欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

高层建筑抗震结构设计优选九篇

时间:2023-10-09 16:07:51

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇高层建筑抗震结构设计范例。如需获取更多原创内容,可随时联系我们的客服老师。

高层建筑抗震结构设计

第1篇

【关键词】高层建筑;抗震;结构设计

现今,我国的大部分城市内都是高楼耸立,对于高层建筑结构的设计是一项较复杂责任繁重的系统工程,尤其是抗震的结构设计,其设计的好坏将直接影响高层建筑的工程质量,特别是在地震多发区,因此,这就需要设计人员要充分认识高层建筑抗震结构设计中容易出现的问题,不断进行总结和改进,以完善高层建筑的抗震结构设计。

1 高层建筑抗震结构设计中的常见问题

1.1 高层建筑的高度问题

根据我国现行的相关结构技术规定,在一定设防烈度和一定结构型式下,钢筋混凝土高层建筑要有一个适宜的高度。也就是说,在这个高度的范围内,建筑的抗震性能是比较可靠地,但是目前,存在少数的高层建筑的高度超过了规定的范围,如果在地震力的作用下,极易改变超过限制的高层建筑物的变形破坏性态以及其他影响因素,那么就会大大降低高层建筑的抗震能力,对于抗震结构设计的一些相关参数也要重新选取。

1.2 结构体系以及建筑材料的选用

结构体系以及建筑材料的选用对于高层建筑的抗震性能具有非常重要的意义,尤其是在地震的多发区,更应该重视科学合理的结构体系以及建筑材料的选用。在我国,多部分的高层建筑结构体系是钢筋混凝土核心筒以及混合结构为主,所以对于变形的控制通常要以这种结构的位移值为基准。但是,这种情况下,如果发生弯曲变形,导致的侧移会比较大,进而增加钢结构的承受压力,为了保证效果,使其控制在规范的侧移值内,通常需要设置伸臂结构或加大混凝土筒的刚度。

1.3 抗震设防烈度过低

根据可靠的数据以及专家分析,我国现行的高层建筑抗震的结构设计的安全度远远不能满足社会的需求,有数据显示,我国的高层建筑抗震实际的安全度很可能是世界上最低的一个国家。在经济科技都快速发展的情况下,我国的高层建筑抗震结构的设计原则,即“小震不坏,中震可修,大震不倒”,在这种新形势下,有必要进行重新的修订。由于我国现行的高层建筑抗震结构的设防标准过低,由于其结构失效,经常会导致严重的后果。

1.4 轴压比与短柱问题

在高层建筑结构设计中,如果是采用钢筋混凝土的结构体系中,为了控制柱的轴压比,增加柱的横断面,而柱的纵向钢筋却为构造配筋。对柱的轴压比进行限制主要是为了使柱子处于较大的偏压状态下,避免受拉钢筋的破损,进而降低高层建筑的整体结构延性。

2 高层建筑抗震结构设计的原则以及基本方法

2.1 抗震结构的设计原则

2.1.1 结构设计的整体性

高层建筑的楼盖对于其结构的整体性占据着不可或缺的位置。楼盖就类似于一个横向的水平隔板,将惯性力聚集起来,并向各个竖向抗侧力的子结构传递,尤其是当这些子结构的布置不均匀或过于复杂时,楼盖就可以很好的将这些抗侧力子结构组织起来,进行协同合作,来承受地震的作用。

2.1.2 结构设计的简单性

高层建筑结构设计的简单性主要是指在地震的作用下,具有极其明确清晰的直接传力方式。在相关的规范中对于结构体系有明确的要求,即结构体系要有明确的计算简图以及合理的地震作用传递途径。换句话说,只有高层建筑结构的设计越简单,才能够分析出结构的计算模型、内力以及位移,进而提高对高层建筑结构的抗震性能的预测的可靠性。

2.2 抗震结构的设计方法

2.2.1 基于水平位移的抗震结构设计

基于水平位移的抗震结构设计主要是为了使结构的变形能力能够保持在预期的地震作用下(通常是在大地震的情况下)的变形要求。此外,要根据界面的应变大小以及分布,来确定建筑的构件标准,同时在确定构件的变形值时,要以构件的变形以及其与结构位移的关系来确定。首先,要充分研究高层建筑的一些简单结构的构件变形,以及其与配筋的关系,严格按照变形的要求来设计合理的构件,进而对建筑的整体结构进入弹塑性后的变形与构件变形的关系。因此,这时就要设计在大地震的作用下的变形,这也将是高层建筑抗震结构的未来的发展趋势。

2.2.2 推广使用隔震和消能减震设计

现今,在高层建筑的抗震设计中,多采用的是传统的抗震结构体系,也就是延性结构体系,主要是控制建筑结构的刚度,如果发生地震,就会使建筑的构件进入非弹性的状态中,使其具有较大的延性,进而有助于地震作用下的能量的消耗,尽可能的减小地震效应,避免建筑物的倒塌。此外,通过采用相关的隔震措施,如软垫隔震、摆动隔震以及滑移隔震等,可以改变高层建筑的动力特性,进而减少所受到的地震能量的作用,同时通过采用高延性构件,也可以增加高层建筑结构的耗能能力,有助于减轻地震效应。

2.2.3 降低高层建筑结构的自重

如若是在相同的地基承载能力条件下,降低高层建筑结构的自身重量可以使在不增加地基以及其造价的情况下,可以在相关的规定范围内,尤其是在软土层的地基上,可以增加高层建筑的层数。研究显示,由于高层建筑的高度很大,重心也相应较高,所以,建筑的重量越大,受地震作用的倾覆力矩的效应就越大。

因此,在高层建筑的抗震结构设计中,要尽量采用轻质材料来填充高层建筑物的填充墙及隔墙。

2.2.4 设置多道抗震防线

通常在地震后都会伴有多次的余震,那么对于高层建筑结构如果只设置一道抗震防线,往往会只因首次的强烈地震就会遭到严重的破损,甚至倒塌。因此,有必要对高层建筑设置多道抗震防线。在一个高层建筑的抗震体系下,应该由多个延性较好的分体系组成,当第一道抗震防线遭到冲击时,其他的抗震防线便能够接替第一道防线继续抵挡随后的地震冲击,通过多道防线的协同合作,可有效地防止高层建筑的倒塌。

3 高层建筑抗震结构设计的前景

虽然我国的高层建筑水平稳步的提升,但是在高层建筑抗震的结构设计中仍然面临很多新的问题和挑战。其中,首先对于影响高层建筑抗震结构的设计效果的关键因素就是建筑材料的选用,提高每一项建筑材料的抗震指标可以很好地提高高层建筑的整体抗震性能,因此,科研人员要加强对于新型复合高性能的建筑材料的研发,以促进抗震技术,进而满足高层建筑抗震结构设计的需求。其次,对于不同的抗震能力的需求,要采取相应的抗震措施,设置是对于同一个高层建筑的不同部位和楼层以及对于性能的要求不同时,都要选用不同的标准的构件。因此,高层建筑抗震结构的设计人员在实际工作中,要根据自身的专业水平知识以及实际经验,并结合对具体的高层建筑的抗震性能要求及措施,来设计出符合抗震设防烈度标准的高层建筑结构。另外,高层建筑的抗震结构体系也开始逐渐以柔性为主,而不在是传统中的以硬性为主的结构体系。最后,对于高层建筑抗震结构的计算方式也发生了改变,即从线性分析向非线性分析转变,从确定性分析向非确定性分析转变,从振型分解反应分析向时程分析法转变。

4 总结:

综上所述,高层建筑的抗震结构设计是整个建筑工程的关键环节,但是在我国高层建筑的抗震结构设计上处于起步阶段,仍需要进一步的完善。因此,设计人员用综合多方面的因素进行分析,同时,结合新型的高性能材料以及抗震结构理念,以提高高层建筑抗震结构的设计水平,进而促进我国高层建筑的抗震结构设计方法的发展。

参考文献:

[1]李志.高层建筑抗震设计分析[J].中外建筑,2010(1).

