欢迎来到易发表网,期刊咨询:400-808-1701 订阅咨询:400-808-1721

关于我们 期刊咨询 科普杂志

计算机硬件系统知识点优选九篇

时间:2023-11-19 16:11:43

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇计算机硬件系统知识点范例。如需获取更多原创内容,可随时联系我们的客服老师。

计算机硬件系统知识点

第1篇

关键词:实践教学;案例项目任务驱动;创新能力

为培养高素质创新人才,提高学生创新能力和就业竞争力,各大高校都非常重视实践教学,并将其课时设置大幅提升,在有些高校中甚至已经超过了理论教学课时量,同时学校在科研和设备投入方面也给予了大量倾斜。但受传统教学理念的影响,实践课程的设置过分依赖理论教学,实验内容仍以验证性和演示性实验为主,教师在实践教学过程中处于中心地位,学生被动地跟随教师的思路进行实验方法和技能的学习。因此,学生的主观能动性和创新能力难以有效发挥。

计算机硬件课程是计算机专业的重要分支,是软件课程学习的基础,对学生实际动手能力与创新能力的培养起着举足轻重的作用。鉴于计算机硬件课程本身的复杂性,学生在硬件实践课程的学习中存在着畏难情绪,同时硬件实践教学改革滞后,教学方法陈旧,实践课程与快速的计算机信息技术发展严重脱节,学生对计算机硬件实践课程学习的主观能动性不够,学习效果不佳,为此笔者探讨案例项目任务驱动教学法在计算机硬件实践教学中的应用,引导学生重视硬件课程,以提高学生学习兴趣,切实地提高学生实际动手能力、创新意识和就业核心竞争力。

1、基于案例项目任务驱动的教学方法

案例教学法基于启发式教学理念,寓教学内容和知识点于具体案例,结合典型案例的剖析,引导学生主动解决案例所遇到的问题,培养学生分析和解决问题的能力,发挥学生的学习主观能动性。项目教学法则是依托实际项目,融教学知识点于具体项目,学生在完成项目的过程中,学习教学大纲中设置的知识点,由于项目完成需要小组人员的通力合作,利于增强学生的团队意识,提高其自主创新能力。而任务驱动教学法是以学生作为学习主体,结合自己分担任务模块的完成,建构知识体系,极大地发挥了学生的学习主观能动性。上述3种教学方法已在当前教学实践中获得了良好的教学效果,但多以单一课程作为研究对象,教学方案设计过分依赖所选案例、项目和任务,且教学内容与设计案例、项目和任务严重脱节,影响了教学方法的效果。同时3种教学方法在培养学生创新能力和发挥学生主观能动性等方面各有侧重,为此,笔者以计算机硬件课程系统为研究对象,融3种教学方法于一体,以学生喜闻乐见的“案例”为“引导”,以“实际项目”为“主线”,寓课程知识点于项目实施的每个任务模块,“驱动”学生在完成任务的同时,建构理论体系。

2、基于案例项目任务驱动的计算机硬件实践课程的实施

2.1 计算机硬件课程实践教学内容的优化设置

计算机专业硬件课程主要有“模拟电路”、“数字电路”、“计算机组成原理”、“微型计算机原理”、“单片机原理及应用”以及“嵌入式系统”等。由于课程之间在内容上存在交叉部分,我们需要深入分析和研究计算机硬件课程的教学任务,按照硬件课程体系培养能力结构的要求,优化整合硬件课程实践教学的内容,将其分为电子技能训练教学内容、计算机系统训练教学内容、单片机与嵌入式系统教学内容3个部分,而每个部分又可分为验证性、综合性和创新性3个层次。

电子技能训练教学内容是计算机硬件课程实践教学的基础,主要以验证性和综合性试验为主,通过验证性试验巩固深化教学内容。综合性试验则是以学生熟知的案例(如设计系统电源、放大电路以及信号采集调理电路等)驱动学生综合解决系统级任务课题,提高学生综合解决问题的能力。实践教学平台包括基于Proteus仿真试验平台和自主性创新试验平台2种类型,其中基于Proteus仿真试验平台用于模拟电子电路运行机理,验证和巩固课堂教学知识点;而自主性创新试验平台是在教师引导下,学生自主搭建电子线路,从而加深其对课堂知识点的理解,提高其动手能力,激发学生的科研探究兴趣。

计算机系统训练教学内容多以综合性和创新性实验为主,主要设计内容包含处理器设计和计算机控制系统设计等方面,采用基于EDA试验平台和自主性创新试验平台2种类型。其中基于EDA试验平台的实验主要用于训练学生自主设计CPU的能力,强化其计算机底层理论体系,以便使学生建立整机的概念,优化软件编程效率。创新性试验平台则是基于实际的计算机控制系统,由学生自主地完成某一控制系统的设计,深化学生理解计算机专业硬件课程的重要性,激发学生对计算机硬件专业课程学习兴趣。

单片机与嵌入式系统教学内容主要以自主性创新试验为主,主要是对计算机硬件课程知识体系的综合检测。其试验平台多以教师实际承担的科研项目和电子设计大赛题目为主,项目具有较强的时效性和复杂性特点,易于提高学生参与课题的主观能动性,可作为计算机硬件实践课程的项目资源。学生在教师的任务分配下,独立完成自己所承担的任务,在任务完成过程中建构自己的知识体系。

2.2 项目资源的优化选择

计算机硬件课程实践教学项目资源的选择应以培养学生的创新能力为首要目的。所选项目应尽量涵盖教学大纲要求内容,同时项目还需具备一定的难度和时效性。为此,我们必须深入分析计算机硬件实践教学内容,获取相关知识点,并将其融于项目实施过程,使学生在解决项目实施过程中所遇到的问题时,掌握和深化课程知识点。

