欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

高数和概率论优选九篇

时间:2023-09-26 09:27:46

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇高数和概率论范例。如需获取更多原创内容,可随时联系我们的客服老师。

高数和概率论

第1篇

【摘要】民办高校作为我国高等教育大众化的一种新的办学模式,如何有效地培养出适应社会需求的三本人才是民办高校急需解决的问题.本文通过哲学思想、重难点、教学方法、学生课堂表现、偶发事件等五个方面,对“概率论与数理统计”课程进行了教学探索.

【关键词】民办高校;概率论与数理统计;教学效率

当今,国际竞争实际是人才的竞争,而人才竞争实质上是教育的竞争,教育对经济和社会的发展具有全局性、先导性的作用.我国高等教育从精英向大众化过渡,民办高校面临着较大的生源压力,作为人才输出的主要基地更需要培养社会发展所需要的合格人才,主动适应社会需求.而概率论与数理统计是经管类、理工类等专业的一门重要基础课,是学好后续专业课的必要准备,同时也是一门应用性和实践性很强的课程.目前现行的中学课本里也安排了一定的概率统计知识,其难度也在一点点加大.在新的形势下,探索并实践出有突破性的“概率论与数理统计”改革策略是民办院校高等教育的重要研究课题.而课堂教学是学生在校期间学习文化科学知识的主阵地,也是教师对学生进行思想品德教育的主渠道.现在,由于知识的快速更新,对民办高校“概率论与数理统计”教师来说,最迫切的问题,就是如何提高课堂教学的效率,尽量在有限的时间里,出色地完成教学任务.那么,怎样提高民办高校“概率论与数理统计”课堂教学效率呢?笔者认为:

一、把哲学思想渗透到概率论与数理统计教学中

概率论与数理统计中蕴含着丰富的哲学思想,如事物都是普遍联系的、对立统一规律、质量互变规律等等.教师若能以哲学思想来指导教学,在教学中自觉地渗透辩证的思维方法,不仅能提高学生学习数学的效率,也能取得更好的教学效果.在“概率论与数理统计”这门课的教学中,要使学生能利用辩证唯物主义的观点来解释“概率论与数理统计”的形成和发展.普遍联系规律是辩证法的核心.如离散与连续是两个不同的概念,二项分布属于离散型,正态分布属于连续型.而中心极限定理表明了二项分布的极限分布是正态分布,体现了离散和连续是普遍联系的.同时离散与连续又是对立统一的.量变和质变,是事物发展变化的两种基本形式,量变是质变的必要准备,质变是量变的必然结果.当量变达到一定程度,突破事物的度,就产生质变.如“实际推断原理”指出“概率很小的事件在一次实验中实际上几乎不会发生”.小概率事件在一两次试验中一般不会发生,但在大量重复实验时这个事件几乎是必然发生的.例如地震、海啸、泥石流、交通事故等在某一具体地点是小概率事件,几乎不会发生,但在自然界都是必然发生的,不可避免的.

二、突出重点,化解难点

三、运用现代化的教学手段辅助教学,采用多种教学方法

随着科学技术的飞速发展,掌握现代化的教学手段显得尤为重要和迫切.多媒体教学与传统的“黑板+ 粉笔”教学有着不可比拟的优势.多媒体教学显著的特点:一是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性;二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;三是能有效地增大每一堂课的课容量;四是有利于对整堂课所学内容进行回顾和小结.如概率的定义、全概率公式的推导过程都可以用多媒体来演示.另外,根据教学中大量计算和模型分析的需要,充分利用数学软件如Excel,Matlab,Mathematics,SPSS 及Lingo软件等来进行图形描绘和数据分析.这样就使比较晦涩、难懂的内容直观化、形象化,有效提高学习效率,刺激学生的形象思维.但传统教学也不能舍弃,对于数学类课程特别是民办院校的学生来讲板书还是很重要的.民办院校的学生学习自觉性和基础相对弱一些,容易受到外界因素的影响,课下不能及时巩固和预习.如果只讲讲,很多学生跟不上,学起来感觉难,特别是大多数同学容易出错的题目和典型例题要在黑板上详细讲解,使大多数同学能听懂,最好能触类旁通.教师要随着教学对象的变化,教学内容的变化,教学设备的变化,灵活应用教学方法.“概率论与数理统计”教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识.在“概率论与数理统计”课程中,我们可以结合课堂内容,灵活采用读书指导、谈话、练习、作业等多种教学方法.此外,我们还可以穿插演示法,向学生展示模型,或者验证结论.有时,在一堂课上,要同时使用多种教学方法.俗话说:“教无定法,贵要得法.”只要能提高学生的学习积极性,激发学生的学习兴趣,有利于所学知识的掌握和运用,有助于学生思维能力的培养,都是好的教学方法.