第2篇

关键词:高层建筑;抗震;结构设计;浅析

中图分类号:TU9文献标识码:A文章编号:2095-2104(2012)

结构工程师按抗震设计要求进行结构分析与设计,其目标是希望使所设计的结构在强度、刚度、延性及耗能能力等方面达到最佳,从而经济地实现“小震不坏,中震可修,大震不倒”的目的。但是,由于地震作用是一种随机性很强的循环、往复荷载,建筑物的地震破坏机理又十分复杂,存在着许多模糊和不确定因素,在结构内力分析方面,由于未能充分考虑结构的空间作用、非弹性性质、材料时效、阻尼变化等多种因素,计算 方法还很不完善,单靠微观的数学力学计算还很难使建筑结构在遭遇地震时真正确保具有良好的抗震能力。

钢筋混凝土高层建筑结构的抗震设计方法和技术是不断变化和进步的,我们在设计时要选用适合的抗震结构,注重建筑结构材料的选择,减小地震的作用力,增强地震的抵抗力,从而达到高层建筑抗震的目的。

1 钢筋混凝土高层建筑抗震设计存在的问题

1.1 工程地质勘查资料不全

在设计初期,设计人员应该及时掌握施工场地的地质情况,但是往往在设计过程中,却没有建筑场地岩土工程的勘察资料,就不能很好的进行地基设计,给建筑物的结构带来安全隐患。

1.2 建筑材料不满足要求

对于材料而言,我们要明确这样一个道理:地震对结构作用的大小几乎与结构的质量成正比。一般说在相同条件下,质量大,地震作用就大,震害程度就大,质量小,地震作用就小,震害就小。所以,在建筑物的楼板、墙体、框架、隔断、围护墙以及屋面构件中,广泛采用多孔砖、硅酸盐砌块、陶粒混凝土、加气混凝土板、空心塑料板材等轻质材料,将能显著改善建筑物的抗震性能。

1.3 建筑物本身的建筑结构设计

建筑物如果平面布置复杂,致使质心与刚心不重合,在地震作用下产生扭转效应,加剧了地震的破坏作用,海城地震和唐山地震中有不少类似震害实例。台湾 9.21 地震中,一栋钢筋混凝土结构由于结构平面不规则,在水平地震作用下,结构产生严重扭转效应而破坏倒塌,同时撞坏相邻建筑上部的阳台。

1.4 平面布局的刚度不均

抗震设计要求建筑的平、立面布置宜规正、对称,建筑的质量分布和刚度变化宜均匀,否则应考虑其不利影响。但有的平面设计存在严重的不对称:一边进深大,一边进深小;一边设计大开间,一边为小房间;一边墙落地承重,一边又为柱承重。 平面形状采用 L、π 形不规则平面等,造成了纵向刚度不均,而底层作为汽车库的住宅,一侧为进出车需要,取消全部外纵墙,另一侧不需进出车辆,因而墙直接落地,造成横向刚度不均。 这些都对抗震极为不利。

1.5 防震缝设置不规范

对于高层建筑存在下列三种情况时,宜设防震缝:平面各项尺寸超过《钢筋混凝土高层建筑结构设计与施工规程》(JGJ3-91)中表 2.2.3 的限值而无加强措施;房屋有较大错层;各部分结构的刚度或荷载相差悬殊而又未采取有效措施;但有的竟未采取任何抗震措施又未设防震缝。

1.6 结构抗震等级掌握不准

结构抗震等级有的提高了,而有的又降低了,主要是对场地土类型、结构类型、建筑高度、设防烈度等因素综合评定不准造成。

上述这些问题的存在,倘若不能得到改正,势必对建筑物的安全带来隐患。上述这些问题的原因是多方面的,这就需要设计人员从设计的角度避免这些问题的出现,防止将这种问题带入施工中,应该高层建筑的抗震性能。

2 高层建筑抗震设计对策

2.1 结构规则性

建筑物尤其是高层建筑物设计应符合抗震概念设计要求,对建筑进行合理的布置,大量地震灾害表明,平立面简单且对称的结构类型建筑物在地震时具有较好的抗震性能,因为该种结构建筑容易估计出其地震反映,易于采取相应的抗震构造措施并且进行细部处理。建筑结构的规则性是指建筑物在平立面外形尺寸、抗侧力构件布置、承载力分布等多方面因素要求。要求建筑物平面对称均匀,体型简单,结构刚度,质量沿建筑物竖向变化均匀,同时应保证建筑物有足够的扭转刚度以减小结构的扭转影响,并应尽量满足建筑物在竖向上重力荷载受力均匀,以尽量减小结构内应力和竖向构件间差异变形对建筑结构产生的不利影响。

2.2 层间位移限制

高层建筑都具有较大的高宽比,其在风力和地震作用下往往能够产生较大的层间位移, 甚至会超过结构的位移限值。而国内普遍认为该位移限值大小与结构材料、结构体系甚至装修标准以及侧向荷载等诸多因素有关,其中钢筋混凝土结构的位移限值(一般在 1/400-1/700 范围内)则比钢结构(1/200-1/500 范围内)要求严格 ,风荷载作用下的限值比地震作用下的要求严格。 因此在进行高层建筑结构设计时应根据建筑物的实际情况以及所处的地理位置进行设计,既要满足其具有足够的刚度又要避免结构在水平荷载的作用下产生过大的位移而影响结构的承载力、稳定性以及正常使用功能等。

2.3 控制地震扭转效应

大量事实表明,当建筑结构的平面布置等不规则、不对称导致建筑层间水平荷载合力中心与建筑结构刚度中心不重合,在地震发生时建筑结构除发生水平位移外还易发生扭转性破坏甚至会导致结构整体倒塌,因此在结构设计中应充分重视扭转的影响。由于建筑物在扭转作用下各片抗侧力结构的层间变形不同,其中距刚心较远的结构边缘的抗侧力单元的层间侧移最大;同时在上下刚度不均匀变化的结构中,各层的刚度中心未能在同一轴线上,甚至会产生较大差距,以上情况都会使各层结构的偏心距和扭矩发生改变,因此,在设计过程中应对各层的扭转修正系数分别计算。 计算时应主要控制周期比、位移比两个重要指标,即当两个控制参数的计算结果不能满足要求时则必须对其进行调整。当周期比不满足要求时可采用加大抗侧力构件截面或增加抗侧力构件数量的方法,并应将抗侧力构件尽可能的均匀布置在建筑四周,以减小刚度中心与质量中心的相对偏心,若调整构件刚度不能满足效果时则应调整抗侧力构件布置,以增大结构抗扭刚度。

2.4 减小地震能量输入

具有良好抗震性能的高层建筑结构要求结构的变形能力满足在预期的地震作用下的变形要求,因此在设计过程中除了控制构件的承载力外还应控制结构在地震作用下的层间位移极限值或位移延性比,然后根据构件变形与结构位移的关系来确定构件的变形值,同时根据截面达到的应变大小及分布来确定构件的构造要求,选择坚硬的场地土来建造高层建筑等方法来减小地震能量的输入。

2.5 减轻结构自重

对于同样的地基条件下进行建筑结构设计若减轻结构自重则可相应增加层数或减少地基处理造价,尤其是在软土基础上进行结构设计这一作用更为明显,同时由于地震效应

与建筑质量成正比,而高层建筑由于其高度大重心高等特点,在地震作用时其倾覆力矩也随之增加,因此,为了尽量减小其倾覆力矩应对高层建筑物的填充墙及隔墙尽量采用轻质材料以减轻结构自重。

2.6 选择合理结构类型

高层建筑的竖向荷载主要使结构产生轴向力,水平荷载主要产生弯矩。其竖向荷载方向不变,但随着建筑高度增加而增加,水平荷载则来自任何方向,因此竖向荷载引起建筑物的侧移量非常小,而水平荷载产生的侧移则与高度成四次方变化,即在高层结构中水平荷载的影响远远大于竖向荷载的影响,因此水平荷载应为设计的主要控制因素,在设计过程中应需在满足建筑功能及抗震性能的前提下选择切实可行的结构类型,使其具有良好的结构性能。

2.7 尽可能设置多道抗震防线

当发生强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。

3 结束语

随着我国经济的快速发展,高层建筑也越来越多,在这种情况下必须做好抗震设计。设计人员在高层建筑抗震设计中,都是按照抗震结构设计规范进行的,他们希望设计的结构能够达到强度、刚度、延性及耗能能力等方面达到最佳,为此从结构总体方案设计一开始,就运用人们对建筑结构抗震己有的正确知识去处理好结构设计中遇到的诸如房屋体型、结构体系、刚度分布,构件延性等问题,从宏观原则上进行评价、鉴别、选择等处理,再辅以必要的计算和构造措施,从而消除建筑物抗震的薄弱环节,以达到合理抗震设计的目的。

参考文献:

第3篇

【关键词】高层建筑;抗震;结构;设计

前言:随着建筑行业的发展,出现越来越多的高层建筑,高层建筑结构也越来越复杂,因我国是多地震国家,地震会造成建筑物灾害发生,对人们的生命财产造成严重的损失,因此,对高层建筑结构进行抗震设计是非常重要的。