项目资源优化选择的原则有3个:①鉴于计算机硬件课程实践教学内容由电子技能训练内容、计算机系统训练教学内容和单片机与嵌入式系统教学内容3部分组成,项目资源需融合上述3种教学内容所涉及知识点,并充分涵盖相关教学内容;②项目资源内容需紧跟信息技术的发展方向,应有较强的时效性,易于激发学生学习的积极性;③项目在实施过程中所遇到的问题难度应适中,最后实验结果要明显,易于激发学生强烈的成就感。

我们以单片机与嵌入式系统教学内容为例说明项目资源优化选择原则。项目资源选择“基于单片机的智能车控制系统的设计”,包括软、硬件2部分,其中硬件部分包括了电源部分、硬件滤波部分、信号采集调理放大部分、数模转换部分、控制电路部分等电子电路部分,基本涵盖了模拟电路和数字电路的基本教学知识点;软件部分涵盖了定时器控制、中断应用、键盘使用、AD转换等,基本涵盖了微机原理和单片机原理的相关知识内容,且相关知识点均为硬件课程教学内容的基本知识点,难度适中。通过项目的实施,智能车可实现快速避障运行,易于激发学生的学习兴趣。智能车快速避障功能是智能机器人研究领域的热点,具有强烈的时代背景。此项目的开发经历,对于学生就业以及进一步深造都具有较强的指导意义。

2.3 实践案例的合理剖析

项目分解要注意与实践教学内容相结合,分解后的案例模块在功能上要保持一定的完整性,且各模块之间具有一定的渐进性、扩展性,这样可逐步引发学生的学习兴趣,避免产生畏惧和抵触情绪。我们需要针对每一个案例模块,进行有效地评价和优化,分析每个案例模块所运用的知识点、用到或可能替代的相关算法以及相关联的案例模块等,并实现和演示。

我们以“基于单片机的智能车控制系统的设计”为例,说明实践案例剖析过程。“基于单片机的智能车控制系统的设计”可分解成:智能车系统的电源模块、智能车系统信号调理模块、智能车系统显示模块、智能车系统速度控制模块、智能车系统循迹模块和智能车红外避障控制模块等典型案例。上述案例直接由实际智能车系统分解而成,功能上具有完整性,难度逐步加大,具有一定渐进性,且各案例均涉及计算机硬件课程相关知识点,譬如智能车红外避障控制模块包括硬件电子电路和软件设计部分,硬件电子电路设计部分还有模拟电子的信号推挽放大电路、12C总线扩展、中断硬件电路设计等,软件设计部分包括数字滤波设计信号、定时器设定控制周期、中断避障判定等。这样,一个案例就涉及了计算机专业硬件课程的相关知识点,便于学生在项目实施过程中,强化理论知识的学习,激发学习兴趣。

2.4 具体任务分配

案例剖析完毕后,我们必须指导学生将所选项目分解成相应的任务,使其与案例密切相关,并通过“模仿”、利用教学资源等学习方式完成任务,同时引导学生按照课堂上的案例步步深入,每完成一个任务,就将该任务“组装”进来,最终“组装”成一个完整的项目应用程序。结合“基于单片机的智能车控制系统的设计”剖析完成的案例,以任务的形式下达给各试验小组,分别用相关案例给各实验小组分配相关任务,因此会有智能车电源模块实验小组、智能车系统信号调理实验小组、智能车系统显示实验小组、智能车系统速度控制实验小组、智能车系统循迹控制实验小组以及智能车红外避障控制实验小组。各小组人员的具体任务进一步被分解,使得每一个学生都承担一定的具体任务。每位学生的责任明确,自己任务的完成都是项目完成必不可少的部分,使每位学生充分意识到团队合作的重要性,提高学生学习的主观能动性和创新能力。

2.5 客观评价体系的优化设置

具体任务下达以后,学生便进入动手操作环节,充分地发挥了学生的主体能动作用。为有效防止学生任务完成过程中出现困惑和畏难情绪,教师需要做好正确的引导,但必须时刻坚持“学生为主导”的教学理念,仅需在解决途径和思路上给予指导。学生在具体任务完成过程中建构自己的理论体系。项目完成时,每位同学需对自己所完成的任务进行总结和评价,并接受教师和学生的提问,教师做出点评。各实验小组都要对自己所承担的任务进行评价,这不仅对目标达成的结果作出判断,还对小组成员目标达成的情况作出分析评价。学生通过参与自己学习成果的评价,认识到自己的智力潜能,利于激发学生的科研热情。教师依据各小组评价、任务完成过程、设计方案、调试过程、实验报告等部分,按一定的比例计算出学生最终的考评成绩。

第2篇

[关键词]硬件课程 教学改革 实践教学课程化

1.计算机专业硬件系列课程教学改革的必要性。计算机硬件知识的教与学对于高校计算机专业的重要性是不言而喻的。上世纪五十到八十年代,我国一些学校的计算机及应用专业基本上是以计算机硬件技术的教育为主,致力于计算机硬件技术专业人才的培养。近年来计算机软、硬件,特别是计算机网络快速、蓬勃地发展,我国计算机专业教育的内容、形式也都发生了很大变化,但在广大学生的学习过程中,不论是学习态度还是学习效果,都普遍出现了“重软轻硬”的倾向,在这种倾向的背后,必然隐藏着硬件课程教与学中存在的一些问题,这无疑对国内高校硬件类课程的教学提出了新的更高的要求;提高学生的综合素质,培养目标由知识型向高素质的复合型人才转变,是大学本科计算机专业教学所面临的又一新课题,在计算机硬件系列课程的教学过程中,如何根据计算机技术的高速发展进行知识的合理优化,采用什么方式更有效的进行课堂教学,如何引导学生学习硬件知识的主动性,如何进一步提高学生硬件动手能力等等,所有这些问题只有通过对计算机专业硬件系列课程进行教学改革,才能得以圆满解决。