四、重视学生在课堂上的表现,兼顾不同层次的学生

在教学过程中,“概率论与数理统计”教师要随时了解学生对所讲内容的掌握情况.如在讲完一个概念后,让学生复述;同时教师要精选例题,可以按照例题的难度、思维方法、结构特征等各个角度进行全面剖析,不片面追求例题的数量,而要重视例题的质量.解答过程视具体情况,可以部分写出,或者请优秀学生写出,也可以由教师完完整整写出.也可以将解答擦掉,请中等水平学生上台板演.可以对基础差的学生多提问,让他们有较多的锻炼机会.同时为了培养他们的自信心,让他们能热爱“概率论与数理统计”,学习“概率论与数理统计”,教师可以根据学生的表现,及时进行鼓励.关键是讲解例题的时候,要能让学生也参与进去,而不是对学生进行满堂灌,由教师一个人承包.教师应腾出十分钟左右时间,让学生思考教师提出的问题,或解答学生的提问,或做做练习,以进一步强化本堂课的教学内容.若课堂内容相对轻松,也可以提出适当的要求,指导学生进行预习,为下一次课做准备.要时刻认识到学生不是“容器”,是“人”,学生是学习的主体.教师要围绕着学生展开教学.在教学过程中,让学生成为学习的主人,教师只是学习的领路人,使学生变被动学习为主动学习,自始至终让学生唱主角.教师在教育过程中必须重视情感因素的作用,尊重学生差异.反之,采用放任不管,迁就学生,或者高压政策,粗涉,简单说教,都不可能得到好的教育效果.

五、处理好课堂的偶发事件,及时调整课堂教学

尽管教师对每一堂课都做了充分的准备,但有时也可能遇到一些预料不到的事情.如有一次我在讲授随机事件的概率中概率的性质时,有“不可能事件的概率为0,概率为0的事件不一定是不可能事件”这一结论,但没有说明原因,教学计划中也没有说明原因的要求.在课堂上遇到这个问题时,有一位成绩较好的学生不理解,要求我说明原因.我就因势利导,向学生介绍了连续型随机变量,并用一个均匀分布的例子来说明在某一点上的概率为0,但不是不可能事件;然后,话锋一转,对那名同学说,关于详细的原因,我在课后再跟你面谈.这样,虽然增加了课时的内容,但也保护了学生的学习主动性和积极性,满足了学生的求知欲.

【参考文献】

[1]段勇,傅英定,黄廷祝.浅谈数学建模思想在大学数学教学中的应用[J].中国大学教学,2007(10).

[2]杨叔子.文理交融打造“数学文化”特色课程[J].数学教育学报,2011,20(4):7.

[3]龚克. 全国高校数学文化课程建设研讨会开幕致词[J]. 数学教育学报,2011,20(4):1.

[4]史宁中.漫谈数学的基本思想[J].数学教育学报,2011,20(4):8.

[5]刘蓉.“概率论与数理统计”教学改革之探索[J].长春理工大学学报,2010,5(7):132-133.

第2篇

高考二轮数学考点突破复习:解析几何

解析几何是高考的必考内容,它包括直线、圆、圆锥曲线和圆锥曲线综合应用等内容.高考常设置三个客观题和一个解答题,对解析几何知识和数学思想方法的应用进行考查,其分值约为27分,约占总分的16%.近年高考解析几何试题的考查特点,一是设置客观题,考查直线、两直线位置关系、点线距离、圆有关的概念、性质及其简单应用;考查圆锥曲线即椭圆、双曲线、抛物线的概念、性质及其简单应用等基础知识;二是以直线与圆位置关系、直线与圆锥曲线位置关系为载体,在代数、三角函数、向量等知识的交汇处设置解答题,考查圆锥曲线性质和向量有关公式、性质的应用,考查解决轨迹、不等式、参数范围、探索型等综合问题的思想方法,并且注重测试逻辑推理能力.

1.2011年高考试题预测纵观近年高考解析几何试题的课程特点和高考命题的发展趋势,下列内容仍是今后高考的重点内容.

(1)直线斜率的概念及其计算,直线方程的五种形式;两条直线平行与垂直的条件及其判断,两条直线所成的角和点到直线的距离公式;线性规划的意义及其简单应用.

(2)圆的标准方程、一般方程、参数方程的概念、性质及其应用.

(3)椭圆、双曲线、抛物线的定义、标准方程及其几何性质和椭圆的参数方程.

(4)圆锥曲线的初步应用,即以直线与圆锥曲线位置关系为载体,考查轨迹问题,圆锥曲线与平面向量、不等式、参数范围、探索型等综合问题.

(5)函数方程思想、数形结合思想、分类讨论思想在解析几何中的应用.

高考二轮数学考点突破复习:概率与统计

1.高考对两个原理的考查主要集中在排列、组合及其综合题方面,题目灵活多样.

2.二项式定理重点考查二项展开式中的指定项及二项式的展开式系数问题.

3.概率统计内容是中学数学的重要知识,与高等数学联系非常密切,是进一步学习高等数学的基础,也是高考数学命题的热点内容,纵观全国及各自主命题省市近几年的高考试题,概率与统计知识在选择、填空、解答三种题型中每年都有试题,分值在17分到20分之间.主要考查以下三点:

(1)会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题;

(2)理解古典概型及其概率计算公式,会计算一些随机事件所含的基本事件数及事件发生的概率;

(3)理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些相应的实际问题.

1.2011年高考试题预测

(1)高考对两个原理及二项式定理的考查.以基础题为主,考查形式比较稳定.

①从内容上看,主要考查分类计数原理和分步计数原理,排列、组合的概念及简单应用.例如2010全国Ⅰ,6;2010山东,8.

②从考查形式上看,多为选择题和填空题.例如2010北京,4;2010浙江,17.

③从能力要求上看,主要考查学生理解问题的能力、分析和解决问题的能力及分类讨论的思想.例如2010江西,14;2010上海,14.