1 建筑物抗震结构简介

结构设计是指建筑设计师经过特定的手段或者方式将建筑师想要表达的语言以建筑的形式表达出来。在这个设计过程当中可能会涉及到建筑设计师没有的知识,比如:结构师可以将自己所要表达的意思和语言通过设计图纸结构的形式表达出来。因此,完成一个项目的建筑设计,不仅仅需要建筑师来完成,还需要与建筑相关的其它专业的专业人士来辅助建筑师完成。建筑设计师或者其它相关专业人士通过在建筑设计原有基础上增加部件或者器械以增加建筑物整体的抗震能力,这就是建筑物抗震结构设计。依靠目前的科技水平,人类还无法预测地震的发生时间和强度,所以亦无法对地震灾害做出有效的防范措施。我们只能依靠增加建筑物的抗震能力最大限度的降低地震灾害发生时所造成的损失。地震灾害对建筑物造成的伤害程度随着地震的强度、建筑物地基的坚实程度而变化,要做到降低建筑物受到地震后的损坏,只能在建筑过程或者建筑设计阶段增加建筑物的抗震能力。而建筑物受到地震伤害的程度也会随着楼层的增加而增强。建筑物抗震设计最主要的方向就是将建筑物经过改造以后能够对地震作用于建筑物的力产生与之对抗的力。两种力相互抵消,才能够达到这个目标。建筑物在受到地震灾害的影响时,需要将建筑物看做是一个整体来分析建筑受到地震以后建筑物对于地震产生力的承受分配。

2 抗震概念设计的基本原则

(1)选择对抗震有利的场地与地基建筑物的抗震能力与场地条件有密切关系。

(2)规划合理,防止地震时产生次生灾害有时地震导致的次生灾害会比地震直接导致的社会损失更大。反之地震时产生严重的次生灾害,是抗震工作的非常重要的一个方面。

(3)选择合理的抗震结构方案建筑结构体系需要按照建筑抗震设防烈度、抗震设防类别、场地条件、地基、结构材料与施工、建筑高度、等因素,经经济、技术与使用条件综合进行比较后明确。

(4)非结构构件的处理非结构构件包括建筑附属机电设备与建筑非结构构件和与结构主体的连接等。建筑非结构构件,通常是指在分析结构时不考虑承受重力荷载与地震、风等侧立荷载的构件。

3 高层建筑结构抗震设计

3.1 选择场地

地基选择场地地基首先要依据实际工程需求,同时还要考虑地震活动情况。分析天然地基时的抗震承载力要按照不同的场地来进行,此外,根据不同场地来分析地震所导致的危害度。如果有必要,可使用规范的地基来进行处理。可根据地震强度、场地土的厚度、断裂的地质历史来明确避让距离,从而对场地范围内的地震断裂的确定有利。一定要保证避开对不利的建筑地段来进行场地地基的选择,如果依法避开,可以运用合适的抗震措施来进行。

3.2 重视建筑结构的规则性

历史上,因为建筑结构的不规则性对抗震效果产生不好的影响的例子,经常发生。因此,在高层建筑结构抗震设计过程中,需要防止严重外形不规则的设计方案一个合理的结构,其平面布置需要符合下列几点要求:(1)长度要适当,不能太长;(2)平面规则、对称、不偏心;(3)角部重叠或细腰形的不能采取。其竖向布置需要符合下列几点要求:(1)体形应规则,防止过分外凸或内凹;(2)高宽比要在5-6以下。对于特别不规则的,不能防止的结构,运用大震作用进行结构易损部位(薄弱层)的塑性变形验算。

3.3 建筑结构消震和隔震设计

在消能减震与隔震设计方面,可以选择密实度高的地基,还能运用下列几点措施。首先,在选择结构构件材料上,要选择延性好的,以消耗地震能量,确保在地震作用下建筑物不倒塌;其次还可依据建筑的实际需求,设计适宜的隔震系数,设置某种隔震装置在基础和上部结构之间进行设置,致使地震能量降低向上部的输入,进而使上部结构振动降低,基础隔震类型主要有摩擦滑移隔震、叠层橡胶支座隔震、支承式摆动隔震、混合隔震、滚动隔震等;除此之外,改变结构体系的动力特性,可对结构自身的某些构件作构造上的处理,或附加子结构系统或消能装置在结构的一些部位。当前常用的消能减震装置有摩擦阻尼器、金属屈服阻尼器、勃弹性阻尼器、勃性液体阻尼器、铅挤压阻尼器等。

3.4 选择合适的结构体系

高层建筑的抗震设计原则是“小震(烈度约为5.45度)不坏、中震(烈度为7度)可修、大震(烈度为8度)不倒”,这就要求建筑结构一定要具备一定的刚度、延性与承载力。在我国,高层建筑的结构体系大对数使用剪力墙结构、框架结构与框架剪力墙结构三种。其中,框架结构适用于普通高度的高层建筑;剪力墙结构适用于高层住宅;框架剪力墙结构则适用于综合楼与办公楼。值得一提的是,通常人们都将“剪力墙”称为“防震墙”,这是因为剪力墙结构的主要承重构件使用的是钢筋混凝土墙板,而不是框架结构中的梁柱,它对于控制因地震引起的水平剪力具有很好的作用。该体系的刚度与强度都比较高,延性也不错,传力直接均匀,对提高建筑的安全性与抗震性都有很大帮助,同时从经常居住的角度来说,也是相当舒适的,在高层住宅中比较适合使用。框架一剪力墙结构对于承受地震引起的水平剪力时,通过具有足够强度的连梁与楼板组成协同合作的结构体系,可以起到很好的抗震效果。在这里,剪力墙的高宽比要大于2,致使在承受水平剪力时其呈弯剪破坏,同时在墙体的底部尽可能发生塑性屈服;在梁端尽可能发生连梁的塑性屈服,同时具备充足的变形能力,确保在墙段发挥抗震性能前的有效性。

3.5 设置多道抗震防线

由两个与两个以上同时延性较好的分体系组成一个好的抗震结构体系,这是由于发生地震时,通常带有余震,若只有一道防线,很难防止由于某一结构损伤而导致整个结构坍塌。所以,在构建抗震结构体系时,首先要有最大可能数量的内外部冗余度,其次要建立一套分布完整的屈服体系,最后该体系的主要耗能构件一定要有较高的延性与充足的刚度,以确保建筑物在遭遇地震灾害时,由于强烈的地震作用第一道防线崩溃的状况下,抵挡后续地震波的冲击还需要第二道、第三道防线。

3.6 加强薄弱环节设计

“强柱弱梁、强剪弱弯、强节点强锚固”是我们在结构设计过程中始终要遵循的原则之一,这就要求我们要加强对薄弱环节的设计。在设计的过程中要注意以下几点:

(1)有目的性地控制薄弱部位,确保其在地震作用中,既有足够的变形能力,又不发生位移;

(2)要对构件的实际承载力进行分析,以此判断薄弱层的基础是否满足抗震要求;

(3)确保薄弱部位的实际承载力与设计弹性受力比保持在一个相对稳定的变化范围内;

(4)注意协调结构的整体刚度和承载力,避免局部过强。

4 结束语

对于高层建筑来说,抗震设计是非常重要的,一个优良的建筑抗震设计,必须是在建筑设计和结构设计相互配合协作共同考虑抗震的设计基础上完成。随着社会经济的发展,很多新型的结构、新的技术不断出现,设计人员要不断利用这些新结构和新技术进行抗震结构设计,从而为人们的生命财产安全做好保障。

参考文献

第4篇

关键词:高层建筑;抗震;结构设计;探讨

中图分类号:[TU208.3]文献标识码:A文章编号:

1 高层建筑发展概况与存在问题

80年代,是我国高层建筑在设计计算及施工技术各方面迅速发展的阶段。各大中城市普遍兴建高度在100m左右或100m以上的以钢筋为主的建筑,建筑层数和高度不断增加,功能和类型越来越复杂,结构体系日趋多样化。比较有代表性的高层建筑有上海锦江饭店,它是一座现代化的高级宾馆,总高153.52m,全部采用框架一芯墙全钢结构体系,深圳发展中心大厦43层高165.3m,加上天线的高度共185.3m,这是我国第一幢大型高层钢结构建筑。进入90年代我国高层建筑结构的设计与施工技术进入了新的阶段。不仅结构体系及建筑材料出现多样化而且在高度上长幅很大有一个飞跃。深圳于1995年6月封顶的地王大厦,81层高,385.95m为钢结构,它居目前世界建筑的第四位。