2.目前计算机硬件系列课程教学存在的主要问题。

2.1 教材与教学内容陈旧、落后,跟不上计算机科学与技术发展的步伐。一方面,随着计算机硬件技术飞速发展,真正能反映当今世界硬件领域技术的教材太少,教学内容大多较旧,计算机硬件课程未能跟上技术的更新,其相应的实验设备和条件几乎为零;另一方面,计算机硬件知识不直观,最新的硬件知识往往包含许多较复杂的技术,讲述起来抽象、枯燥,学生较难学习和理解,因此许多教师偏向于讲述旧的知识。

2.2 学生中存在“重软轻硬”倾向,硬件动手能力较差。目前计算机教育存在着重软轻硬的倾向。很多学生对硬件课程的了解甚少,认为硬件课程只是学习计算机的内部工作原理,在计算机应用当中无关紧要,认识不到硬件技术在应用方面的重要性,再加上相应的实践环节难以保证,课程考试评价体系中对硬件实践能力的不重视,导致学生在学习中缺乏积极性。

2.3 各门课程内容衔接存在问题,教学效率不高。计算机是一个由硬件和软件组成的庞大的复杂系统,计算机知识有着很强的系统性。而在目前的教学中,硬件课程知识与软件课程知识之间缺乏足够的交叉和互补,学生无法深入理解计算机的基本工作原理及其在软件系统中的作用。另外,在硬件课程之间也缺乏充分的衔接,有些知识点重复或缺失,这些都导致了学生的知识体系不系统、结构不健全。

2.4 缺乏创新能力的培养。目前高校中开设的硬件实验课程大多以验证性实验为主,教师往往提供了实验的所有环节,大部分学生在做实验的过程中,基本上不对实验的实用性进行延伸思维,只按设定好的正确线路、程序、步骤、数据一一照做。这样的实践不利于学生创新思维的培养,成了另一种形式的理论学习通过实验达不到理论与实践相结合的目的,达不到培养学生初步科研能力的要求。

3.关于计算机硬件系列课程教学改革的思路。

3.1 改革教学内容,构建科学的、系统的计算机硬件教学体系。

3.1.1 计算机硬件系列课程教材目前存在的主要问题是知识陈旧、落后跟不上计算机科学与技术的发展步伐,这种现象在基础教材中尤为突出。为适应计算机科学与技术飞跃发展的需要,教材丛书应具有先进性和时代特征。并且每隔一二年做一次小的调整,每隔四五年重新修订出版。教材要紧跟计算机科学与技术的飞速发展是不可能的,况且知识的传授不能受教材的制约,因此,计算机硬件系列课程教学中应注重知识的更新,计算机硬件技术的发展、更新速度是惊人的,这要求教师时刻关注最新发展动态,及时了解本学科的新技术、新趋势,及时调整更新授课内容,使该课程能够反映学科的发展前沿。教师授课时注意知识点的延伸性,即从知识点最早出现的基本原理发展到目前技术状态的过程,这样可以减少学生理解的抽象性,从而提高学生的学习积极性。

3.1.2 在充分分析原计算机专业所开设的《数字逻辑》、《计算机组成原理》、《操作系统》、《汇编语言程序设计》、《计算机接口技术》、《计算机体系结构》、《单片机原理》和《嵌入式操作系统及应用》等硬件课程教学内容和教学时数的基础上,剔除掉不必要和重叠的教学内容或课程,增加新的必须的教学内容或课程,构建出符合现在计算机硬件教学需要的,面向工程应用的课程体系方案和相应的教学内容。如缩减《大学物理》学时,增加((EDA技术》课程,借助EDA技术学生能完成涉及多门硬件类课程的实验,在不同的学习阶段,学生学习了相应的硬件课程后,就可以采用EDA技术,自行设计与本课程相关的实验设计或复杂应用系统设计。将EDA技术的应用贯穿于计算机硬件体系实验教学,使学生调试、验证自己的设计项目成为可能,为学生的自主实验提供广阔的发展空间,学生的自主设计能力和创新意识都得到极大提高,避免了学习的抽象、枯燥,增强学生学习硬件课程的兴趣,提高动手能力,有助于解决学生“重软轻硬”的认识问题。

3.1.3 构建新的硬件课程体系,解决硬件课程之间的衔接问题,提高教学效率。该课程体系由必修课程、选修课程及配套实践三部分组成。必修课包括“组成原理”、“接口技术”、“系统结构”等基础课程。为适应社会需求,在选修课中增加“EDA技术”、“计算机控制技术”、“嵌入式系统”等社会需求较强、实用价值高的应用性课程,同时新开了“模型机设计与组装”、“硬件综合实践”、“嵌入式系统实践”等实践课程,保证课程体系的实用性与先进性。硬件系列课程从体系结构上划分为三个层次:基础层、应用层和提高层,其课程间的关系如图1所示。基础层为“数字电路”与“组成原理”。“数字电路”课程虽然在教学体系上不属于计算机硬件系列课程,但它是计算机硬件系统的技术基础,是必修的前续课:“组成原理”介绍计算机的基本组成和工作原理,解决整机概念;以"EDA技术”的应用为基础,通过“金工电子实习”与“模型机设计与组装”两门实践课程,强化学生的硬件动手能力。在应用层中,通过“接口技术”介绍应用层的接口和相关外设,以“嵌入式系统”等三门实用性强的课程作为选修课,每门课程都配有相应的实验环节,并通过“硬件综合实践”、“嵌入式系统实践”强化学生对基础知识的掌握和综合应用。提高层为“系统结构”及“性能测试与分析”实践课程,通过学习和实践,能够使学生比较全面地掌握计算机系统的基本概念、基本原理、基本结构、基本分析方法、基本设计方法和性能评价方法,并建

