应对操作人员接触区内的导电零部件,以及对贴在可触及的非导电零部件上、面积不超过10cm×20cm的金属箔进行试验。金属箔在被试表面上应占有最大可能的面积,但不超过规定的尺寸。如果金属箔的面积小于被试表面,则应移动金属箔,以便能对被试表面的所有部分进行试验,应注意避免该金属箔影响设备的散热。
2.13异常工作和故障试验
2.13.1元器件的异常工作试验
检验当部分元器件工作异常时,或者误操作后,对操作人员和维护人员的危害程度。
试验时应使设备在额定电压或额定电压范围的上限电压下工作,并在设备上或模拟电路上,一次施加一个下列规定的条件进行试验。
1)当该机电元件正常通电时,应将其机械动作锁定在最不利的位置上;
2)如果某个机电元件通常是间断通电的,则应在驱动电路上模拟故障,使该机电元件连续通电。对出现故障时不易作人员察觉到的设备或机电元件,连续通电时间持续到建立起稳定状态或引起其他后果为止,对其他设备或机电元件,持续5min或引起其他后果为止。
2.13.2元器件故障试验
本试验适用于除电动机、变压器和机电元件外的元器件和电路。
首先通过检查设备、电路图和元器件规范,以此来确定出可以合理预计到会发生的那些故障条件。
如果设备有多个插座连有同一个内部电路,则只须对一个样品插座进行试验。与电源输入有关的一次电路的元器件(如电源线、设备耦合器、EMC滤波元件、开关等),它们互连一个故障条件。
2.14安全电压试验(ELV)
小于42.4V的交流电压或是小于60V的直流电压叫安全电压;安全电压电路仅指在正常工作条件下,在导体与导体之间或任一导体与地之间的交流峰值不超过42.4V或直流值不超过60V的二次电路,一般仅靠基本绝缘而没有接地,所以不允许操作人员触摸。
2.15SELV可信性试验
对于SELV(即安全特低电压电路),应进行下面的破坏性试验:
1)在正常工作条件下,模拟基本绝缘击穿或单一元器件损坏,测试SELV电路的电压;
2)在一个或几个互连的SELV电路内,在正常工作条件下,测量其任何两个可触及的电路零部件之间的电压或与保护接地端子之间的电压;
3)模拟单一基本绝缘失效、单一附加绝缘失效或某一个元器件失效时,用示波器测量SELV电路可触及的零部件上的电压。
2.16标牌耐久性试验
可利用本试验对标牌的耐久性进行检验。
首先,用一块蘸有水的棉布用手擦拭15s,然后,再用一块蘸有汽油的棉布用手擦拭15s,试验完成后标记仍应清析,标记铭牌应不可能轻易被揭掉,而且不应该出现卷边。
2.17安全标志的检查
通过目测观察,标识的原则要求是:
1)设备上必须有能保持长久、清晰易辨的标志或标牌,应给出安全使用设备所必需的主要特征,如额定参数、接线方式、接地标记、危险标记等;
2)由于设备本身的条件所限,不能在其上标出时,必须以其他方式清楚、可靠和有效地将应注意的事项告诉使用人员(例如用操作说明书或安装说明书的形式),在此情况下,这种文件应视为设备的组成部分;
3)设备上应该清楚地标出制造公司、牌号或商标,如不好实现,则可印在包装箱上;
4)附上指示灯和按钮等颜色,在运用中所表示的含义。
由于车载电子设备是由汽车等运输工具以发生位移工作的,大多在路途中工作,除在城市等路段行驶有可用消防设施外,在路途中大多只能靠车上自备灭火器来,满足消防。目前车上所配消防器材一般为手提式灭火器,主要有卤代烷、干粉或二氧化碳等,这些灭火装置一般置于车辆内某一部位,发生火灾后再由人员手持起动后实施灭火。对车内发生火灾,且发生较小火灾,这些灭火装置较为有效,但对于发现较晚,不能有效的发现火情时,引发较大火灾这些车内所配灭火装置作用不大,此类灭火设备对于保护车载设备及人员安全防护相对滞后,不能保证有效灭火。
2车载灭火报警系统装置应用
2.1火灾自动报警系统