第3篇

考试科目有:高等数学、线性代数、概率论与数理统计。考试内容比较多、全面、题目设置有一定难度。在试卷内容中,各科目所占比例为:高等数学56%、线性代数22%、概率论与数理统计22%。

考研数学二

考试科目有:高等数学、线性代数。在试题中,各科目所占比例为:高等数学78%、线性代数22%。

考研数学三

第4篇

1. 高数

(1)知识多

直接关系到考研的成败,复习需花费最多的时间。

(2)模块感清晰

有同学说:高数的题会了一块,一类的就会了。如幂级数求和展开,记住常见的几个泰勒级数公式,会通过基本变形或求导求积把已知函数(或级数)朝常见公式转化,这类问题就基本解决了。而线代不是这样,基本类型题目会了,考得深入些就心里没底了。

2. 线代

线代的知识结构是个网状结构:知识点之间的联系非常多,交错成一个网状。以矩阵A可逆为例,请大家考虑一下有哪些等价条件。从行列式的角度,为矩阵A的行列式不为零;从向量组的角度,为矩阵A的列向量组(或行向量组)线性无关;从线性方程组的角度,为Ax=0仅有零解(或Ax=b有解);从秩的角度,为矩阵的秩为矩阵的阶数;从特征值的角度,为矩阵的特征值不含零;从二次型的角度,为A转置乘A正定。不难发现,以矩阵可逆这个基本的概念可以把整个线代串起来。

3. 概率

概率的知识结构是个倒树形结构。第一章随机事件与概率是基础,在此基础上引入随机变量,而分布是随机变量的描述方式。第二章和第三章介绍随机变量及分布。分布描述了随机变量全部的信息,而数字特征仅描述了部分信息(如离散型随机变量的数学期望可以理解成该随机变量在概率意义下的平均值)。之后讨论整个概率的理论基础——大数定律和中心极限定理。概率论部分就到此为止了。数理统计看成对概率论的应用。

二、命题的规律

高数的知识点多,考点也多,而真题中考点覆盖相对比较全(参见今年和去年的考点统计)。此外,

高数侧重对数一、二、三独有知识的考查。如数一独有的内容多元积分,几乎是必考内容,数二的“曲率”及定积分的物理应用(如形心质心),数三的经济应用(如边际收益)也是常考内容。

第5篇

关键词 高等数学 管理学院 教学改革

中图分类号:G424 文献标识码:A

Thinking and Exploration of Higher Vocational Management

College Advanced Mathematics Curriculum Reform

HU Fang, ZHAO Lijun

(Wuhan International Trade University, Wuhan, Hubei 430205)

Abstract From the current situation analysis of the advanced mathematics teaching institutions of higher vocational college management related professional, thinking of the direction of the curriculum reform of advanced mathematics, and explore specific ways of education reform.

Key words advanced mathematics; management college; teaching reform

1 管理学院的高数教学改革的宗旨

高职管理人才的培养应抛弃“学术型”、“理论型”的大帽子,走“实用型”的路子。高职的高数教学更不同于普通高校数学系的高数教学,舍弃高数逻辑的严密性、思维的严谨性,将其作为专业课程的基础,让高职摆脱对数学学习的恐惧,学会用数学的思维方式观察周围事物,用数学的思维方法分析和解决实际专业问题,这是数学教育工作者值得关注的。

2 管理学院的高数教学改革的思考

进入高职院校的这部分90后大学生,约80%来自高中毕业生,20%来自中专、职校、技校及成人高考,高中毕业生们从精英教育迈向职业教育,产生了很大的心理落差,学习积极性受到一定程度的打击,本来数学基础就薄弱的他们根本很难接受数学的抽象性,很难深刻理解数学结构的严谨性,很难熟练掌握数学应用的广泛性。这些,实实在在地导致了他们对数学避而远之,甚至谈数学色变。我们都深知高数在培养学生基础科学素质中的重要性,在人才培养方案中举足轻重的作用,但却苦于无法用实例说服学生,使得数学教学与专业实践实训脱节。

数学教研组通过组织专业课教师、学生代表座谈会,了解管理学院相关专业对高数知识的不同需求。具体来说,工商管理、市场营销专业的核心课程体系中市场调查与预测需运用数学中的最小二乘法计算二元线性回归模型,而最小二乘法的理解需要微积分的基本理论;统计学原理的学习也需概率论的相关知识作为基础。工商管理、市场营销、国际商务专业的学生在学习管理经济学前需熟练掌握微积分的相关数学理论和思想。电子商务、国际商务专业的核心课程体系中,经济学基础的学习需要熟练掌握微积分中导数、运用导数解决最大值和最小值的计算问题、理解边际的思想,同时还需要一定的概率论与数理统计的知识作为后续学习的基础等。人力资源专业核心课程薪酬管理的学习需要熟练掌握微积分基本知识;房屋建筑基础、房地产金融、房地产市场营销等课程的学习均需要概率与统计相关知识对数据进行统计分析。由此可见,数学课程的教学在管理学院各个专业的专业课程的学习中起着举足轻重的作用。因此,管理专业的高数教学中渗透数学素质的教育和能力的培养是刻不容缓的,提高运用数学知识和思想方法解决各种专业问题的能力也是迫在眉睫的。