立起计算机系统的完整概念。

3.2 改革课堂教学模式和教学方法,提高教学质量。教学实践证明,以课堂理论教学为主,实验教学为辅的培养模式,无法满足计算机硬件系列课程教学的要求,必须改造为以工程应用为目的,以项目驱动案例教学为手段的高效、实用的人才培养模式。教师先讲解相应知识的项目案例,然后设立新项目,由学生去实施和完成。比如《计算机组成原理》课程,可以设立定点运算器、时序发生器及时序分析、计数器设计、微程序控制器设计等一系列项目,采用“课外为主、课内为辅”的方式,即学生领取任务后,通过课余时间进行资料查阅、讨论、设计和实验,以及完成项目保报告书等;然后使用课内少量学时,由教师进行引导,选取部分学生报告项目完成情况,进行简短答辩和讨论。该方式既不影响课堂教学内容和教学进程,又能使学生充分利用业余时间积极、主动地学习,同时,课堂上的适当讨论也能活跃课堂气氛。通过这种项目案例教学模式可以有效地锻炼学生的自主性,提高学生学习的积极性和效率。

3.3 建立实践教学课程化的教学模式,保证硬件设计的连续性。计算机软、硬件设计能力是计算机专业本科必须具备的能力,在一般高校,很多只是注重了软件的设计能力培养,在软件类课程的开设中,保证软件设计的四年不断线,而硬件设计却很难保证。因此,在硬件课程实践教学的安排上也要保证设计不断线,使学生能真正理解计算机结构的系统性并能进行相关的设计。

我们的改革措施是去除与单一理论课程对应的课程设计等实践环节,理论课程内只保留最基本的实验,达到帮助学生理解基本理论的目的,其他实践教学内容进行系统性整合,按照学期单独设课,形成完整的实践教学系统。

3.4 建立科研导师制度。为学有余力的学生,提供一个学习和培养技术特长的机会。由硬件应用系统开发经验丰富并申请有科研课题或技术服务项目的教师担任导师,吸收对该课题有兴趣和能力的学生参加并共同完成,同时负责学生的学习规划制定和在课外直接指导学生的创新性实验、产品制作、参加电子竞赛、软件制作大赛和挑战杯比赛等。学院为特长生提供学习环境和机会,学生通过参加课题来提高自己的实践能力和工作经验,培养其浓厚的学习兴趣和学习主动性。

3.5 改革考试、考查方式。考试方法改革突破了单一的理论知识考核和传统的闭卷考试方式,实现对学生的综合能力和实训过程考核。具体要求为加大平时考核比重;注重实践操作考核;考试方法的改革将促进学生学习的自觉性和主动性。

4.结束语。对计算机硬件课程教学改革,笔者在实践中作了初步的尝试,对推进课堂教学建设,改革课程教学体系,改进教学方法,培养学生的创新精神和实践能力,提高课程的整体教学水平和教学质量起了一定的推动作用。

参考文献

1 宋人杰等,计算机专业硬件系列课程教学改革探讨[J],东北电力大学学报,2007(5)

第3篇

关键词:计算机硬件;课程体系;整体优化;应用型人才

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2014)21-0036-02

根据创新型复合人才培养模式,计算机类人才必须具备三大专业能力:计算思维能力(抽象思维与逻辑思维),算法设计与分析及程序设计能力,计算机系统的认知、分析、设计和应用能力。[1]计算机硬件课程体系就是培养对计算机系统的认知、分析、设计和应用能力的教学模块。计算机硬件课程体系主要包括“电路与模拟电子技术”“数字逻辑”“汇编语言程序设计”“计算机组成原理”“单片机技术”“微机接口技术”“嵌入式系统”“计算机系统结构”等课程。大部分课程是计算机专业的基础核心课程,也是学生在计算机学科领域深入研究和发展的必备知识,其中“计算机组成原理”是全国硕士研究生入学统一考试计算机学科专业考试课程。以上充分说明了硬件课程体系在计算机专业教学中的重要性,同时也对我国高等院校的计算机硬件课程体系提出了更高的要求,因此对硬件课程体系进行整体优化和调整是当前计算机专业教学亟待解决的问题。

一、计算机硬件课程体系现状和存在的问题

1.课程体系结构缺乏系统性

硬件课程体系中的各门课程虽然教学内容不同,教学侧重点也不同,但从属于统一的体系结构,存在一定的层次衔接关系。而很多高校在设计硬件课程体系时,受传统的“重软偏硬”思想的影响,盲目加大软件类课程的教学学时,将人才培养计划中必不可少的硬件课程孤立地安排在教学计划中,忽略了硬件类各门课程之间的系统联系,不考虑内容的衔接与整体的优化。在教学过程中,教师往往只孤立地注重一门课程的完整性,不重视与其他课程相互渗透的交叉关系,不注重为学生后续相关课程打下铺垫。由于“计算机组成原理”是硕士研究生入学考试专业课程,有些高校不得不增大该门课程的教学学时,但竟没有开设该课程的前导课程“数字逻辑”。而另一门前导课程“汇编语言”甚至安排在“计算机组成原理”后教学。课程体系结构缺乏系统性,造成教学内容脱节,知识点孤立,一些课程教学内容重复,严重影响教学效果的提高以及计算机专业人才培养的质量。

2.学生的畏惧心理

硬件课程体系中的课程知识点多,理论性强,概念比较抽象。学生在学习过程中不能在掌握抽象概念的同时进一步进行应用验证。[2]而软件课程只需要一台PC机,学生就能在课后对学习内容通过编程验证,采用直观的方式完成作业和复习,充分调动起学生的学习积极性。高等院校过于重视组织学生参加各类程序设计大赛,无形中就让学生以为只要具备程序设计能力就达到了计算机学科人才的要求。因此学生对硬件课程不重视,孤立地记忆各个知识点,仅仅为了参加考试修满学分才学习,一提到硬件课程就头疼,产生畏惧心理。

3.课堂教学效果差

在硬件课程的教学中,由于教学大纲制订的不合理,教师过分依赖教材进行课堂教学。教材内容陈旧,教材的更新往往跟不上计算机硬件技术的高速发展,许多新技术新思想未能融入到课程体系中。而且现在高等院校课堂普遍采用多媒体教学方式,教师上课所用的教学课件仅仅就是教材的重复,教师的教学方法单一,纯粹为完成教学内容而教学,通过传统的讲授教学方式把知识硬灌输给学生,课堂教学内容与实际应用严重脱节,针对性不强,学生只能被动接收孤立的知识点,无法抓住硬件课程的精髓,直接影响学生学习硬件课程的积极性,最终造成学生无法对计算机系统形成一个整体的认识。