我国高层建筑的结构材料一直以钢筋混凝土为主。随着设计思想的不断更新,结构体系日趋多样化,建筑平面布置与竖向体型也越来越复杂,出现了许多超高超限钢筋混凝土建筑,这就给高层建筑的结构分析与设计提出了更高的要求。尤其是在抗震设防地区,如何准确地对这些复杂结构体系进行抗震分析以及抗震设计,已成为高层建筑研究领域的主要课题之一。

2 建筑抗震的理论分析

2.1 建筑结构抗震规范

建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

2.2高层建筑结构抗震结构设计分析

设计阶段的结构动力特性分析。高层建筑进入初步设计阶段后,首先按方案阶段确定的结构布置进行计算分析。计算模型取自±0. 000至塔顶,假定楼板为平面内刚度无限大,其地震反应分析基本参数列于,以及可以看出,随着楼层高度的增加,结构X方向(纵向)自振周期及地震力基本正常,而结构Y方向(横向)自振周期偏长、结构刚度偏低,对应于水平地震作用的剪力较小,结构的抗震能力偏弱,结构偏于不安全。为增加Y方向(横向)的抗侧移刚度,提高其抗震能力,在现代高层建筑的设计中,可以在建筑核心筒的两侧增设四道剪力墙。根据《高层建筑混凝土结构技术规程》(JGJ3-2002)和《建筑抗震设计规范》(GB50011-2001),抗震设计时,框架-剪力墙结构中剪力墙的数量必须满足一定要求,在地震作用时剪力墙作为第一道抗震防线必须承担大部分的水平力。但这并不意味着框架部分可以设计得很弱,而是框架部分作为第二道防线必须具备一定的抗侧力能力,在大震作用下第一道抗震防线剪力墙遭受破坏时,整个结构仍具备一定的抵抗能力,不至于立即破坏倒塌,这就需要在结构计算时,对框架部分所承担的剪力进行适当调整。

3结构抗震设计方法探讨。

3.1结构抗震设计的基本步骤。

对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段设计:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段设计:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值,并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

3.2结构抗震设计方法

3.2.1基础的抗震设计

基础是实现高层建筑安全性的重要条件。我国高层建筑通常采用钢筋混凝土连续地基梁形式,在基础梁的设计中,为充分发挥钢筋的抗拉性和混凝土的抗压性的复合效应,把设计重点放在梁的高度和钢筋的用量上,在钢筋的布置上采用主筋、腹筋、肋筋、基础筋、基础辅筋5种钢筋的结合。为防止基础钢筋的生锈,一方面采用耐酸化的混凝土,另一方面是增加钢筋表面的保护层厚度,以抑止钢筋的腐蚀。高层建筑基础处理的另一个特色是钢制基础结合垫块的应用,它是高层建筑上部结构柱与基础相连的重要结构部件。它的功能之一是使具有吸湿性的混凝土基础和钢制结构柱及上部建筑相分离,有效防止结构体的锈蚀,确保部件的耐久性。

3.2.2钢结构骨架的抗震设计

采用钢框架结合点柱壁局部加厚技术来提高结构抗震性能。一般钢框架结构,梁和柱结合点通常是柱上加焊钢制隅撑与梁端用螺栓紧固连接。在这种方式下,钢柱必须在结合部被切断,加焊隅撑后再结合,这样做技术上的不稳定性和材料品质不齐全的可能性很大,而且遇到大地震,钢柱结合部折断的危险性很大。鉴于此,可以首先该结构的梁柱采用高密度钢材,以发挥其高强抗震、抗拉和耐久性。柱壁增厚法避免断柱形式,对二、三层的独立住宅而言,结构柱可以一贯到底,从而解决易折问题。与梁结合部柱壁达到两倍厚,所采用的是高频加热引导增厚技术。在制造过程中品质易下降的钢管经过加热处理反而使材料本来所具有的拉伸强度得以恢复。对于地震时易产生的应力集中,柱的增厚部位能发挥很大的阻抗能力,从而提高和强化了结构的抗震性。

3.2.3墙体的抗震设计

“三合一”外墙结构体系,首先是由日本专家设计应用的,采用外墙结构柱与两侧外墙板钢框架组合形成的“三合一”整体承重的结构体系。该体系不仅仅用柱和梁来支撑高层建筑,而是利用墙体钢框架与结构柱结合,有效地承受来自垂直方向与水平方向的荷载。由于外墙板钢框架的补强作用,该做法可以较好地发挥结构柱设计值以外的补强承载力。加强了对竖向地震力及雪荷载的抵抗能力,最大限度地发挥其抗震优势;另一方面,由于外墙板钢框架与内部斜拉杆所构成“面”承载与结构柱的结合并用,也提高了整体抗侧推力和抗变形能力。它的抗水平风载和地震力的能力比单纯墙体承重体系提高30%左右。

4增大结构抗震能力的加固与改造技术

建国几十年来,我国的抗震加固与改造技术得到了飞速发展。1976年唐山地震后,砌体结构抗震加固的问题日益突出,砌体结构抗震性能不好:砌体墙体抗震能力、变形性能的不足、房屋整体性不好。因此,增大墙体抗震性能的外包钢筋混凝土面层、钢筋网水泥砂浆面层加固技术及增大结构整体性的压力灌浆加固技术、增设圈梁(构造柱)加固技术、拉结钢筋加固技术;通过增设抗震墙来降低抗震能力薄弱构件所承受地震作用的增设墙体技术等应运而生。目前该技术广泛用于砌筑墙体的加固。

常见的混凝土柱加固技术有加大截面加固技术、外包钢加固技术、预应力加固技术、改变传力途径加固技术、加强整体刚度加固技术、粘钢加固技术以及碳纤维加固技术等。这些绝大部分都是经过长期实践检验可靠性比较高的技术,已收入国家标准《混凝土结构加固技术》(cecs25—90)。此类技术不仅有比较充分的理论依据,规范还提供了详细的计算公式。如混凝土柱的外包钢法加固技术,开始阶段的计算方法是分别计算混凝土柱和外包钢,外包钢按钢结构计算:当外包装的缀板加密并出现湿式的施工方法时,其计算按整体构件考虑;当缀板施加。

5结语

高层建筑已经逐渐成为当前时代建筑发展的主流建筑形态之一,对于高层建筑,其抗震效能的分析一直是国内外建筑抗震设计分析的研究热点,而最直接最有效的抗震措施就是在建筑设计阶段进行结构抗震设计,只有从高层建筑物内部实施结构抗震,才能够从根本上提高高层建筑的抗震效能。本论文从高层建筑结构设计的角度进行了抗震分析,对于具体的高层建筑抗震设计具有一定指导和借鉴意义。

参考文献:

[1]李忠献.高层建筑结构及其设计理论[M].北京:科学出版社,2006.

第5篇

关键词:高层建筑;结构设计;抗震性能

地震作用影响因素极为复杂,它是一种随机的、尚不能准确预见和准确计算的外部作用,目前规范给出的计算方法还是一种半经验半理论的方法,要进行精确的抗震计算还有一定的困难,因此高层建筑抗震安全问题必须引起建筑师们的高度重视,及时采取有效措施,防患于未然。

1 我国高层建筑发展概况

随着社会的进步,在20世纪80年代,是我国高层建筑在设计计算及施工技术各方面迅速发展的阶段。从各大中城市普遍兴建高层或超高层以钢筋为主的建筑,建筑层数和高度不断增加,功能和类型越来越复杂,结构体系日趋多样化。当进入90年代以来我国高层建筑结构的设计与施工技术进入了新的阶段,不仅结构体系及建筑材料出现多样化,而且在高度上长幅很大有一个飞跃。东方明珠广播电视塔,坐落在中国上海浦东新区陆家嘴,毗邻黄浦江,与外滩隔江相望。建筑动工于1991年,于1994年竣工,投资总额达8.3亿元。高467.9m,亚洲第一,世界第三高塔。

2 建筑抗震的理论分析

对于建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计的法定性文件。它不仅反映了各个国家经济与建设的时代水平,也反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。其中动力理论是20世纪70年代~80年代广为应用的地震动力理论。它的主要发展除了基于60年代以来电子计算机技术和试验技术外,人们也对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

3 高层建筑结构抗震设计的基本内容

3.1 应重视建筑结构的规则性

建筑设计应符合抗震概念设计的要求,不应采用严重不规则的设计方案。合理的建筑布置在抗震设计中是头等重要的,提倡平、立面简单对称。因为震害表明,对称建筑在地震时较不容易破坏,容易估计出其地震反应,宜于采取相应的抗震构造进行细部处理。

3.2 抗震概念设计应坚持的措施和原则

结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能 1)结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则。2)对可能造成结构的相对薄弱部位,应采取措施提高抗震能力。3)承受竖向荷载的主要构件不宜作为主要耗能构件。