3 管理学院的高数教学改革的探索

立足于高职教育的培养目标是培养有一定理论知识和较强实践能力的高素质技能型人才,着眼于学生的未来发展要求是毕业生们能顺利地完成从学校到工作的过渡,具有良好的职业素质。通过高数的学习,在知识层面上,学生掌握数学的基本概念、基本理论和基本运算技能,为后续课程的学习奠定必要的数学基础;在能力层面上,逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自主学习能力,学生能够理解数学思想,明晰数学方法,建立数学思维,全面提升职业核心能力;在思想层面上,培养学生主动探索、勇于发现的科学精神,踏实细致、严谨科学的学习习惯,树立辩证唯物主义世界观。高职管理类数学教学的改革也应以这几点为根本,从以下几个方面着手进行。

首先,合理安排数学的教学内容和教学体系,实现分专业区别教学,分模块区别教学,课程教学以一元函数微积分为基础,线性代数及概率论为辅修,数理统计为选修内容。在教学内容上,教学要以强化概念、注重应用、培养能力、提高素质为重点,针对不同专业对数学知识的需求,大胆地抛弃传统的过于强调理论的教材,同时,适当选取自学内容,对于部分与中学教学内容重叠的数学知识,可作为自学内容,自学要求要明确,并且要有自学提纲,引导学生自主学习、独立思考。更加注重能力的培养和创新精神的培养,引入相关专业实践实训中的实际案例,通过相关案例的介绍引出相关的数学概念及其相关数学思想及理论,提高学生学习数学的积极性,让学生在用数学思想和数学方法解决专业相关问题的同时,加强数学修养,提高了数学素质。

其次,合理安排数学课程和相关辅修课程的教学顺序,如计算机基础课程,我们建议在一年级就开设相关语言课的学习,同时在高等数学、线性代数、概率论与统计等数学基础课程的教学中,我们辅助介绍运用计算机相关软件分析、解决一些数学问题。如运用Matlab软件画出经济函数的图形,从而了解经济函数的相关特性,如:单调性、极值、最值,了解函数的边际和弹性,让学生走入机房,自己动手,从中真正地体验到以计算机作为工具解决数学问题,用数学理论作为工具解决经济问题的乐趣,在“用数学”的过程中体会“用数学”的乐趣。

第三,培养和提高学生运用知识和方法解决实际问题的能力不仅仅是数学老师思考的问题,也是专业课教师、实习实训老师需要积极探索的课题,因此,数学教研室的教师们可以进一步加强和专业教研室、实习实训基地的沟通与联系,积极开展数学课与专业课教学的有效合作教学,在各个教学环节中,利用一切有利因素,充分启发引导学生掌握高数的内涵、外延、历史背景及思想方法,逐步培养学生综合应用所学知识解决专业问题的能力。

附1:管理相关专业课时分配:

总学时:128

参考文献

[1] 石磊,颖慧.素质教育视野下的运筹学课程改革[J].廊坊师范学院学报(自然科学版),2011(4).

第6篇

独立学院作为一种新型的办学模式在高校扩招的浪潮中应用而生,它是普通高校的二级学院,但是却有着新的模式,新的机制。它的发展速度快,创办历史短,生源既不同于本科生也不同于高职生,所以在发展过程中逐渐暴露了许多问题。例如对学生的培养方案定位问题,理论教学与实践教学的分配问题,三本特设和研究型本科院校的差别问题等等,这些问题不解决,都会影响独立学院的可持续发展。本文将结合独立院校的现状和特色来浅谈《概率论与数理统计》的教学改革。概率统计是一门研究随机现象统计规律的数学学科,由于其理论和方法的鲜明特色,使得其几乎遍及所有科学领域,如自然科学,医药卫生,工程技术,国民经济等各个领域。由于概率统计严谨理论性和广泛应用性。几乎所有高校都把其作为一门重要的基础课程来上,但是由于三本院校学生本身的理论基础差,学习不够积极,所以概率论与数理统计的教学过程遇到了很多问题,老师往往认为讲的很认真很详细了,但是学生反馈回来的却是难学,难懂,难用。那么独立学院在面对新的教育对象时,如何从概率统计的培养计划到课程设置再到教学实践,办出自己的特色呢,这是本文的主要研究问题,下面我们从以下几方面先分析一下当前独立学院存在的问题。

1独立学院的概率统计教学现状及存在问题

1.1学生基础薄弱,学习积极性不高一般来说,独立学院学生的基础知识以及学习能力与一二本院校学生相比差别比较大,他们的入学成绩相对较低,基础比较差,学习积极性不高。特别是对数学这类基础课更是“望而生畏”,又因为概率论的学习需要前面的微积分作为基础,所以对于大多数学生来说对概率的学习非常吃力。慢慢的就导致对这门课学习热情的锐减。学习自信心丧失,以及期末考试会有大批学生概率挂科。

1.2教师教学教法问题独立学院的师资队伍一般是“双师型”,即既有专职教师,也有母校的有经验的教师。首先教师队伍上存在一定的问题,专职教师大都是刚毕业的年轻教师,缺乏教学经验,而母校教师长期教的是基础比较好的一二本院校学生,对于基础较差的独立学院学生,仍然采用以前的教学模式和教学方法,所以一定程度上会影响教学效果。再者对于概率统计这门学科来说,很多教师在教学上都采用传统的教学方法“概念介绍—公式推导—例题讲解”,教学模式陈旧,教学方法单一,重理论轻应用,重公式推导轻实例描述,重教授轻互动,重面面俱到轻有的放矢,重概率论轻统计学,重一概而论轻因材施教。这些问题都影响着概率统计的教学效果。