4.实践教学的误区

由于大多数高等院校由于经费不足,计算机专业实验设备的投资更偏重软件类课程,而硬件课程实验设备前期投资较大,后期的维护费用高,课程体系中的“模拟电子技术”“数字逻辑”“单片机技术”等课程由于实验设备的缺乏,更多的是将这些实验课程安排到电信系来开设,直接导致理论教学同实验教学的脱节。而“计算机组成原理”的实验也仅仅是在实验箱上完成,按照实验指导书上的连线图,学生只需要动手插上连接线,拨动几个开关,通过指示灯的亮和灭记录下结果就行了。[3]而且安排的实验全部是验证性实验,对学生理论知识的理解没有很大的帮助作用。

二、计算机硬件课程体系整体优化的探索和实践

针对目前我国高校计算机硬件课程体系的现状和普遍存在的问题,以培养“三重一高”应用型人才为导向,可以采取以下措施对硬件课程体系进行整体优化来有效地提高计算机技术人才培养的质量,符合科学发展观的人才培养模式。

1.创建“三重一高”应用型人才培养模式

“三重一高”应用型人才培养的核心思想是以“重基础、重技术、重能力、高素质”为本,创建符合科学发展观的人才培养模式。通过该人才培养模式能促进学生的全面发展,不断地提升学生的思想品德、科学文化素养、身体素质、心理健康、动手实践能力以及创新意识。在制订人才培养模式时,院校要及时关注当前社会对计算机技术人才的需求,结合高等院校的办学层次和自身特征,充分发挥出学生的特色,才能让学生有更强的社会竞争力和发展潜力。

2.优化计算机硬件课程体系结构

(1)修订教学大纲。根据人才培养模式的要求,及时修改计算机类各专业的教学计划,充分认识到计算机硬件课程体系在培养计算机技术人才的重要地位。组织承担硬件教学课程的教师理顺该课程体系中各门课程的衔接关系和内在联系,有效地整合硬件课程体系中的课程,将多门课程中重复的内容进行有机融合,重新制订各门课程的教学顺序和教学学时,避免课程教学脱节和教学内容的重复,还可以增设“硬件工程师培训”“嵌入式工程师培训”等硬件类的专业选修课程,通过分析各门课程的侧重点以及授课老师的集体交流,拟定出一套能充分体现硬件课程系统化教学的教学大纲。教学大纲中可以将技术落后以及与后续课程联系不大的内容删除,并及时将计算机硬件技术的发展前沿和最新成就补充进来。

(2)编写适用教材。根据本校的教学实际情况组织教师编写符合人才培养模式的硬件教材,在强调理论知识的同时,采用深入显出的方式分析抽象的原理,并增加学科的前沿技术,引导学生去进一步深入探讨。注重培养学生的创新意识,使得整个课程体系中的教学过程更连贯,教学效果更好;并完成与教材配套的多媒体教学课件。该教学课件不能仅仅做成是复制教材内容的PPT文档,要充分体现多媒体辅助教学的功能,要采用多种形式来演示抽象的理论知识点。比如可以利用仿真软件来动态演示辅助教学,还可以采用FLASH动画效果来加深学生对知识的理解,消除对硬件课程的畏惧心理,充分调动起学习硬件课程的积极性,学习效率更高。针对一些比较重要的硬件课程,还可以编写该课程的学习指导与习题解析,帮助学生课后自学和复习。

(3)建立教学网站。利用丰富的网络资源建立硬件课程网站,分模块将各门课程的学习资源以开放形式提供给学生,让学生在课后能及时补充学习内容,获取更多的新技术和学科的发展动向,并通过在线交流来实现师生间对一些核心知识点的探讨。学生也可以通过该网站提交作业和设计报告,并向教师提问。教师也能在该网站获取学生的反馈信息,及时调整教学进度,采用合适的教学手段和方法。

(4)建设课程试题库。为了进一步提高教学质量,科学地进行教学评价以及端正学生的学习态度,必须严格遵循人才培养模式和教学大纲,科学建立起各门硬件课程标准化的试题库。并且要动态地更新试题库,通过计算机系统自动完成整个考试过程,真正实现“考教分离”。教师在教学时必须严格遵循该课程的教学大纲,按要求将重难点讲清楚和透彻,避免考试前透题,以及改卷时送“人情分”。

(5)注重实践环节。实践环节是培养学生创新意识的最好途径,不能仅仅将实践教学作为理论教学的附属品,要切实把实践教学贯穿整个硬件课程体系当中,严格遵循实验教学大纲,编写规范的实验指导书,改革实验考核方式,引起学生对硬件实验的重视。在注重理论知识的同时,也要培养动手实践能力,提高综合素质。[4]一般硬件实验设备的投资比较大,后期的维护费用也比较高,可以建立起硬件虚拟实验室,提供给学生更多发挥创新潜能的机会。像“数字逻辑”“计算机组成原理”和“单片机技术”等课程将一部分验证类实验在实验箱上通过连线完成,设计类和综合类实验可以在计算机上用“软件”的方法来实现,采用EDA技术,应用Multisim、Proteus仿真软件、VHDL硬件描述语言,扩展学生的思维,激发学生的创新意识。同时注重培养学生的工程实践能力,充分利用实验中心的创新实验平台,鼓励学生参加各类硬件设计大赛、电子竞赛和“大学生创新性实验项目”。

(6)加强教师队伍建设。注重硬件课程体系特色教学团队建设,调整师资结构,通过引进高层次的人才,建立学科带头人、师范教师与骨干教师相结合的师资队伍。定期组织教师开展教研活动,及时发现课程体系中存在的问题,进一步地进行修改。注重教师的培训,对新进教师采用导师培养制度,并有计划地安排教师出外学习培训以及参加各种学术交流会议,能获取该学科的最新技术。鼓励教师以团队形式申报各类教学研究项目,有计划地开展教学改革。