3.3 抗震措施

在满足抗震设防要求的高层建筑除应满足强度、刚度要求外,还要满足延性的要求。钢筋混凝土材料本身自重较大,所以对于高层建筑的底层柱,随着建筑物高度的增加,其所承担的轴力不断增加,而抗震设计对结构构件有明确的延性要求,在层高一定的情况下,提高延性就要将轴压比控制在一定的范围内而不能过大,这样则必然导致柱截面的增大,从而形成短柱,甚至成为剪跨比小于1.5的超短柱。众所周知,短柱的延性很差,尤其是超短柱几乎没有延性,在建筑遭受本地区设防烈度或高于本地区设防烈度的地震影响时,很容易发生剪切破坏而造成结构破坏甚至倒塌。

3.3.1 使用复合螺旋箍筋 高层建筑框架柱的抗剪能力是应该满足剪压比限值和“强剪弱弯”要求的,柱端的抗弯承载力也是应该满足“强柱弱梁”要求的。对于短柱,只要符合“强剪弱弯”和“强柱弱梁”的要求,是能够做到使其不发生剪切型破坏的。因此,使用复合螺旋箍筋来提高柱子的抗剪承载力,改善对混凝土的约束作用,能够达到改善短柱抗震性能的目的。

3.3.2 采用分体柱 由于短柱的抗弯承载力比抗剪承载力要大得多,在地震作用下往往是因剪坏而失效,其抗弯强度不能完全发挥。因此,可人为地削弱短柱的抗弯强度,使抗弯强度相应于或略低于抗剪强度,这样,在地震作用下,柱子将首先达到抗弯强度,从而呈现出延性的破坏状态。人为削弱抗弯强度的方法,可以在柱中沿竖向设缝将短柱分为各柱肢组成的分体柱,分体柱的各柱肢分开配筋在组成分体柱的柱肢之间可以设置一些连接键,以增强它的初期刚度和后期耗能能力。一般连接键有通缝、预制分隔板、预应力摩擦阻尼器、素混凝土连接键等形式。对分体柱工作性态的理论分析和试验研究表明:采用分体柱的方法虽然使柱子的抗剪承载力基本不变,抗弯承载力稍有降低,但是使柱子的变形能力和延性均得到显著提高,其破坏形态由剪切型转化为弯曲型,从而实现了短柱变“长柱”的设想,有效地改善了短柱尤其是剪跨比入蕊的超短柱的抗震性能。分体柱方法已在实际工程中得到应用。

第6篇

关键词:抗震设计 抗震措施

Abstract: according to the standard aseismatic design design is very important, so to strengthen the structure of the anti-seismic concept design, should according to "strong column weak beams", "strong cut weak curved", "strong weak node component" of the principles of design. This paper the seismic design from three principles theoretical calculation and practical use puts forward new ideas.

Keywords: seismic design aseismatic measures

中图分类号:TU973+.31 文献标识码:A文章编号:

1.抗震概念设计应坚持原则,做到刚柔相济,多道设防理念

1.1刚柔相济

在抗震设计中,不能一味地提高结构的抗力,一般是根据初定的尺寸和混凝土等级算出结构的刚度,再由结构刚度算出地震力,然后计算配筋。如果结构刚度太大,地震作用效应就很大,这样为抵御地震而需配更多的钢筋,因此,增加了结构的刚度,反而使地震作用效应增强。在较大的地震力瞬间袭来时,极易造成局部受损,最后导致各个击破:而太柔的结构虽然有很好的延性,可以消减外力,但容易造成变形过大而无法使用,甚至整体倾覆。在抗震设计中,为了实现刚柔相济的原则,既满足变形要求,又能减小地震力,最主要的方法是进行隔震消能设计。隔震消能设计一般的做法是在基础和主体之间设置柔性隔震层、加设消能支撑(类似于阻尼器的装置)等;另外,在抗震设计中“刚柔相济”可以通过合理控制设计指标来实现,如周期比、位移比、剪重比、刚度比等应满足建筑抗震设计规范限值要求。

1.2多道设防

强烈地震后往往伴随多次余震,如果只有一道设防,在首次破坏后再遭余震,结构将会因损伤积累而导致倒塌。因此,一个抗震结构体系,应由若干个延性较好的分体系组成,并由延性较好的结构构件连接起来协同工作,如框架-剪力体系是由延性框架和抗震墙两个分体系组成;双肢或多肢剪力墙体系组成。

2.系统的抗震措施包括以下几个方面内容:

2.1 “强柱弱梁”

人为增大柱相对于梁的抗弯能力,使钢筋混凝土框架在地震下,梁端塑性铰出现较早,在达到最大非线性位移时塑性转动较大;而柱端塑性铰出现较晚,在达到最大非线性位移时塑性转动较小,甚至根本不出现塑性铰。从而保证框架具有一个较为稳定的塑性耗能机构和较大的塑性耗能能力。

2.1.2框架柱轴压比控制

抗震受力延性需要:

避免大震作用下框架柱压屈脆性破坏。现行规范框架柱轴压比控制计算原则:控制框架柱小震作用组合下轴压应力设计值水平:

中柱所受轴力较小,边柱、角柱所受轴力较大,尤其角柱迭加斜向作用、扭转作用所受轴力最大。框架中、边、角柱轴压比控制应有所不同。

建议:

现行规范框架中、边、角柱轴压比控制宜参照1984年高层建筑结构学组《高层建筑结构设计建议》,区别对待适当调整。中柱适当放松,边柱不变,角柱适当从严,如表2所示。

2.2 “强剪弱弯”

剪切破坏基本上没有延性,一旦某部位发生剪切破坏,该部位就将彻底退出结构抗震能力,对于柱端的剪切破坏还可能导致结构的局部或整体倒塌。因此可以人为增大柱端、梁端、节点的组合剪力值,使结构能在大震下的交替非弹性变形中其任何构件都不会先发生剪切破坏。

2.2.1框架柱剪力调整方法

受力需要:框剪结构在小震作用下,弹性计算变形协调所得的框架柱剪力较小:大震作用下,剪力墙、简体及连梁出现裂缝后,刚度退化,框架柱剪力将大大增加。

抗震需要:提高结构二道防线的抗震能力。现行规范剪力调整计算原则:

框架层总剪力:

中较/j、值第i层框架剪力调系数:

第i层j框架柱剪力、弯矩调整:

相连第i层j框架梁粱端剪力、弯矩调整:

问题:是否需满足节点力系平衡――调整相连框架梁梁端剪力、弯矩分析:

(1)框架柱偏压,轴压比控制,配筋一般由构造控制,柱剪力调整,柱的实际配筋一般未能得到调整增大,实际框架柱承载能力未能得到有效提高。

(2)框架梁纯弯,梁端弯矩调整,配筋成比例调整增大,实际框架梁承载能力得到明显提高。

(3)实际结构承载能力向强粱弱柱方向发展,不利于整体结构强柱弱梁延性抗震。

(4)台湾、日本、美国震害表明,整浇楼盖的钢筋混凝土结构的竖向构件墙、柱破坏严重,楼盖梁板一般尚未出现破坏,因此,强柱弱粱延性抗震更显重要。

建议:

(1)小震作用下的钢筋混凝土框剪结构柱剪力调整十分必要。

(2)不必拘泥于地震作用下框架节点力系平衡。

(3)不必调整相连框架梁梁端弯矩、剪力。

2.3 平面要规则.竖向刚度要连续

从受力特性看.高层建筑垂直荷载方向不变.随建筑物的增高仅引起量的增加:而水平荷载可来自任何方向.当为均布荷载时.弯矩与建筑物高度呈二次方变化。从侧移特性看,竖向荷载引起的位移很小。而水平荷载当为均布荷载时.侧移与高度成四次方变化 由此可以看出,在高层结构中.水平荷载的影响要远远大于垂直荷载的影响.水平荷载是结构设计的控制因素,结构抵抗水平荷载产生的弯矩、剪力以及拉应力和压应力应有较大的强度外.同时要求结构要有足够的刚度.使随着高度增加所引起的侧向变形限制在结构允许范围内。高层建筑有上的受力特点.因此.高层建筑采用何种结构形式,应取决于所有结构体系和材料特性.同时取决于场地土的类型.避免场地土和建筑物发生共振,而使震害更加严重 因此必须做到平面规则.尽可能采用矩形平面布置、抗侧力构件双向布置。并避免单跨结构。较大平面收进.否则在地震力作用下会引起很大的扭转效应,导致角部破坏、山墙倒塌。尽可能使结构的竖向刚度连续,高度超过6米,层数超过18层的高层建筑不应采用错层结构.错层结构楼板整体性差.不能有效传递水平力,易造成短柱;在建筑设计方面应避免采用大家喜欢的圆弧外墙.不论是框架结构还是砖混结构.在这次地震中圆弧外墙都受到了严重破坏,我们应该引以为训。

2.4地基基础设计控制要素:

(1)控制长期重力荷载作用下地基基础的变形及其差异变形。

(2)满足重力荷载水平荷载组合作用下地基基础承载能力要求。

建议高层建筑地基基础设计框图修改如下

效果:

(1)强化中央区,弱化边缘区。

(2)减小重力荷载作用下地基基础最大沉降及盆式差异沉降斜率,改善结构工作性能,提高结构安全度。

5 结语

第7篇

关键词:高层建筑 , 结构设计 ,抗震设计,短柱,措施

Abstract:The high-rise buildings aseismic design and construction work has been building the key, and summarizes the principle of seismic design of high-rise building, the architecture of the short column seismic necessary theoretical analysis, and the seismic measures must be taken. In order to avoid short column in high-rise building brittle failure occurs in, I think, first of all to correctly determine the short columns, and then the short column to take some structural measures or processing, improve the short column and the ductility of the seismic performance.