1.3教材问题独立学院大多用一二本院校的教材,缺乏适合独立学院学生的相应的教材文件,而对于一二本院校的教材主要是培养“研究型人才”,不适合独立学院的“应用型人才”培养方案,再者由于很多独立学院对概率课时的删减,很多教师为了完成任务就自主的删减内容降低难度,但是没有一个统一的标准,容易出现要求过高或过低而与实际脱节,另一方面,大多独立学院按照母校的模式重概率轻统计。但是从独立学院的培养定位来说,统计的应用性更强,对于培养应用性人才来说更具有实用性。所以要求独立学院无论从教材的难易程度,重点,难点还是概率统计的比例部分都要有一个新的模式[1]。

2独立学院的概率统计教学改革探讨针对以上问题,从以下几方面对独立学院概率统计进行改革。主要手段是坚持分层教学、实施分流培养、构建科学的分层教学管理模式,通过实施案例教学法等教学方法改革,广泛深入开展数学实验、数学建模活动等措施,来提高数学教学质量,实现培养应用型人才的目标。下面以电子科技大学成都学院的概率论与数理统计教学改革为例,具体讨论一下独立学院的教学改革。

2.1教学方法改革

2.1.1分层教学法由于独立学院学生入学水平参差不齐,数学基础,爱好程度,专业方向都不同,所以对概率统计的学习需求也存在很大的不同,导致有些同学觉得“吃不饱”有些觉得“吃不消”,为了更大程度的满足个层次的学生学习需求,电子科技大学成都学院实行了分层教学法。具体考虑了以下三个方面:第一从数学基础考虑:我们在学生一入学的时候举行数学竞赛,主要是考核高中的知识,目的是测试学生的数学基础,把成绩比较好的学生分为“行知班”,对于这个班级的学生在教学的深度,难度和广度上都等同于一本或二本院校,经过试验,此班级的学生很多都参加了研究生考试,数学成绩相对都比较不错。另一方面,概率论与数理统计是在大二上学期开设的一门课。是以高等数学为基础的一门学科,所以我们院校在高等数学上册结课后,进行了数学和英语的再次考核,把成绩好的同学分在一个H班里,这个班级的学生基础比较扎实,对数学的兴趣也比较浓烈,我们特别聘请了电子科大本部经验丰富的老教授来教授这个班级,为以后的数学建模比赛,高数比赛以及研究生考试选拔人才进一步做好准备。最后在试卷模式上也进行了相关的分层考核,试卷分为基础题和附加题,前面50分是基础分,后面50分难度逐渐提高,最后额外两道附加题作为优等生和中等生的选拔考核。这样不仅考察了学生对基本教学内容的掌握,也一定程度上反映了优良中差学生的比例,满足了不同层次学生的求知欲望。第二从专业方面考虑:由于不同专业对概率论的要求不同,所以我们从大的方面我们分了工科概率,经管专业概率,文科概率三个方面。三个方向的概率学分不同,教授内容不同,要求也不同。对于计算机,电工,通信等工科专业主要注重概率论的教授,统计方面只做简单介绍。会计专业则在减少概率的理论推导,注重应用,加大统计部分课时,重点描述如何抽样,如何让做参数估计,假设检验等等。对于文科概率则课时更少,了解基本知识就可以了,更多的介绍一些概率知识的背景,数学家的故事等,让文科学生在轻松愉快中了解数学的博大精深与伟大数学家的治学态度和睿智[2]。第三从兴趣爱好考虑:概率论与数理统计是在大二上学期开设的一门课。经过一学年高数和线性代数的学习,很多同学也知道了自己的兴趣以及基础如何,所以到大二的时候,对于基础比较好,又感兴趣的同学可以去H班学习。对于基础不太好,但是比较有兴趣的同学,我们开设了统计学等选修课,可供学生选择。第四从虚拟网络考虑:虽然我们分了很多层次来进行教学,但是对于每个学生个体仍然存在很大差异,如何真正做到因材施教,让每一个学生都得到最大满足,我们开发了网络自主学习平台,这个平台上有各个层级学生需要的概率统计题目,数学学家的背景故事,概率趣闻,各种概率统计的应用模型,历年建模题目以及很多模拟试题,很多学生可以根据自己的需求进行自主选择,并每天在固定时间安排老师进行网上答疑。这个平台正在进行中,我相信一定会取得良好的教学效果的,这样不仅让学生随时都可以最大限度的满足自己的学习欲望,而且可以锻炼其自主学习,自我创造能力。