三、结语

计算机硬件课程体系整体优化的实现要经历一个长期的过程,需要结合理论教学、实践教学、师资培训、考核方式、教学模式与手段等多方面进行优化。近两年在湖南工学院计算机信息学院推行新的硬件课程体系以来,教学团队在教学中通过不断的实践探索,采取了合理制订应用型人才培养计划、修订教学大纲、重新整合教学内容、改变传统的考试模式、加强实践教学、增设创新实验室等多项措施。从教师和学生提交的问卷调查表以及硬件课程考试成绩统计等数据来看,获得到了较好的教学效果,提高了教学质量,学生对硬件课程的学习积极性和学习效率都有了明显的提高。另外在“三重一高”应用型人才培养方面获得了比较明显的效果,学生在各类竞赛和创新实验项目成绩比较显著,就业率也得到了提高。从毕业生就业的回返调查来看,用人单位普遍认为学生的动手实践能力比较强。实践证明对计算机硬件课程体系进行整体优化,是培养应用型人才的必然要求。

参考文献:

[1]陈付龙,齐学梅, 罗永龙,等.创新能力驱动的层次化计算机硬件课程群构建与实施[J].大学教育,2013,(2):40-42.

[2]吴卫江,赵建辉,刘博.也谈计算机硬件课程群建设[J].计算机教育,2012,(1):28-31.

第4篇

关键词:计算思维;计算机硬件类课程;教学改革

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2014)07-1461-02

1 概述

计算机硬件类课程在高校计算机专业占据非常重要的地位,从逻辑角度和应用角度为学生阐述计算机的基本原理和使用方法,让学生在计算机硬件方面打下坚实的理论基础,并为学生今后应用技能的提升奠定基础,其应用范围非常广泛且与实际工程联系紧密[1-3]。因此,计算机硬件类课程是大学计算机专业的必修课程。然而,由于这类课程理论性较强,大多数高校的硬件类课程实践环节相对薄弱,导致硬件类课程的教学一直是计算机学科体系结构教学中一个比较薄弱的环节。

计算思维是由美国卡内基·梅隆大学的周以真教授于2006年在ACM的会刊上提出来的。他指出:计算思维是运用计算机科学的基础概念去求解问题、设计系统和理解人类的行为,它包括了涵盖计算机科学之广度的一系列思维活动[4,5]。计算思维使用约简、转化和仿真等方法,利用启发式推理,采用抽象和分解处理庞杂任务的手段,将一个看似极其复杂的问题转换成一个个易于处理的小问题。也就是说,计算思维就是通过人的思维进行计算,即人通过特定的思维活动使用计算机解决实际问题,计算机在解决问题过程中充当媒介的作用,它是人和机器相结合的产物[6]。

计算机硬件类课程作为计算机学科的核心基础课程,其理论性、实用性和创新性较强,面对这样知识庞杂而又抽象的课程,融入计算思维的理念,对其进行教学改革,使学生灵活的掌握计算机硬件的基本原理和应用技能成为必然。

2 教学改革思路和方法

2.1 引入关注点分离方法,整合教学内容

大学计算机硬件类课程主要涉及电工与电子技术、数字逻辑、计算机组成原理、操作系统、微机原理、计算机网络等课程,这些课程看起来比较分散、自成体系、教学内容抽象,是教师最难教、学生最难学的课程。关注点分离是计算思维的方法之一,它将复杂抽象的问题合理分解成具体的小问题,再研究各个小问题的不同侧面,形成关注点,然后汇总各个问题的结果,形成解决方案。在大学计算机硬件类课程中,引入关注点分离方法对教学内容进行整合,可以使得抽象的问题具体化,复杂的问题简单化,对教师教学起到事半功倍的效果。例如在操作系统课程的教学过程中,选择以Windows NT操作系统的功能为主线,将课程所有的知识点(进程管理、进程调度与死锁、存储器管理、设备管理和文件管理)融入到具体的实例中,避免了学生在学习过程中感觉到知识点分散零乱、难以理解,让学生在学习操作系统课程的过程中,形成一个完整的知识体系,帮助学生更好的理解知识;在微机原理课程的教学过程中,以80386CPU的指令系统及设计为主线,将主要知识点指令系统、汇编语言程序设计、中断以及接口电路设计贯穿其中,这样既浅显易懂,又形象生动,极大的增强了学生的学习兴趣。其他硬件类课程的教学也基本采用关注点分离教学法,教学效果良好。

2.2 利用启发式教学,体现计算思维

启发式教学是针对传授的知识,先提出一个源自实际生产生活的问题,然后与学生共同探讨分析问题,引导学生逐步解决问题,在该过程中讲授分析问题和解决问题所需要的理论和方法。以操作系统课程中的进程同步为例,这是进程管理部分教学的重点,也是难点。在讲解这部分内容时,先以典型的司机—售票员问题导入,与学生共同探讨在公共汽车上司机与售票员的相互合作关系以及合作的先后次序关系,分析两者的相互制约关系,从而得出使用信号量机制解决进城同步的方法;在计算机网络课程中,局域网组建是教学的重点,在讲授这部分内容时,首先以日常实验室局域网的组建情况为例,与学生一起分析实验室局域网的工作原理,共同探讨一般局域网的组建方法,从而得出在实验室组建虚拟局域网和实际局域网的实施方法。这样既加深了学生对知识点的掌握理解,也培养了学生的计算思维能力。

2.3 使用任务驱动教学模式,训练计算思维

任务驱动教学模式是让教师和学生围绕任务展开教学活动。这种模式中,教师的主要工作是设计任务、呈现问题、辅助任务实施和总结评价,学生通过明确任务、分析问题、交流和反思训练计算思维,培养和增强学生分析和解决实际问题的能力。