火灾自动报警系统是由触发装置、火灾报警装置、联动输出装置启动相应的灭火设备及辅助逃生设施,它具有能在火灾初期,将燃烧产生的烟雾、热量、火焰等物理量,通过火灾探测器变成电信号,传输到火灾报警控制器,并同时以声或光的形式进行警报,使人们能够及时发现火灾,并及时采取有效措施,扑灭初期火灾,最大限度的减少因火灾造成的生命和财产的损失,是人们同火灾做斗争的有力工具。依据消防报警设计标准GB50116-98,消防系统按功能可分为火灾自动报警系统和联动系统。前者的功能是在发现火情后,发出声光报警信号并指示出发生火警的部位,便于扑灭;后者的功能是在火灾自动报警系统发现火情后,自动启动各种设备,避免火灾蔓延直至扑灭火灾。从二者的不同功能可看出它们是密不可分的。实际上有很多火灾自动报警系统同时具有自动联动系统的功能火灾自动报警系统一般由两大部分组成:火灾探测器和火灾报警器。火灾探测器安装在现场,监视现场有无火警发生;火灾报警器安装在控制中心,管理所有的火灾探测器。当发现有火警时,发出声光报警信号通知值班人员,有的火灾报警器还可启动联动设备灭火。火灾探测器探测火灾发生的原理是检测火灾发生前后某个物理参数的变化。例如:检测温度。当温度升高时,可以断定有火灾发生。一般通过检测三种物理参数的变化,判断是否有火灾发生,这三种物理参数是:烟浓度、温度和光。由此可以把火灾探测器分为感烟探测器、感温探测器和火焰探测器。而实际使用中以前两种最多。感烟探测器检测现场烟浓度的变化,判断是否有火灾发生;感温探测器检测现场温度的变化,判断是否有火灾发生。
2.2设备选型与应用
灭火药剂七氟丙烷(HFC-227ea、FM-200)是无色、无味、不导电、无二次污染的气体,具有清洁、低毒、电绝缘性好,灭火效率高的特点,特别是它对臭氧层无破坏,在大气中的残留时间比较短,其环保性能明显优于卤代烷,是目前为止研究开发比较成功的一种洁净气体灭火剂,被认为是替代卤代烷1301、1211的最理想的产品之一。其典型的防护设施主要应用于电子计算机房、数据处理中心、电信通讯设施、过程控制中心、昂贵的医疗设施、贵重的工业设备、图书馆、博物馆及艺术管、洁净室、消声室、应急电力设施、易燃液体存储区等,也可用于生产作业火灾危险场所,象喷漆生产线、电器老化间、印刷机、油开关、油浸变压器、浸渍槽、熔化槽、大型发电机、烘干设备、以及船舶机舱、货舱等。依据气体灭火设计规范GB50370-2005中4.1.7条通讯机房和电子计算机房等防护区,七氟丙烷的灭火设计浓度宜采用8%。
3车载火灾自动报警系统联合丙烷灭火设备应用
关键词:电子设备电磁兼容性干扰源有效抑制
1引言
随着电子技术的迅速发展,现代的电子设备已广泛地应用于人类生活的各个领域。当前,电子设备已处速发展的时期,并且这个发展过程仍以日益增长的速度持续着。电子设备的广泛应用和发展,必然导致它们在其周围空间产生的电磁场电平的不断增加。也就是说,电子设备不可避免地在电磁环境(EME)中工作。因此,必须解决电子设备在电磁环境中的适应能力。电磁兼容性(EMC)是一门关于抗电磁干扰(EMI)影响的科学。目前,就世界范围来说,电磁兼容性问题已经形成一门新的学科。电磁兼容的中心课题是研究控制和消除电磁干扰,使电子设备或系统与其它设备联系在一起工作时,不引起设备或系统的任何部分的工作性能的恶化或降低。一个设计理想的电子设备或系统应该既不辐射任何不希望的能量,又应该不受任何不希望有的能量的影响。
2电磁干扰源的分类
各种形式的电磁干扰是影响电子设备电磁兼容性的主要因素,因此,它是电磁兼容性设计中需要研究的重要内容。
2-1内部干扰
内部干扰是指电子设备内部各元部件之间的相互干扰,包括以下几种。
(1)工作电源通过线路的分布电容和绝缘电阻产生漏电造成的干扰;(与工作频率有关)
(2)信号通过地线、电源和传输导线的阻抗互相耦合,或导线之间的互感造成的干扰;
(3)设备或系统内部某些元件发热,影响元件本身或其它元件的稳定性造成的干扰;
(4)大功率和高电压部件产生的磁场、电场通过耦合影响其它部件造成的干扰。
2-2外部干扰
外部干扰是指电子设备或系统以外的因素对线路、设备或系统的干扰,包括以下几种。
(1)外部的高电压、电源通过绝缘漏电而干扰电子线路、设备或系统;
(2)外部大功率的设备在空间产生很强的磁场,通过互感耦合干扰电子线路、设备或系统;
(3)空间电磁波对电子线路或系统产生的干扰;