2.1.2案例教学法由于独立学院学生的数学基础相对于一二批本科院校要差一些,但是他们大多思想比较活跃,兴趣比较广泛,所以填鸭式的理论推导,只会让他们对概率统计越来越失去信心。案例教学法是融合启发式、互动式和探究式的教学法,是通过一个具体的情景描述,引导学生深入情景,对这种特殊问题分析,讨论,解决的教学模式,好的典型的例子不仅可以激发学生的学习兴趣,而且能增强学生对知识的理解能力和自主学习能力,以及创新能力。案例教学法可以贯穿概率论与数理统计的始终,小到具体到每个例题,大道专题讨论,都可以用案例教学法,例如在第一节介绍介绍概率的起源的时候,可以给学生介绍“赌徒分赌本”的故事,让学生在思考赌本应该到怎么分的时候,感受数学的魅力,如在讲授几何概率时,可以让学生做一下著名的蒲丰实验,感受一下概率的实际数据与实验模拟的差别,也可以讲解调动学生积极性的“约会问题”;在学习古典概率时,选取学生感兴趣的彩票中奖案例,例如福彩35选7,分别计算学生中奖,中一等奖,二等奖的概率是多少;讲授正态分布的时候可以把某一年的概率成绩拿出来作为数据,让学生计算该成绩是否具有正态性,并求出优秀,良好各等级的概率,以此评价此次考试的合理性;讲指数分布时,为了说明随机服务系统中的服务时间服从指数分布,可以让学生观测某银行服务窗口的顾客等待时间,进而给出指数分布的参数,并对银行设置窗口数给出评价。在学习数理统计部分时调查身边同学每月伙食费用的分布情况、平均消费等等,给出一定信度的置信区间。在介绍概率的统计意义时,可以从统计学家的投硬币实验引入理论,在介绍中心极限定理时,可以让学生做一下高尔顿钉班实验,让学生在试验中深刻体会中心极限定理的的意义。以上简单介绍了一些概率统计的案例教学法的例子,但是如果真正的做好案例分析法需要教师扮演设计者和激励者的角色,在选取案例的时候一定要贴近生活,既要符合教学目标,又要符合专业特设,具体步骤为教师选好案例,把学生分为几个小组,每个小组自己分析问题,收集问题,分析事实依据,设计不同的解决方案,作出决定,展示结果,最后由教师对各小组的结果进行评定。所以如果严格按照这种流程来做的话,比较耗时,每学期教师可以自己找两三个案例来做,其他的案例主要体现在在选取的时候要围绕教学目标,并能激发学生的兴趣为标准,在讲课的时候穿去即可,活跃课堂气疯,互动学生参与进教学课堂[3-6]。

2.2教学内容和结构的改革独立学院的定位是培养“应用性人才”,结合这一培养目标和概率论的特点,制定符合独立学院的概率教学大纲和教学计划,适当的割舍若干教学内容,根据不同专业有重点讲解与本专业相关的重点内容,例如,大数定律和中心极限定律理论性很强,可以简单通过案例介绍,例如讲中心极限定理时可通过高尔顿板给学生演示,让学生从直观上理解中心极限定理描述的内容。整体来说一方面独立学院应该浓缩概率的课时,降低概率理论推导难度,增加统计的课时,因为统计内容对培养应用性人才更具有实用性。在整体结构改革的同时,对于各个专业也要有重点有差别。针对通信专业来说要重点介绍概率密度函数与概率分布函数,正态分布统计特性等。针对会计专业就强化统计方面的内容,尤其是抽样分布,回归分析之类的;针对电信专业当介绍随机变量的独立性时,可以介绍几种典型的系统可靠性问题等。另一方面要把概率课和数学实验课相结合,在每章概率课上完之后上一两节数学实验课,加强学生对概率知识的印象,同时学会用MATLAB,SPSS等数学统计软件,解决概率问题。例如在将统计的样本时候,MATLAB中的rand,randn,binornd等可提供你任意数量的各种分布的数据,normfit可以很轻松的计算参数估计。简单的hist和bar就可以把高尔顿板实验展现的淋漓尽致等等,这样既加深了对基本概念、公式和基本运算的理解,同时可以学会运用软件技术实现概率统计问题的求解过程。而且对以后的建模比赛也有很大的作用。

2.3教材改革由于独立学院属于一二本大学的二级学院,所以很多独立学院仍然在用母校的教材和课程大纲,这样就容易与三本院校学生基础差相脱节。三本院校应该根据自己学生的特点,学校的培养定位来制定符合独立学院的教材。要以培养应用型人才为目标,从概率论与数理统计的特点出发,分析课程体系的系统性和应用性。要在内容上,难度上,结构上做一定的调整,编出相应的教材,习题册等配套教材,介于很多独立学院起步晚,教师经验不足,则可以联合几所独立学院的骨干教师合编符合三本院校学生的教材,也可以充分利用“双师”这个优势,让本部资深老教授带队,合编具有独立学院特色的教材。在编写教材的过程中,要注意以下几点:①可以加入一些概率论的起源,发展,成熟的历史,并对一些概率中出现大数学家进行简单介绍,让学生体会这些数学家的人格魅力。②教材要加入很多应用性的例子和模型,要与时俱进。给学生讲一些当前发生的流行的事件,通过概率知识来解决问题,这样可以激发学生的学习兴趣。③教材每章的最后一节可以加入一些统计软件介绍,例如SPSS,SAS,MATLAB以及EXCEL。通过这些软件对本章的数学模型进行模拟仿真,或者通过软件求解本章学习的相关理论知识。真正实现人机结合的乐趣。

第7篇

临5考研和5十3的不同:

工科理科对数学要求高的考的,基本上高数现代概率论每门每个知识点你都得复习。数三是金融会计那一类的考的,对高数的要求较低,比较侧重概率统计,整体难度明显低于数一。5年临床医学本科教育+3年临床医学硕士专业学位研究生教育或3年住院医师规范化培训。医学生完成5年的院校教育后,一部分毕业生选择考研攻读科学学位。考核通过后,取得普通专科执业资格,称为专科医生,其中一部分医师直接进入社区或者二级医院。

(来源:文章屋网 )