Keywords: high building, structure design, seismic design, short columns, measures

中图分类号:TU318文献标识码:A文章编号:

1 高层建筑抗震设计的原则

1.1 结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能①结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则。②对可能造成结构的相对薄弱部位,应采取措施提高抗震能力。③承受竖向荷载的主要构件不宜作为主要耗能构件。

1.2 尽可能设置多道抗震防线①一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。例如框架—剪力墙结构由延性框架和剪力墙两个分体组成,双肢或多肢剪力墙体系组成。②强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。③适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力。④在抗震设计中某一部分结构设计超强,可能造成结构的其他部位相对薄弱,因此在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都需要慎重考虑。

1.3 对可能出现的薄弱部位,应采取措施提高其抗震能力①构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础。②要使楼层(部位)的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层(部位)的比值有突变时,会由于塑性内力重分布导致塑性变形的集中。③要防止在局部上加强而忽视了整个结构各部位刚度、承载力的协调。④在抗震设计中有意识、有目的地控制薄弱层(部位),使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段。

2 高层建筑抗震中短柱的正确判定

柱净高H与截面高度h之比H/h≤4为短柱,工程界许多工程技术人员也都据此来判定短柱,这是一个值得注意的问题。因为确定是不是短柱的参数是柱的剪跨比λ,只有剪跨比λ=M/Vh≤2的柱才是短柱,而柱净高与截面高度之比H/h≤4的柱其剪跨比λ不一定小于2,亦即不一定是短柱。按H/h≤4来判定的主要依据是:①λ=M/Vh≤2;②考虑到框架柱反弯点大都靠近柱中点,取M=0.5VH,则λ=M/Vh=0.5VH/Vh=0.5H/h≤2,由此即得H/h≤4。但是,对于高层建筑,梁、柱线刚度比较小,特别是底部几层,由于受柱底嵌固的影响且梁对柱的约束弯矩较小,反弯点的高度会比柱高的一半高得多,甚至不出现反弯点,此时不宜按H/h≤4来判定短柱,而应按短柱的力学定义——剪跨比λ=M/Vh≤2来判定才是正确的。

框架柱的反弯点不在柱中点时,柱子上、下端截面的弯矩值大小就不一样,即Mt≠Mb。因此,框架柱上、下端截面的剪跨比大小也是不一样的,即λt=Mt/Vh≠λb=Mb/Vh。此时,应采用哪一个截面的剪跨比来判断框架柱是不是属于短柱呢?笔者认为,应该采用框架柱上、下端截面中剪跨比的较大值,即取λ=max(λt,λb)。一般情况下,在高层建筑的底部几层,框架柱的反弯点都偏上,即Mb>Mt。

在层高一定的情况下,为提高延性而降低轴压比则会导致柱截面增大,且轴压比越小截面越大;而截面增大导致剪跨比减小,又降低了构件的延性,轴压比与延性比关系图如图1所示,因此,在高层特别是超高层建筑结构设计中,为满足规程对轴压比限值的要求,柱子的截面往往比较大,在结构底部常常形成短柱甚至超短柱。

图1 轴压比与延性比关系图

3 提高短柱抗震性能的措施

有抗震设防要求的高层建筑除应满足强度、刚度要求外,还要满足延性的要求。钢筋混凝土材料本身自重较大,所以对于高层建筑的底层柱,随着建筑物高度的增加,其所承担的轴力不断增加,而抗震设计对结构构件有明确的延性要求,在层高一定的情况下,提高延性就要将轴压比控制在一定的范围内而不能过大,这样则必然导致柱截面的增大,从而形成短柱,甚至成为剪跨比小于1.5的超短柱。众所周知,短柱的延性很差,尤其是超短柱几乎没有延性,在建筑遭受本地区设防烈度或高于本地区设防烈度的地震影响时,很容易发生剪切破坏而造成结构破坏甚至倒塌。

混凝土短柱的延性主要受轴压比的影响,同时配箍率、箍筋的形式对混凝土短柱的影响也很大。高层混凝土结构短柱,特别是结构低层的混凝土短柱,其轴压比很大,破坏时呈脆性破坏,其塑性变形能力很小。提高混凝土短柱的抗震性能,主要也就是提高混凝土短柱的延性。因此,可以从以下几方面着手,采取措施提高混凝土的抗震性能。

3.1提高短柱的受压承载力

提高短柱的受压承载力可减小柱截面、提高剪跨比,从而改善整个结构的抗震性能。减小柱截面和提高剪跨比,最直接的方法就是提高混凝土的强度等级,即采用高强混凝土来增加柱子的受压承载力,降低其轴压比;但由于高强混凝土材料本身的延性较差,采用时须慎重或与其他措施配合使用。此外,可以采用钢骨和钢管混凝土柱以提高短柱的受压承载力。

3.2 采用钢管混凝土柱

钢管混凝土是套箍混凝土的一种特殊形式,由混凝土填入薄壁圆形钢管内而形成的组合结构材料。由于钢管内的混凝土受到钢管的侧向约束,使得混凝土处于三向受压状态,从而使混凝土的抗压强度和极限压应变得到很大的提高,混凝土特别是高强混凝土的延性得到显著改善。同时,钢管既是纵筋,又是横向箍筋, 其管径与管壁厚度的比值至少都在90以下,相当于配筋率2至少都在4.6%。

当选用了高强混凝土和合适的套箍指标后,柱子的承载力可大幅度提高,通常柱截面可比普通钢筋混凝土柱减小一半以上,消除了短柱并具有良好的抗震性能。

3.3 采用分体柱

由于短柱的抗弯承载力比抗剪承载力要大得多,在地震作用下往往是因剪坏而失效,其抗弯强度不能完全发挥。因此,可人为地削弱短柱的抗弯强度,使抗弯强度相应于或略低于抗剪强度,这样,在地震作用下,柱子将首先达到抗弯强度,从而呈现出延性的破坏状态。分体柱方法已在实际工程中得到应用。人为削弱抗弯强度的方法,可以在柱中沿竖向设缝将短柱分为2或4个柱肢组成的分体柱,分体柱的各柱肢分开配筋。在组成分体柱的柱肢之间可以设置一些连接键,以增强它的初期刚度和后期耗能能力。一般,连接键有通缝、预制分隔板、预应力摩擦阻尼器、素砼连接键等形式。

第8篇

关键词: 高层建筑; 框架结构;剪力墙结构;抗震设计

中图分类号:TU97 文献标识码:A

1. 正确选择合理的结构体系

由于高层建筑中抗水平力成为设计的主要矛盾,因此采用何种抗侧力结构是结构设计的关键性问题。根据抗侧力结构的不同,钢筋混凝土结构主要可分为框架结构、框架—剪力墙结构、剪力墙结构和筒体结构等结构体系,由于这些体系的受力特点、抵抗水平力的能力,特别是抗震性能等有所不同,因此具有不同的适用范围。

(1) 框架结构。由梁、柱构件通过节点连接构成,框架梁和柱既承受垂直荷载,又承受水平荷载,并可为建筑提供灵活布置的室内空间。当建筑物层数较少时,水平荷载对结构的影响较小,采用框架结构体系比较合理,当层数较多时,由于框架结构在水平力的作用下,内力分布很不均匀,并存在着层间屈服强度特别弱的楼层,且由于框架结构的构件截面惯性矩相对较小,导致侧向刚度较小,侧向变形较大,在强烈地震作用下,结构的薄弱层率先屈服,发生弹塑性变形,并形成弹塑性变形集中的现象,震害一般是梁轻柱重,柱顶重于柱底,尤其是角柱和边柱更容易发生破坏,除剪跨比较小的短柱易发生柱中剪切破坏外,一般柱是柱端的弯曲破坏。因此框架结构属于以剪切变形为主的柔性结构,使用高度受到限制,主要用于非抗震设计和层数相对较少的建筑中。