(4)工作环境温度不稳定,引起电子线路、设备或系统内部元器件参数改变造成的干扰;
(5)由工业电网供电的设备和由电网电压通过电源变压器所产生的干扰。
3干扰的传递途径
当干扰源的频率较高、干扰信号的波长又比扰的对象结构尺寸小,或者干扰源与扰者之间的距离r>>λ/2π时,则干扰信号可以认为是辐射场,它以平面电磁波形式向外副射电磁场能量进入扰对象的通路。
(2)干扰信号以漏电和耦合形式,通过绝缘支承物等(包括空气)为媒介,经公共阻抗的耦合进入扰的线路、设备或系统。
如果干扰源的频率较低,干扰信号的波长λ比扰对象的结构尺寸长,或者干扰源与干扰对象之间的距离r<<λ/2π,则干扰源可以认为是似稳场,它以感应场形式进入扰对象的通路。
(3)干扰信号可以通过直接传导方式引入线路、设备或系统。
4电磁兼容性设计的基本原理
4-1接地
接地是电子设备的一个很重要问题。接地目的有三个:
(1)接地使整个电路系统中的所有单元电路都有一个公共的参考零电位,保证电路系统能稳定地干作。
(2)防止外界电磁场的干扰。机壳接地可以使得由于静电感应而积累在机壳上的大量电荷通过大地泄放,否则这些电荷形成的高压可能引起设备内部的火花放电而造成干扰。另外,对于电路的屏蔽体,若选择合适的接地,也可获得良好的屏蔽效果。
(3)保证安全工作。当发生直接雷电的电磁感应时,可避免电子设备的毁坏;当工频交流电源的输入电压因绝缘不良或其它原因直接与机壳相通时,可避免操作人员的触电事故发生。此外,很多医疗设备都与病人的人体直接相连,当机壳带有110V或220V电压时,将发生致命危险。
因此,接地是抑制噪声防止干扰的主要方法。接地可以理解为一个等电位点或等电位面,是电路或系统的基准电位,但不一定为大地电位。为了防止雷击可能造成的损坏和工作人员的人身安全,电子设备的机壳和机房的金属构件等,必须与大地相连接,而且接地电阻一般要很小,不能超过规定值。
电路的接地方式基本上有三类,即单点接地、多点接地和混合接地。单点接地是指在一个线路中,只有一个物理点被定义为接地参考点。其它各个需要接地的点都直接接到这一点上。多点接地是指某一个系统中各个接地点都直接接到距它最近的接地平面上,以使接地引线的长度最短。接地平面,可以是设备的底板,也可以是贯通整个系统的地导线,在比较大的系统中,还可以是设备的结构框架等等。混合接地是将那些只需高频接地点,利用旁路电容和接地平面连接起来。但应尽量防止出现旁路电容和引线电感构成的谐振现象。
4-2屏面
屏蔽就是对两个空间区域之间进行金属的隔离,以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。具体讲,就是用屏蔽体将元部件、电路、组合件、电缆或整个系统的干扰源包围起来,防止干扰电磁场向外扩散;用屏蔽体将接收电路、设备或系统包围起来,防止它们受到外界电磁场的影响。
因为屏蔽体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗)、反射能量(电磁波在屏蔽体上的界面反射)和抵消能量(电磁感应在屏蔽层上产生反向电磁场,可抵消部分干扰电磁波)的作用,所以屏蔽体具有减弱干扰的功能。
屏蔽体材料选择的原则是:
(1)当干扰电磁场的频率较高时,利用低电阻率(高电导率)的金属材料中产生的涡流(P=I2R,电阻率越低(电导率越高),消耗的功率越大),形成对外来电磁波的抵消作用,从而达到屏蔽的效果。
(2)当干扰电磁波的频率较低时,要采用高导磁率的材料,从而使磁力线限制在屏蔽体内部,防止扩散到屏蔽的空间去。
(3)在某些场合下,如果要求对高频和低频电磁场都具有良好的屏蔽效果时,往往采用不同的金属材料组成多层屏蔽体。
4-3其它抑制干扰方法
(1)滤波
滤波是抑制和防止干扰的一项重要措施。滤波器可以显著地减小传导干扰的电平,因为干扰频谱成份不等于有用信号的频率,滤波器对于这些与有用信号频率不同的成份有良好的抑制能力,从而起到其它干扰抑制难以起到的作用。所以,采用滤波网络无论是抑制干扰源和消除干扰耦合,或是增强接收设备的抗干扰能力,都是有力措施。用阻容和感容去耦网络能把电路与电源隔离开,消除电路之间的耦合,并避免干扰信号进入电路。对高频电路可采用两个电容器和一个电感器(高频扼流圈)组成的CLCMπ型滤波器。滤波器的种类很多,选择适当的滤波器能消除不希望的耦合。