第8篇

关键词:概率论与数理统计;教学设计;实践教学

概率论与数理统计课程是工科数学的重要基础课之一,该课程的基础是概率论,而重点的应用部分是数理统计,学习概率论与数理统计可以培养学生的统计分析能力和实际问题解决的能力.在学生的后续课程中作用重大,而且对于实际问题的解决提供了很好的方法.根据独立学院的办学宗旨,还有学院的特色及学科的不同,我们有针对性的改革了教学体系,培养学生的开放性思维,教学过程坚持“实用型”.在内容深度上,我们的原则是“淡化理论、注重实用”.在内容构架体系上,我们的出发点是实用性和针对性的教学,教学目的就是解决实际问题,今后重点培养学生的数学应用能力.在教学方法上,通过分析问题来建立数学模型.基于以上我总结的经验,得到一些较适用的教学方法,想推荐给大家,下面就给出三个方面进行探讨与讨论,分别包括概率论与数理统计的教学内容及方法、教学设计、教学实验.

1理出课程的重难点,给出恰当的解决方法

概率论与数理统计课程的重点是:随机事件和概率、二维随机变量及其概率分布、随机变量的数字特征、数理统计.难点是:抽象的概念(随机变量的定义,分布函数的定义等)、理论的推导(如全概公式与贝叶斯公式)、解题的方法与技巧(如二维随机变量的边缘分布)、严密的逻辑性(如随机变量矩、协方差和相关系数,要以随机变量的期望、方差为基础)等.解决办法:多以实际例子及概念产生的背景作为铺垫,引出概念,让学生对概念的理解更深入透彻;减少理论推导,多分析解题思路;重点讲解和训练一般的解题技巧和方法;要求学生多做练习,加强基础知识的训练,牢固掌握概率论的基本知识为后面的数理统计服务等.课堂上对学生的学习状态随时关注,根据学习状态确定习题量及其难度.教材内容要取舍得当,根据学生的学习情况调整教学内容,课堂氛围也很重要,教师要调动好课堂气氛.

2巧妙地设计教学环节

教学环节的设计是很重要的,能直接影响我们的教学效果.判断我们上每一节课是否成功,是取决于学生能够接受多少新知识,那么我们就要保证教学环节的流畅、自然.

2.1上好每一章的第一节课

每一学期的第一节课很重要,一个老师上好第一节课可以带领学生入门,能够吸引学生的注意力,激发学生的学习兴趣,充分调动学习的积极性.对于每一章的第一节课也同样重要,首先老师介绍一下这一章要学的所有知识,简单概括本章的重点与难点,还有这一章与前后章节的联系及在这一本书中的地位,学习本章内容所要用到的学习方法,还有本章知识的实际应用等等.上每一章第一节的时候让学生了解这一章要学习的内容,引起学生的学习兴趣.

2.2讲解新知识要生动有趣,贴切实际生活

在17世纪,英国一个叫梅莱的贵族有“一夜暴富与一夜沦为乞丐”的故事,他的两次赌博结果,给出了概率的起源问题.例如我们常用的手机,从收到短信开始计时到收到下一条短信,这其中的等待时间;还有我们任意时刻等待短信的时间;这都是服从指数分布的.还有经常逛商场会遇到抽奖活动,但是顾客的抽奖结果多是“谢谢参与”,这就是古典概型.涉猎高手和小朋友同时射击,听到枪响兔子倒下,我们看到猎人的枪和孩子的枪都冒烟了,那到底是谁射中的兔子?这个问题就是小概率事件原理.这些实例都需要学生对现象进行细致的观察,把生活中的这些问题模型化,从而获取新认识,如果我们能以上面的实例来讲解,从而引出指数分布,古典概型,小概率原理,那么新的概念、定理、公式就更容易理解,学生也更容易接受.采取这样的方式教学,学生的好奇心就很快被教师调动起来,教师也更容易讲授新的知识,学生也能比较容易地理解并掌握新的知识.例如社会保险在我们现实生活中总会提及,我们也都有这样的疑问:保险公司和投保人之间谁是最大的受益者呢?假如n个人向某保险公司购买人身意外保险(按保期一年算),假定投保人在一年内发生意外的概率是0.01,问(1)该保险公司赔付的概率是多少?(2)n多大时以上赔付的概率超过二分之一呢?分析:设“一个人一年内是否发生意外”是一次随机试验,现有n个人参加了这次保险,那么上面的问题就是一个n重的贝努里概型,且假定每个人在一年内发生意外的概率为P=0.01.设Ai={第i个投保人出现意外},i=1,2,…,n;B={保险公司赔付},又B=A1+A2+…+An,再根据德摩根率,有P(B)=1-p(B)=1-p(A1A2…An)=1-p(A1)p(A2)…p(An)=1-(1-0.01)n=1-0.99np(B)=1-0.99n≥0.5,有0.99n≤0.5,n≥lg0.5lg0.99≈684.16.由此可见,“概率很小的事件在一次试验中几乎是不发生的”,但是大规模的重复试验发生的概率几乎是1,所以保险公司虽说是会有赔付,但是保险公司还是“受益匪浅”的,基本上是不会亏本的.

3增加实践教学环节

随着计算机的普及还有各种数学软件的开发利用,就有必要在概率论与数理统计课程教学中增加实验教学环节.在概率论与数理统计课程的教学中引入数学实验,对学生的学习兴趣提高有所帮助,而且学生学习数学知识的效率也会提高,帮助学生应用数学知识解决实际问题,培养学生的动手能力.