(2) 剪力墙结构。剪力墙沿横向、纵向正交布置或多轴线斜交布置,由钢筋混凝土墙体承受全部的水平荷载和竖向荷载,属于以弯曲变形为主的刚性结构。该种结构的抗侧力刚度比框架结构大的多,在水平力作用下侧向变形小,空间整体性好。剪力墙结构的工作状态可分为单肢墙、小开口墙、联肢墙,单肢墙和小开口墙的截面内力完全或接近于按材料力学公式成直线分布规律,其平衡地震力矩只靠截面内力偶负担。联肢墙则通过连系梁使许多墙肢共同工作,地震力矩可由多个墙肢的截面内力矩与连梁对墙肢的约束力矩共同负担,设计原则是梁先屈服,然后墙肢弯曲破坏丧失承载内力。当连梁钢筋屈服并且有延性时,既可吸收大量地震能量,又能继续传递弯矩和剪力,对墙肢有一定的约束作用。由于剪力墙结构自重大,建筑平面布置局限性大,难以满足建筑内部大空间的要求。因此其更多地用于墙体布置较多,房间面积要求不太大的建筑物中,既减少了非承重隔墙的数量,也可使室内无外露梁柱,达到整体美观。

(3) 框架-剪力墙结构。是指在框架结构中的适当部位增设一些剪力墙,是刚柔相结合的结构体系,能提供建筑大开间的使用空间,是由若干道单片剪力墙与框架组成。在这种结构体系中,框架和剪力墙共同承担水平力,但由于两者刚度相差很大,变形形状也不相同,必须通过各层楼板使其变形一致,达到框架和剪力墙的协同工作。从受力特点看,剪力墙是以弯曲变形为主,框架是以剪切变形为主,由于变位协调,在顶部框架协助剪力墙抗震,在底部剪力墙协助框架抗震,其抗震性能由于较好的的发挥了各自的优点而大为提高。因此可以适用于各种不同高度建筑物的要求而被广泛采用。

以上分析了三种常用的钢筋混凝土结构体系的特点,通过分析比较看出,选择高层建筑结构抗侧力体系通常需要考虑的两个主要原因是建筑物的高度和用途。

2.正确认识高层建筑的受力特点,选择合理的结构类型

高层建筑从本质上讲是一个竖向悬臂结构,垂直荷载主要使结构产生轴向力与建筑物高度大体为线性关系;水平荷载使结构产生弯矩。从受力特性看,垂直荷载方向不变,随建筑物的增高仅引起量的增加; 而水平荷载可来自任何方向,当为均布荷载时,弯矩与建筑物高度呈二次方变化。从侧移特性看,竖向荷载引起的侧移很小,而水平荷载当为均布荷载时,侧移与高度成四次方变化。由此可

以看出,在高层结构中,水平荷载的影响要远远大于垂直荷载的影响,水平荷载是结构设计的控制因素,结构除抵抗水平荷载产生的弯矩、剪力以及拉应力和压应力应有较大的强度外,同时要求结构要有足够的刚度,使随着高度增加所引起的侧向变形限制在结构允许范围内。

高层建筑有上述的受力特点,因此设计中在满足建筑功能要求和抗震性能的前提下,选择切实可行的结构类型,使之在特定的物资和技术条件下,具有良好的结构性能、经济效果和建筑速度是非常必要的。高层建筑上常用的结构类型主要有钢结构和钢筋混凝土结构。钢结构具有整体自重轻、强度高、抗震性能好、施工工期短等优点,并且钢结构构件截面相对较小,具有很好的延性,适合采用柔性方案的结构。其缺点是造价相对较高,当场地土特征周期较长时,易发生共振。与钢结构相比,现浇钢筋混凝土结构具有结构刚度大,空间整体性好,造价低及材料来源丰富等优点,可以组成多种结构体系,以适应各类建筑的要求,在高层建筑中得到广泛应用,比较适用于提供承载力,控制塑性变形的刚性方案结构。其突出缺点是结构自重大,抵抗塑性变形能力差,施工工期长,当场地土特征周期较短时,易发生共振。因此,高层建筑采用何种结构形式,应取决于所有结构体系和材料特性,同时取决于场地土的类型,避免场地土和建筑物发生共振,而使震害更加严重。

3.选择合理的结构布置,协调好建筑与结构的关系

(1) 应满足建筑功能要求,做到经济合理、便于施工。建筑物的开间、进深、层高、层数等平面关系和体型除满足使用要求外,还应尽量减少类型,尽可能统一柱网布置和层高,重复使用标准层。

(2) 高层建筑控制位移是主要矛盾,除应从平面体型和立面变化等方面考虑提高结构的总体刚度以减少结构的位移。在结构布置时,应加强结构的整体性及刚度,加强构件的连接,使结构各部分以最有效的方式共同作用;加强基础的整体性,以减少由于基础平移或扭转对结构的侧移影响,同时应注意加强结构的薄弱部位和应力复杂部位的强度。此外增强结构整体宽度也可减少侧向位移,在其

它条件不变时,变形与宽度的三次方成正比。因此宜对建筑物的高宽比加以限制,体型扁而重的建筑是不合适的,宜采用刚度较大的平面形状,如方型、接近方型的矩型、圆型、Y 型和井型等塔式建筑,即把使用要求及建筑体型多样化和结构的要求有机地结合起来,又可形成侧向稳定的体系。

(3) 在地震区为了减少地震作用对建筑结构的整体和局部的不利影响,如扭转和应力集中效应,建筑平面形状宜规正,避免过大的外伸或内收,沿高度的层间刚度和层间屈服强度的分部要均匀,主要抗侧力竖向构件,其截面尺寸、混凝土强度等级和配筋量的改变不宜集中在同一楼层内,应纠正“增加构件强度总是有利无害”的非抗震设计概念,在设计和施工中不宜盲目改变混凝土强度等级和钢筋等级以及配筋量。简单地说就是使结构各部分刚度对称均匀,各结构单元的平面形状应力求简单规则,立面体型应避免伸出和收进,避免结构垂直方向刚度突变等。平面的长宽比不宜过大,以避免两端相距太远,振动不同步,应使荷载合力作用线通过结构刚度中心,以减少扭转的影响。尤其是布置楼电梯间时不宜设在平面凹角部位或端部角区,他对结构刚度的对称性有显著的影响。

(4) 提高结构的抗震性能。由于高层建筑的受力特点不同于低层建筑,因此在地震区进行高层建筑结构设计时,除应保证结构具有足够的强度和刚度外,还应具有良好的抗震性能。通过合理的抗震设计,使建筑物达到“小震不坏,中震可修,大震不倒”。为了达到这一要求,结构必须具有一定的塑性变形能力来吸收地震所产生的能量,减弱地震破坏的影响。

框架结构设计应使节点基本不破坏,梁比柱的屈服易早发生,同一层中各柱两端的屈服历程越长越好,底层柱底的塑性铰宜晚形成,应使梁、柱端的塑性铰出现得尽可能分散,充分发挥整体结构的抗震能力。为了保证钢筋混凝土结构在地震作用下具有足够的延性和承载力,应按照“强柱弱梁、强剪弱弯、强节点弱构件”的原则进行设计,合理地选择柱的截面尺寸,控制柱的轴压比,并注意构造配筋要求,特别是要加强节点的构造措施。

对于框架—剪力墙结构和剪力墙结构中各段剪力墙高宽比不宜小于2,使其在地震作用下呈弯剪破坏,且塑性屈服尽量产生在墙的底部。连梁宜在梁端塑性屈服,且有足够的变形能力,在墙段充分发挥抗震作用前不失效,按照“强墙弱梁”的原则加强墙肢的承载力,避免墙肢的剪切破坏,提高其抗震能力。

4.结束语

高层建筑已经逐渐成为当前时代建筑发展的主流建筑形态之一,对于高层建筑,其抗震效能的分析一直是国内外建筑抗震设计分析的研究热点,而最直接最有效的抗震措施就是在建筑设计阶段进行结构抗震设计,只有从高层建筑物内部实施结构抗震,才能够从根本上提高高层建筑的抗震效能。通过对高层建筑的受力特性、结构类型、结构体系、结构布置、抗震性能等多方面的概念设计,从而

更加有效地构造出新的措施与计划,完善建筑结构设计。

参考文献:

[1]现行建筑施工规范大全[M]. 北京: 中国建筑工业出版社,2009.