(2)正确选用无源元件
实用的无源元件并不是“理想”的,其特性与理想的特性是有差异的。实用的元件本身可能就是一个干扰源,因此正确选用无源元件非常重要。有时也可以利用元件具有的特性进行抑制和防止干扰。
(3)电路技术
有时候采用屏蔽后仍不能满足抑制和防止干扰的要求,可以结合屏蔽,采取平衡措施等电路技术。平衡电路是指双线电路中的两根导线与连接到这两根导线的所有电路,对地或对其它导线都具有相同的阻抗。其目的在于使两根导线所检拾到的干扰信号相等。这时的干扰噪声是一个共态信号,可在负载上自行消失。另外,还可采用其它一些电路技术,例如接点网络,整形电路,积分电路和选通电路等等。总之,采用电路技术也是抑制和防止干扰的重要措施。
5电磁兼容性问题的规范和标准
干扰特别委员会(CISPR),主要研究无线电系统中干扰噪声的测量。1976年,CISPR开始制订电磁干扰的EMI标准。1900年10月在几经修订基础上公布再版标准,随后该委员会还与国际无线通信资询委员会一起审议,为电子产品电磁兼容性的检测制订数据要求及具体方法。制订了以信息技术装置噪声为对象的“工业、科学及医疗用无线电仪器的干扰特性允许值及其测量方法”(标准11号);“车辆、机动船和火花点火发动驱动装置无线电干扰特性的测量方法及允许值”(标准12号);“无线电和电视接收机的无线电干扰特性的测量方法及允许值”(标准13号)等。直至1992年中期,国际EMI标准才最终完善起来。CISPR推荐的容限已为世界上许多国家所采纳,并作为其国家条例的基础。
无线电发射机功率电平是影响周围无线电电子设备,产生干扰电平的一个重要因素。因此无线电发射机功率电平应该受到限制。例如,根据无线电通信咨询委员会357-1号建议,在卫星通信系统和地面微波中继通信线路共同使用的(5800~8100MHz)频段上,当给到天线上的功率不超过13dBW时,应该限制微波中继通信线路的发射机有效辐射功率(即发射机功率和天线增益的乘积)数值为55dBW。建议同时限制卫星通信的地面站的功率及通信卫星辐射功率通量密度。许多其它的无线电业务,例如业余无线电爱好者的,移动通信系统等的发射机功率的最大值也应该受到限制。
频率规划在全国和全世界范围内已被广泛采用,是提高射频资源利用率的一种途径,也是保证无线电电子设备电磁兼容性的重要措施之一。因此应严格按照国际协议(无线电频率分配表)和全国文件,实行国家、地区的频带划分和业务之间的频带分配。根据频率—空间分配的原理进行无线频道分配。频率规划必须保证每个无线电电子设备干扰电平最小,或消除干扰,由国家无线电管理委员会负责协调。
近年来,我国许多部门都在开展电磁兼容性的试验研究和有关技术标准的制定工作,制定了一系列标准和规范。例如,国家标准GB3907-83为工业无线电干扰基本测量方法;GB4824.1-84为工业、科学和医疗射频设备无线电干扰允许值;GB6279-86为车辆、机动船和火花点火发动机驱动装置无线电特性测量方法及允许值等。国家无线电管理委员会对工、科、医等电子设备的使用频率、带宽和最大辐射场强都作出了具体规定。这对保证电子设备的正常工作和人民的正常生活以及促进现代科学技术更迅速发展,都起了重要的作用。
6一些典型电磁兼容性问题的解决
由于电子技术在各行各业中的广泛应用,在人类活动的空间无处不充斥着电磁波,因此,电子设备不解决电磁波干扰问题,就不能兼容工作。在实际应用中,人们在研究抗干扰技术方面也积累了大量的经验,不断地研究出许多实用的方法来消除电磁干扰。
实验发现汽车工作时,电磁干扰相当突出,严重时会损坏电子元器件。因此,汽车电子设备的电磁环境最为恶劣,汽车电子设备的电磁兼容性问题也特别受到人们的重视。汽车点火所产生的高频辐射最为突出。日本和美国等先进国家的环保部门为防止汽车电气噪声对环境的污染,规定只能使用带阻尼(如碳芯)的屏蔽线作为点火线,实践表明这是很有效的措施。