以数字逻辑课程为例,教师根据课程特点,运用计算思维的方法呈现教学任务,要求学生分组完成一个具体的组合逻辑电路的设计与实现。学生以每组3—5人自由组合,每组选出负责人,教师通过展示往年学生的设计作品,向学生提供部分选题作为参考,学生也可通过调研自行选择一些有意义的与课程相关的电路进行设计。在教学过程中,教师使用关注点分离方法将组合逻辑电路审计分解为简单的小问题,然后以设计成果的形式要求学生完成课程任务,让学生在完成具体任务的过程中学习并应用教学内容,提高了教学效率。学生在教师的实时指导下,明确任务,分析问题,各组学生分工协作,定期交流,通过查阅资料和调研等途径探究解决问题的途径。最后,学生在教师指导下完成任务后,通过展示和自评,并交流自己的学习心得,教师总结点评,帮助学生拓展所学知识,训练学生的计算思维能力。

3 教学效果考核

考核评价是教学活动中不可或缺的重要环节,是检验教学效果的重要手段。随着计算机硬件类课程教学改革的深入,课程的考核评价模式也应随之改革。根据计算思维能力的培养要求,必须打破传统的只侧重于考查学生对理论知识点的掌握程度的考核评价模式,建立真正体现学生计算思维能力的考核评价模式。传统的考核评价方法是:学生成绩=平时成绩×20%+理论考试成绩×80%。改革之后,学生成绩=平时成绩×10%+理论考试成绩×45%+实验成绩×45%。实验成绩就是学生做实验完成具体任务的考核成绩。可以看出,改革之后的考核评价模式增加了实验成绩,重点考核学生运用计算思维能力分析问题和解决问题的能力。下表1是近几学年计算机硬件类课程改革之前和之后我系计算机科学与技术专业学生的平均考试成绩。

从表1可以看出,在计算机硬件类课程中贯穿计算思维能力的培养之后,学生的考核成绩明显提高,而且通过对两届学生的问卷调查显示,课程改革之后,学生的学习兴趣大幅度提高,动手实践能力也大大提高,教学效果良好。

4 结束语

计算思维作为人类的三大思维方式之一已受到了广泛的关注。该文给出了融入“计算思维”的大学计算机硬件类课程教学改革的新模式,围绕课程教学内容的整合,教学方法和考核评价模式的改进,让学生在解决实际问题的过程中领会并掌握计算思维方法,提高了学生独立思考解决问题的能力和团队创新协作能力,使教学效果得到明显提高。这种教学模式所传授的思想和方法,将广泛应用于计算机专业的其他专业课程中,这将为学生更好的学习计算机专业其他相关课程奠定坚实的基础。

参考文献:

[1] 教育部高等学校计算机科学与技术教学指导委员会. 高等学校计算机科学与技术专业公共核心知识体系与课程[M]. 北京: 清华大学出版社, 2008: 50-53.

[2] 蔡启先, 蓝红莉, 阳树洪. 计算机组成与汇编语言[M]. 北京: 清华大学出版社, 2011.

[3] 蔡启先, 蓝红莉. 计算机硬件技术基础学习及实验指导[M]. 北京: 清华大学出版社, 2011.

[4] 周以真.计算思维[J].中国计算机学会通讯,2007,3(11):83-85.

[5] 陈国良,董荣胜.计算思维与大学计算机基础教育[J].中国大学教学,2011(1):7-11.

第5篇

本文对计算机硬件课程体系及内容中存在的问题和不足进行了分析和讨论,提出了一些教改思路和方法。

一、当前硬件课程体系中存在的问题

目前硬件教学中主要存在的问题是:教材知识相对落后,学生无法学以致用,即教材无法激发学生的学习积极性;缺乏实践环节,实验条件差,学生无法锻炼实践能力,教师更无法鼓励和激发其创新能力;学生电子技术方面的理论基础较差,其对硬件的分析理解能力受到一定限制,学习困难较大。总体上讲,目前国内计算机硬件教学的状况不容乐观,重视这一问题,改革相应的教学体系和内容是非常必要的。导致当前状况的原因是多方面的,总的来说有以下几个方面。

首先,在认识和条件方面,国内的计算机教育存在着重软轻硬和急功近利的倾向。由于基础软件教学实施起来相对容易,实用性强,设备投资较小,有立竿见影之效果,甚至学生通过自己购买的微机即可完成多数软件课程的学习;而硬件课程的教学实施比较困难,设备投资大,通常每门课程需要配备专门的实验设备,相应辅助设备(如示波器等)的价格相对昂贵,实验设备的维护工作量较大,对实验室辅导和维护人员的要求也比较高。限于各方面的条件,国内多数高校在硬件课程及实验条件建设方面都明显不足,这导致了计算机硬件课程在教学上的不足。

其次,硬件知识特点和教学内容落后。从客观上来说,计算机硬件知识存在不直观,讲述起来抽象、枯燥,学生学习起来不太容易的现象。其中,“计算机组成原理”、“计算机体系结构”这两门课程的内容比较抽象,一般教材都与实际联系不紧密,再加上现有硬件实验的可视性差、直观性差,致使学生对硬件知识的理解存在困难。而“微型计算机原理”、“计算机外部设备”等课程的教材内容过于陈旧,无法调动学生的积极性,教学效果较差。

再次,课程缺乏足够的系统性。计算机是一个由硬件和软件组成的庞大的复杂系统,计算机知识有着很强的系统性。而在目前的教学中,硬件课程知识与软件课程知识之间缺乏足够的交叉和互补,学生无法深入理解计算机的基本工作原理及其在软件系统中的作用。另外,在硬件课程之间也缺乏充分的衔接,有些知识点重复,有些知识点缺失,这些都导致了学生的知识体系结构不健全。

最后,缺乏足够的实践训练。计算机应用是一门实践性很强的学科,学生必须具备足够的动手实践能力和社会竞争力才能满足社会要求。而在计算机硬件教学中,实践教学时间严重不足,绝大多数学生不具备基本电路设计、调试和实现的能力。一方面是实验条件和设施的严重缺乏,另一方面是课程考试评价体系(包括社会各类计算机考试评价体系)中对硬件实践能力的不重视。