第9篇

关键词:高层建筑;抗震;结构设计;理论;内容;方法

地震是人们在现实生活中遇到的一种可怕的自然灾害,其巨大的破坏力给社会经济发展、人类生存安全和社会稳定带来了严重的危害。地震占自然灾害总数的52%,是“群害之首”。研究表明,在地震中造成人员伤亡和经济损失最主要的因素就是房屋倒塌及其引发的次生灾害(约占95%)。无数次的震害告诉我们,抗震设计是防御和减轻地震灾害最有效、最根本的措施。因此高层建筑抗震安全问题必须引起建筑师们的高度重视,及时采取有效措施,防患于未然,已经十分重要。

一、建筑抗震的理论分析

(一)建筑结构抗震规范

建筑结构抗震规范实际上就是各国建筑抗震的经验权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件。它既反映了各个国家经济的建筑水平,又反映了各国的具体抗震实践经验。它是在抗震有关科学理论的引导下,向技术经济合理性的方向发展,它也立足于坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识精神,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得”等体现强制限制性词语和“必须,可以”等体现不同程度灵活性的用词。

(二)建筑抗震的理论分析

建筑抗震的理论中的动力理论是20世纪70年代到80年代广泛应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

二、建筑抗震设计的基本内容

(一)应重视建筑结构的规则性

建筑物的体型应力求简单、规则、对称质量和刚度变化均匀。从而,确保减少地震时地震作用产生的变形、应力集中及扭转反应。这些在实际工程中常常是不能完全达到要求的,这就要求结构工程师在进行抗震结构计算时,运用抗震区结构概念设计的方法,估计应力集中的部位,分析扭转影响,采取有效构造措施,提高结构的抗震能力。

(二)抗震概念设计应坚持的原则

a、刚柔相济原则

在抗震设计中,不能一味地提高结构的抗力,一般是根据初定的尺寸和混凝土等级算出结构的刚度,再由结构刚度算出地震力,然后计算配筋。如果结构刚度太大,地震作用效应就很大,这样为抵御地震而需配更多的钢筋,因此,增加了结构的刚度,反而使地震作用效应增强。在较大的地震力瞬间袭来时,极易造成局部受损,最后导致整体破坏;而太柔的结构虽然有很好的延性,可以消减外力,但容易造成变形过大而无法使用,甚至整体倾覆。在抗震设计中,为了实现刚柔相济的原则,既满足变形要求,又能减小地震力,最主要的方法是采用隔震消能设计。

b、多道设防原则

强烈地震后往往伴随多次余震,如果只有一道设防,在首次破坏后再遭余震,结构将会因损伤积累而导致倒塌。因此,一个抗震结构体系,应由若干个延生较好的分体系组成,并由延性较好的结构构件连接起来协同工作,如框架一剪力体系是由延性框架和抗震墙两个分体系组成。

(三)抗侧力结构和构件应设计成延性结构或构件

延性是指构件或结构具有承载能力基本不降低的塑性变形能力的一种性能。在“小震不坏,中震可修,大震不倒”的抗震设计原则下,结构应设计成延性结构。当设计成延性结构时,由于塑性变形可以耗散地震能量,结构变形加大,但结构承受的地震作用不会直线上升,也就是说,结构是用它的变形能力在抵抗地震作用。延性结构的构件设计应遵守“强柱弱梁,强剪弱弯,强节点弱杆件,强底层柱”原则,承受竖向荷载的主要构件不宜作为主要耗能构件。

(四)应有意识地加强薄弱环节

a、结构在强烈地震下不存在强度安全储备,构件的实际承载力分析(而不是承载力设计值的分析)是判断薄弱层的基础。

b、要使楼层(部位)的实际承载力和设计计算的弹性受力之比在总体上保持一个相对均匀的变化,一旦楼层(部位)的这个比例有突变时,会由于塑性内力重分布导致塑性变形的集中。

c、要防止在局部上加强而忽视整个结构各部位刚度、承载力的协调。

d、在抗震设计中有意识、有目的地控制薄弱层(部位),使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的主要手段。

三、高层建筑结构抗震设计的基本方法

(一)进行合理的基础设计

同一结构单元不宜设置在性质不同的地基土上,不宜采用不同的基础形式。地基有软弱粘性土、液化土、新近填土或严重不均匀土层时,宜采取措施加强基础的整体性和刚性,对于部分地区的灌淤土和湿陷性黄土更应采用合理的基础形式和有效的地基加固措施,使其具有良好的承载能力和稳定性。对于底层框架结构这种结构形式,由于其良好的实用性,目前使用还比较广泛,但这种结构上部刚度比较大,而下部刚度又比较小,上下性质截然不同,变形能力相差悬殊, 所以在抗震区这种结构形式应尽量少采用。或采用时应加强底层楼板的水平刚度或者采取其它有效措施以尽量协调上下不同性质结构的变形能力。

(二)减少地震能量输入

积极采用基于位移的结构抗震设计,要求进行定量分析,使结构的变形能力满足在预期的地震作用下的变形要求。除了验算构件的承载力外,要控制结构在大震作用下的层间位移角限值或位移延性比;根据构件变形与结构位移关系,确定构件的变形值;并根据截面达到的应变大小及应变分布,确定构件的构造要求。对于高层建筑,选择坚硬的场地土建造高层建筑,可以明显减少地震能量输入减轻破坏程度。另外,错开地震动卓越周期,可防止共振破坏。

(三)高层建筑结构应具有预定必要的刚度

结构的刚度太大或太小,在结构计算结果中表现出周期的偏小或偏大,相应的主体结构的位移也偏小或偏大。此时可采用调整与结构刚度有关的参数,如构件的截面尺寸、混凝土的强度等级、剪力墙结构开洞大小等情况;或调整计算参数的设置,如调整梁的刚度放大系数,来满足规范合理的范围。正常使用条件下,限制建筑结构层间位移的主要目的为:

第一,保证主要结构基本处于弹性受力状态,对钢筋混凝土结构要避免混凝土墙或柱出现裂缝;将混凝土梁等楼面构件的裂缝数量、宽度限制在规范允许范围之内。

第二,保证填充墙、隔墙和幕墙等非结构构件的完好,避免产生明显损坏。

因此,《高规》第463条规定了按弹性方法计算的楼层层间最大位移与层高之比的限值,建筑结构抗震设计计算必须按《高规》的有关规定。

(四)推广使用隔震和消能减震设计

目前我国和世界各国普遍采用的是传统抗震结构体系即“延性结构体系”,也就是适当控制结构物的刚度,但容许结构构件(如梁、柱、墙、节点等)在地震时进入非弹性状态,并且具有较大的延性,以消耗地震能量,减轻地震反应,使结构物“裂而不倒”。这种体系,在很多情况下是有效的,但也存在很多局限性。随着社会的不断发展,对各种建筑物和构筑物的抗震减震要求越来越高,使“延性结构体系”的应用日益受到限制,传统的抗震结构体系和理论越来越难以满足要求,而由于隔震消能和各种减震控制体系具有传统抗震体系所难以比拟的优越性,在未来的建筑结构中将得到越来越广泛的应用。

(五)谨慎选用结构材料

在高层建筑的方案设计阶段,结构材料选用也很重要。可以对材料参数随机性的抗震模糊可靠度进行分析,改变了过去对结构抗震可靠度的研究只考虑荷载的不确定性,而忽略了其他多种不确定因素,综合考虑了材料参数的变异性,地震烈度的随机性及烈度等级界限的随机性与模糊性对结构抗震可靠度的影响。从抗震角度来说,结构体系的抗震等级,其实质就是在宏观上控制不同结构的廷性要求。这要求我们应根据建设工程的各方面条件,选用符合抗震要求又经济实用的结构类别。

(六)高层建筑结构应设置多道抗震防线

这样设置的作用就在于,当第一道防线的构件在强烈地震作用下遭到破坏后,后备的第二道乃至第三道防线能抵挡后续地震的冲击,使建筑物免于倒塌。

首先,一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。例如框架一剪力墙结构由延性框架和剪力墙两个分体组成,双肢或多肢剪力墙体系组成。

其次,强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应具备最大量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。

再次,适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力。

最后,在抗震设计中某一部分结构设计超强,可能造成结构的其他部位相对薄弱,因此在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都需要慎重考虑。

参考文献:

[1]徐宜,丁勇春.高层建筑结构抗震分析和设计的探讨[J].江苏建筑,2009.

相关文章
相关期刊