为了解决微电技术,尤其是计算机在汽车上的应用和推广,根据需要和实际要求,可以设计出效果良好的滤波电路,置于前级可使大多数因传导而进入系统的干扰噪声消除在电路系统的入口处;可以设置隔离电路,如变压器隔离和光电隔离等解决通过电源线、信号线和地线进入电路的传导干扰,同时阻止因公共阻抗、长线传输而引起的干扰;也可以设置能量吸收回路,从而减少电路、器件吸收的噪声能量;或通过选择元器件和合理安排电路系统,使干扰的影响减小。
微机设备的软件抗干扰主要是稳定内存数据和保证程序指针。微机是一个可编程控制装置,软件可以支持和加强硬件的抗干扰能力。如果微机系统中随机内存RAM主要用于测量和控制时数据的暂时存放,内存空间较小,对存放的数据而言,若将采集到的几组数据求平均值作为采样结果,可避免在采集时因干扰而破坏了数据的真实性;如果存放在随机内存中的数据因干扰而丢失或者数据发生变化,可以在随机内存区设置检验标志;为了减少干扰对随机内存区的破坏,可在随机存储器芯片的写信号线上加触发装置,只有在CPU写数据时才发。软件抗干扰的措施也很多,如数字滤波程序、抗窄脉冲的延时程序、逻辑状态的真伪判别等。有时候,必须采用软件和硬件相结合的办法才能抑制干扰,常用的办法是设置一个定时器,从而保护程序正常运行。
近年来,电子仪器向着“轻、薄、短、小”和多功能、高性能及成本低方向发展。塑料机箱、塑料部件或面板广泛地应用于电子仪器上,于是外界电磁波很容易穿透外壳或面板,对仪器的正常工作产生有害的干扰,而仪器所产生的电磁波,也非常容易辐射到周围空间,影响其它电子仪器的正常工作。为了使这种电子仪器能满足电磁兼容性要求,人们在实践中,研究出塑料金属化处理的工艺方法,如溅射镀锌、真空镀(AL)、电镀或化学镀铜、粘贴金属箔(Cu或AL)和涂覆导电涂料等。经过金属化处理之后,使完全绝缘的塑料表面或塑料本身(导电塑料)具有金属那样反射(如手机)。吸收、传导和衰减电磁波的特性,从而起到屏蔽电磁波干扰的作用。实际应用中,采用导电涂料作屏蔽涂层,性能优良而且价格适宜。在需要屏蔽的地方,做成一个封闭的导电壳体并接地,把内外两种不同的电磁波隔离开。实践表明,若屏蔽材料能达到(30~40)dB以上衰减量的屏蔽效果时,就是实用、可行的。
由于电子技术应用广泛,而且各种干扰设备的辐射很复杂,要完全消除电磁干扰是不可能的。但是,根据电磁兼容性原理,可以采取许多技术措施减小电磁干扰,使电磁干扰控制到一定范围内,从而保证系统或设备的兼容性,例如,通信系统最初设计时,就应该严格进行现场电波测试,有针对性地选择频率及极化方式,避开雷达、移动通信等杂波干扰;高压线选择路径时,应尽量绕开无线电台(站)或充分利用接收地段的地形、地物屏蔽;接收设备与工业干扰源设备适当配置,使接收设备与各种工业干扰源离开一定距离;在微波通信电路设计中,为了减少干扰,可采用天线高低站方式调整微波电路反射点,并利用山头阻挡反射波,使之不能对直射波形成干扰。另外,微波铁塔是独立的高大建筑物,应采用完善的接地、屏蔽等避雷措施。
我国煤炭机械电子设备软启动技术,近年来得到了广泛应用,根据软启动的工作原理可以将其技术形式分成几个常见种类:一是机械电子设备的软启动,主要是根据设备本身的工作规律来保证;二是机电结构的软启动,就是将机械和电机两种条件相结合的软启动;电机电子的软启动,这种软启动能够在一定程度上改变电机或电源特点,以此实现整体软启动。
(一)采取液力耦合器采用液力耦合器运用软启动技术,但是若输入或输出的转速值无法满足达到相关标准,那么该液力耦合器与软启动技术不能同步运行,这样就会造成功率损失,增加发热量,时间长了还会造成资源浪费。如果运用调速型液力耦合器,就会造成电机启动电流超过额定电流的5-8倍,所以要对电机的启动次数严格控制。由于电机自身结构的限制,只能在小范围内进行调速,另外系统自身较为复杂,体积较大,尤其是直径较大的转动部分,需要利用很大面积进行转动,所以一些空间狭小的位置,无法得到很好的运用。