3.1用数学实验思想,优化教学内容

“数学实验”就是从问题出发,借助计算机,通过学习者亲自设计与动手操作,学习、探索和发现数学规律或运用现有的数学知识分析和解决实际问题的过程.换言之,数学实验就是学习者自主探索数学知识及其实际应用的实践过程.数学实验的目的,就是在数学的学习过程中,通过数学实验改善学生的学习方式和学习过程,从而帮助学生在自主探索和合作交流的过程中理解和掌握基本的数学知识与技能、数学思想和方法,并获得广泛的数学活动经验,有效提高数学学习的能力.

3.2增加数学实验内容,激发学习的创造性

在教学中可讲解简单的例子,让学生发挥想象,自己建立数学模型,利用SPSS软件对此模型求解,再观察分析给出计算结果,这样不仅让学生对课程感兴趣也体现了学生的创造性.随意开设数学实验,给学生锻炼的机会,对于培养学生的创造性是非常有效的.

3.3利用数学软件,提高学生的计算能力

概率论与数理统计中的计算问题可以用数学软件SPSS求解,计算机的发展提供了便利,对于过于繁杂的计算用计算机计算是方便快捷的.将数学实验国家精品课的适当的内容穿插在本课程教学中,以习题课的形式介绍,引导有兴趣的学生自己去尝试.课程组每年定期举办数学建模培训班,利用各种教学软件演示概率论与数理统计的应用方法,在整个教学过程贯穿数学建模的思想与方法.融合数学知识强调应用能力的培养,我独立学院的学生在全国大学生数学建模竞赛活动中取得了优异的成绩,这是难能可贵的.

4结束语

本文从三方面探究了工科概率论与数理统计课程在独立学院的教学方法,通过我对教学方法的探索和改革,对于激发学生学习该课程的兴趣有所帮助,体现该课程的价值让学生充分认识到,让学生自己主动学习.以上三个方面的教学方法,应用在独立学院的概率论与数理统计的课堂教学中,取得了较为不错的教学效果.首先增加了学生学习概率论与数理统计的积极性,其次对于活跃课堂气氛有很大的帮助,再次学生不反感学习概率论与数理统计这门课程,最后也是最重要的一点考核通过率有很大的提高.通过以上改革完善了概率论与数理统计的教学,当然今后教学工作中还有更多新的方法,有待我们进一步实践和探索,不断的完善和提高.

参考文献:

〔1〕秦川.概率论与数理统计(第二版)[M].长沙:湖南教育出版社,2013.

〔2〕宗序平.概率论与数理统计(第三版)[M].北京:机械工业出版社,2011.

〔3〕陶伟.概率论与数理统计习题全解[M].北京:国家行政学院出版社,2008.

〔4〕刘洋,张国辉.工科概率论与数理统计教学方法探究[J].牡丹江师范学院学报:自然科学版,2013(4).

第9篇

1、教学内容的衔接

首先要构建在高中数学新课程背景下的概率论与数量统计课程体系,实现大学数学教育与高中数学教育的"无缝对接"。如有可能的话,重新编写创新教材,适当调整课程内容,扫清学生的学习障碍。

目前高中新课程要求学生必修的概率与统计内容有:"了解随机事件的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别;通过具体例子,了解互斥事件概率的加法公式;了解古典概型和古典概率的计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率;初步认识几何概型;理解随机抽样,学会通过简单随机抽样的方法从总体中抽取样本;了解分层抽样与系统抽样的方法;学会做频率分布表及频率分布直方图、频率折线图、茎叶图;学会从样本数据中求出基本的数字特征如平均数、标准差等;学会通过样本的频率分布估计总体的分布,用样本的数字特征估计总体的数字特征;学会通过具体实例中的两个关联变量的数据做出散点图,从而直观认识变量间的关系;了解最小二乘法思想,学会根据线性回归方程系数公式建立线性回归方程。"可以看到,这些内容覆盖了概率论与数理统计课程的许多方面,但是,我们也要看到即使是已经要求学生了解的内容,难度与深度方面与大学的要求是不可同日而语的。

高中多从简单的实际案例中引入概念,只进行描述性的解释,侧重于粗略的了解,没有严格的定义,没有严密的逻辑推导,没有严谨的演绎体系,通过直观性教学,主要意图是培养学生对这门课程的直观感觉,让学生体会这门课程的基本概念和基本思想。对于这些与大学重复的知识点教师要进行整合,既不能简单重复,也不能因为高中学过而直接跳过。要根据学生的认知规律,将教学的重点与高中区别对待,设计出科学合理的教学内容,让学生在原有的朴素的直觉基础上形成严密的理论体系,可结合高中新课程的案例,加强理论性教学和规范化教学,正确处理好直观与严谨的关系。

另一方面新课标降低了对部分文科学生的学习要求,部分内容如排列、组合、二项式定理等不学不考。由于学生的学习是循序渐进的,如果出现知识点的薄弱环节甚至是"真空地带",势必会直接影响学生的学习,造成一定的困难。对于必须要掌握又缺失的知识点教师要在开课伊始给学生补充完整。考虑到部分学生已经学过,教师以选修、讲座的形式在全校范围内授课,这样的方式还可以弥补教学时数的不足。

2、教学方法的衔接

相关文章
相关期刊