(二)大功率变频调速现阶段,变频器得到了较好发展,功能不断优化,性能也有所改进,不断缩小占地空间,所以这种特性在煤矿企业中得到了普遍应用。数字化和信息化的不断发展与成熟,使大功率变频调速器也朝着这个方向发展。
(三)利用液体黏性制动器液体黏性制动气作为一种新兴的转动技术,出现于上世纪70年代,利用主动摩擦装置和从动摩擦装置,形成的里能够促进转动,然后能够同步主动轴和从动轴,并保护转动系统,避免过载现象发生。与液力耦合器相比,该装置体积更小、效率更高,但也存在一些缺点:一是,这种装置要有效控制自身体积,严格限制两个摩擦片之间的距离,使黏性转动次数受到限制。另外,启动转动系统也会被电动机转动影响;二是,开启液体黏性软启动设备,通过摩擦力,两个摩擦片能够持续转动,转动效率受阻,还会增加发热量。在工作运行中,可以持续供应摩擦片的能量,减少摩擦片之间的阻力,确定两个摩擦片的相对摩擦力始终存在,但是这种方法容易出现能源损耗,增加企业的生产成本;三是,需要采用多点驱动应用煤矿机械电子设备,并在电动机运行中,保证均衡的输出功率。
二、软启动转动技术的发展趋势
近几年,在分析功率大的软启动技术过程中,得出一种全新的机电自动化转动设备,从采用技术来看,这种设备与国内外现有软启动传动装置有明显区别,这种设备在一定时间内被称为双向电机差速软启动设备,这种装置能够对软启动技术中的很多问题进行处理,确保功率大的机械电子设备能够实现软启动和停止,速度能够大范围调整,并进行自我超载维护,平衡驱动功率。通过这种软启动技术,功率大的电动设备在理论上电流为零,是一种真正的空载启动,能够对节省电能消耗,周围电气和其他设备的使用时间得到相应延长,一些开关和变压器的选王晓东通化矿业(集团)有限责任公司134300择标准有所降低,还能将用户的初期投资节省一部分。软启动传动系统的重要构成有功率较大的主电机和功率较小的副电动机。从结构上分析,减速设备的输入轴和主要电动机的输出轴能够用联轴器产生联系,特定结构的太阳轮通过输入一段进行连接,行星轮和内齿轮圈是太阳轮的主要驱动设备,可以用来输出动力。软启动技术的特征是在内部圈轮差动基础上固定蜗轮,运用机械运转模式,连接蜗杆和副电动机,运行软启动技术设备后,通过小型变型设备和数字电机控制设备,这些没有极点的速度调控器能够辅助电动机运行,令电动机能够经过主电动机转动,并确保其空载转动,连接主电动机电源。所以电动机与预期转速一致,连上电源之后,电动机的启动电流不大。工作人员应首先明确输出轴的软启动技术速度,然后将辅助电动机的速度和内圈齿轮速度降低,保证主电动机的动力能够想输出轴相接的机械负载上逐渐转移,以此实现机械电子设备的软启动技术。与此同时,采用主电动机和辅助电动机的速度相结合,保证满足机械电子设备的软停车应用条件,运用多点驱动模式,比较设备中各主电动机输出的功率大小,对相应的副电动机的运行速度进行严格控制,确保多台电动设备能够匀速运转,并且安全可靠运行,然后有效解决电动机特性不相符的转动矛盾。这种软启动装置还有以下优势:传动效率高、发热量小、维护成本低等。
三、结束语
在设计系统时,首先应确定变频器的输出频率。因为这一参数的选择关系到整个系统的控制效果,应根据水泵流量。扬程等参数和最大用水量和最小用水量确定。系统中用水量的大小由压力变送器反映到PLC,再由PLC进行分配给循环泵,随时调节循环泵的频率,实现能源合理分配。在此套系统里面,主要的被控变量是管路循环水的压力,管路循环水的压力随着使用点的多少而变化,再由压力变送器反馈到PLC进行调节。
2可编程序控制器((PLC)的优势
可编程序控制器是微电子控制机电设备系统的重要组成部分,英语缩写为PLC。可编程序控制器有很多的功能,比如计数控制、数据处理等。可编程序控制器得到广泛的运用,不仅是因为它有很多的功能,更是因为它有很多的优势。接了下来笔者就简单地概述一下可编程控制器的主要优势:
第一,可编程序控制器所占的空间小,节能,能够随意的进行组合。所占的空间小,这样就能够节约厂房的空间资源,可以存放更多的机器设备;节能就是变相的节约成本,减少对整个微电子控制机电设备系统的整体支出;能够灵活的进行组合,这样既方便存放和管理,又提高了工作的效率。
第二,可连接工业现场信号。利用可编程控制器的这一优势,可以随时掌握工业现场的情况,出现问题,及时地解决,避免了很多不必要的损失。
第三,控制程序灵活多变。这一优势可以减少很多的麻烦,在设备产品进行更新换代时,不用对可编程控制器的硬件进行改变,只要改变控制程序即可,程序的改变并不会影响其性能的发挥。这样就省略了很多的环节,减少了麻烦,对可编程控制器的损害也小。
第四,编程易于掌握。因为可编程控制器的编程容易掌握,所以在具体操作时就非常容易,方便对其进行安装和维修。这是因为可编程控制器自身带有编程器,操作人员只要懂得梯形语言即可,再加之,可编程控制器有自我诊断的功能,发生故障时,可以非常迅速的查出原因,所以维修时特别方便。
第五,安全性能好。可编程控制器的安全性能特别好,不容易发生故障,有些控制器甚至5年以上都能保持安全的运行,再加之,可编程控制器有很好的环境适应能力,对厂房并没有特别的要求。所以很多企业都在现场使用可编程控制器。
3变频调速器的优势
变频调速器是微电子控制机电设备另一组成部分,它的优势主要有以下几点:
3.1性能优越。
随着科技水平的提高,变频器的性能有了很大的提高,不再使用以前传统的正弦波控制技术,而是采用先进的电压空间矢量控制,最大的优势就是能够对输出电压进行自动的调整,非常适合我国现行的电网情况,这样就提高了运行的安全性能。
3.2在功能上采用键量、键量电位器、外部端子、多功能端子等操作方式。
多种模拟信号输人方式如电流、电压、最大值、和、差等组合输人频率水平检侧、频率等效范围检测,S曲线加减速、转速追踪等增强功能,摆频运行、多段速度、程序运行等模式。
3.3在可靠性上它的结构独特,全系列主元件采用SIEMENS产品。
完善的保护功能,即使短路、过流或过压等均不会引起本机故障,先进的表面贴装技术(SM''''T)。低温升、长寿命。PCB精良。绝缘耐压性能优越;严格的生产过程质量管理。键量布局合理、美观耐用、设定简洁、操作方便。
4电路的调试
电路调试的方法主要有两种,一种是整个电路安装完之后,再进行调试,另一种就是边安装边调试。在对电路进行调试时,首先要做的工作就是确定调试方法。我们现在一般采用的方法就是第二种。它是把复杂的电路按原理框图上的功能划分成单元进行安装和调试。在单元调试的基础上逐步扩大安装和调试的范围,然后完成整机调试。那么用第二种方法具体应该如何调试呢?接下来笔者就详细地说说。
第一,看。看的目的就是要全面的了解一下电路的整体情况,看看电路面板的线是否准确无误的连上,有没有看似接上实际没有接上的线,或者容易短路的线,有时还会出现两条或多条线出现混淆的现象。这是看需要完成的工作。
第二,查。在看完之后,就要进行检查。查主要运用的工具是万用表。需要注意的是,一定要用万用表的电阻最小量程档,主要检查电路面板,看看开路的地方和闭路的地方是否都进行了正确的开路和闭路,地线有没有漏接的,电源连线的连接是否都可靠安全,还要测量一下电源到底有没有短路的情况。值得注意的是,在整个电路安装完成之后,千万不能通电,首先要依据电路原理仔细地查看电路连线有没有准备无误的连接上,有没有搭错的线,有没有少连接的线或者多连接的线,尤其要注意查看有没有短路的情况。在进行测量时,最好直接测量元器件的连接点,这样就可以在查看上述情况的同时查看接触点是否有不良的地方。
第三,电路调试的过程最为关键的是硬件电路的调试。在调试的过程中,一定注意细小的环节,严格按照电路功能原理,对各个单元电路进行详细的调试,然后再进行整体的调试,最后准确无误地完成整个电路的整体调试。
5结论
【关键词】电气自动化;控制设备;稳定性;对策
在科技技术发展迅速的今天,电气自动化控制设备的稳定性将成为衡量我国电子行业发展水平的其中一个关键指标。它能够最大程度的降低人工劳动的强度,减少了安全事故发生及保证生产活动的正常运作。
一、控制设备稳定性的重要意义
随着电气自动化程度、智能化程度、复杂度的不断提高,控制设备稳定性技术逐渐成为了各大企业竞争中获取市场份额的得力工具。但由于电气自动化控制设备常需要长时间运行,及经受各种不利自然条件考验,电气自动化控制设备必须具有高度的可靠性才能够保证生产运作的稳定性。
因此,我们需要不断加强电气自动化控制设备的稳定性,提高设备正常运行率,才能推动电气自动化的全面进步和发展。减少在实际操作之中诸多故障的发生,更好地保证产品安全、人身安全以及经济效益。
二、影响控制设备的稳定性因素
电气自动化控制设备的快速发展对我国工业领域系统的正常运行有着不容小觑的影响,其稳定性是一切器械正常运行的基础。但散热、气候、电磁波、机械作用力、人为因素都容易导致控制设备出现不稳定现象。除此外,控制设备的元器件质量不符合要求也是都是导致控制设备稳定性指标偏低。只有对控制设备实行科学及时的保养及维护才能够进一步有效地提高电气自动化控制设备运行中的可靠性、可靠性使其运行更系统、更准确、更快捷。
三、提高控制设备的稳定性措施
影响电气自动化控制设备的稳定性因素是复杂多样的,若想要提高控制设备的稳定性,就必须根据控制设备的特点,采用适当的有效措施,将一切有可能导致控制设备稳定性指标偏低的原因扼杀于摇篮中。
3.1采用相应方案措施加强稳定性
(1)要提高设备使用寿命,在应该在控制设备设计阶段,谨慎分析产品的设计参数保证产品性能及使用条件,按照设计要求对设备正确安装使用,并在运行之后对设备作出定期的检查,确保设备的稳定性;
(2)按实际情况,根据产量合理地来设定产品的结构形式以及产品类型。生产方式类型、批量的不同对生产经济性也有不同的影响和差异,故应由产量的大小决定生产批量的规模;
(3)在保证产品稳定性的前提下,运用价值工程理念,以最经济的方式进行设计零部件产品的生产和维护,控制生产成本同时降低产品的维护使用费用;
(4)在满足产品技术要求的条件之下,采用最经济合理的原材料和元器件,以降低产品的生产成本,维护公司利益。
金辉公司在二三期建设中,在设计阶段就根据公司实际情况统一变频器和某些低压元器件的使用牌子,这大大方便了以后的维护,并且降低了维护所需备件的费用。
3.2正确选择与使用元器件
在选择与使用电气自动化控制设备中的零部件、元器件上,我们应当尽量使用由正规厂家生产的通用零部件或着产品。并避免修配和选配的情况发生,尽量地减少装配工人的体力消耗,加强自动流水生产。
对同类元器件在品种、型号和制造厂商等参数进行比较并根据电路性能的要求和工作环境的条件优先选用质量稳定、可靠性高的标准元器件,最大限度地压缩元器件的品种规格和减少生产厂家。
3.3控制设备散热防护的作用
影响电子设备稳定性因素里,温度是尤为关键。当控制设备产生散热不良的现象,轻则影响控制设备的稳定性重则损坏控制设备,导致生产停机。影响控制设备散热的一个原因是环境温度过高,当控制设备长期在此异常的环境温度下工作时,就容易出现失效问题,我司的一台在线测厚仪曾出现环境温度过高影响而测量的一个问题,当时的情况是,该测厚仪安装在纵拉区域,纵拉区域在生产时由于加热温度特别高,约为50-60oC,测厚仪通信控制板卡的适宜工作温度为20-40oC,运行时间一长导致工控机无法和测厚仪连接,无法读取现场数据,后来在该测厚仪机柜内加装了冷却空调,降低了控制设备的环境温度,该测厚仪通信就一直能正常工作了;影响控制设备散热的另一个原因是控制设备自身产生的热量散热不良而积聚,此类问题很好解决,在设计时需注意有足够的空间供其散热,必要时加装散热风扇或散热器,这都对控制设备散热有良好作用,从而提高控制设备的稳定性。
3.4电子设备的气候防护
气候条件对电子设备影响是很大的,特别是在低温高湿条件下,空气湿度达到饱和时,电子设备容易受到潮湿空气的侵蚀,使机内元器件、印制电路板上产色和凝露现象,极容易造成绝缘材料表面电导率增加,及零部件电气短路、漏电等等情况的发生。甚至会导致覆盖层起泡至脱落,失去其保护功能。
针对于这种情况,一般采用密封、浸渍、灌封等等措施进行维护,而我司就在控制电房安装了工业除湿机,使控制电房的湿度保持在安全值以内,提高了控制设备的稳定性。