根据计算机硬件教学体系中存在的一些主要问题,改革教学内容的先进性、加强教学体系的系统性、增加并提高实践教学知识和内容已成为国内各高校计算机专业迫在眉睫的任务。

二、提高硬件知识的先进性

由于计算机硬件技术发展非常迅猛,而国内多数高校的主要教学内容基本还停留在十年前的水准,尤其是“微型计算机及接口技术”的课程内容,基本是以8086/8088 CPU为主体进行讲述,而学生在实验室使用的却都是CPU为Pentium Ⅲ 以上的微机;学生在高级编程中希望了解分页分段存储管理技术,而教学中却只讲述分段内存管理技术。因此,学生会对教学的内容感到疑惑、反感甚至是厌恶。

许多客观条件原因限制计算机硬件教学内容的更新。其一,计算机硬件发展太快,真正能反映当今世界微机领域新技术的微机原理教材太少,相应的实验设备和条件几乎没有。其二,最新的硬件知识往往包含许多较复杂的技术,学生较难学习和理解,由于组织和实施教学的难度非常大,许多教师偏向于讲述旧的知识。其三,新知识的过快更新给许多教师带来了巨大的工作量和工作压力,熟悉并掌握新的教学知识和内容往往需要几年时间的摸索和实践,因此教师往往跟不上新技术的发展。

要解决这个问题,首先要改进计算机硬件教材。计算机硬件的教材应是先进的、能反映目前世界微机领域内硬件新技术、新成就的知识。例如“微机原理及接口技术”的教材至少应涵盖目前世界上微机领域内最先进的知识及技术,像分支转移预测技术、超标量执行技术、微机的流水线操作技术、高速缓冲存储器技术、虚拟存储器技术(分段存储管理技术和分页存储管理技术)、浮点数据处理技术、高速总线传输技术等。正是这些技术,为微型计算机提供了卓越的性能,并构成了各种高性能软件的载体。

考虑到教学安排的层次性和循序渐进的要求,可以在教材中有选择地加入部分旧的知识结构。例如“微机原理”教材可以将8086/8088 CPU作为模型机,删除那些过于陈旧的知识,用8086CPU的结构和基本电路为学生建立微型计算机的概念,然后引入当前的一些新技术和知识。

由于历史原因,国内多数高校微机原理教学均以Intel公司的处理器为讲述对象,而欧美等国一般以Motorola、Alpha或MIPS处理器作为讲述对象。从技术的先进性上讲,前者不如后者,如果希望与国际接轨,部分有条件的高校可以考虑直接采用国外著名教材。

三、保持教学内容的系统性

硬件和软件知识是相辅相成的,它们都包含丰富的知识和先进的技术。计算机硬件知识必须对计算机的体系结构、组成及其核心技术进行系统的描述,以使学生能学到先进的硬件知识。硬件知识的学习对学生理解计算机软件的工作有着非常大的帮助,尤其是系统软件和底层软件。而学到计算机软件知识后,再学习计算机硬件知识,会对软件的载体――硬件、硬件组成、硬件的工作原理以及软件是怎样依附于硬件的全过程有一个飞跃的认识。只有这样,学生的计算机知识才能达到一个完美的统一,他们才能学到计算机的系统知识,而不是残缺的计算机知识,最终达到对计算机系统软、硬件基本知识的融会贯通。

而目前计算机软硬件教学之间却基本分离,教师之间缺乏足够的沟通。学生尽管学习了一些计算机硬件接口知识,但在使用高级语言对硬件进行编程时却无从下手;尽管学习了操作系统和网络技术等课程,却不知道在嵌入式系统如何应用相关理论。当需要综合运用软硬件知识来解决问题时,多数学生都是一筹莫展。这些都说明,在计算机教学体系中软硬件课程间的结合存在问题,学生的知识结构缺乏完整性和系统性。

因此,必须在软硬件课程的教学内容中进行适当的穿插。例如“操作系统”课程中的CPU调度、内存管理与“计算机组成原理”和“计算机系统结构”课程中的许多知识都密不可分,在理论课程教学中提及相应课程知识,可以引导学生思考,建立必要的知识关联。在“微机原理及接口技术”的课程中,可以加入一些利用高级语言对硬件进行编程的实例,既可激发学生的兴趣,又可提高学生对硬件的编程能力。

另外,计算机硬件课程之间还存在重叠和互补的关系,教学中也应注意相互次序和互补,以保证教学知识的系统性和完备性。

第6篇

摘要:本文针对我国高校本科计算机专业建设的现状,分析了CC2005中关于计算机硬件与结构方面知识需求与知识空间的构架,提出基于CC2005的计算机学科“硬件与结构”方向课程群的概念,并对该课程群的核心课程与选修课程提出组织与改革方法。

关键词:CC2005;硬件与结构;课程群

中图分类号:G642

文献标识码:B

1引 言

目前,随着网络化和信息化的发展,计算机软件领域的课程,尤其是网络和网络应用类课程,越来越得到各个高校的重视,国内很多高校的计算机专业逐渐转变为“软件工程”和“计算机科学”方向,过分强调软件与应用,而缺乏计算机体系结构、计算机组成与结构等硬件方向的培养。但是,从就业市场反馈的信息看,计算机软件人才已经供大于求,而熟悉硬件开发应用或软硬件结合的人才则供不应求。市场的需求驱使我们深思,如何构建符合市场需求、有一定市场竞争优势的计算机人才培养模式。在CC2001和CC2005计算机本科教学参考计划的启迪下,在目前我校开展的教学内容课程体系改革实践中,结合2005年在武汉大学召开的“全国计算机学院院长和系主任会议”和华中科技大学召开的“计算机硬件与实验教学研讨会”以及2006年1月在哈尔滨工业大学召开的“首届全国计算机教育论坛”会议的有关精神,我们尝试性地提出了基于CC2005的计算机专业“平台+模块”课程教学体系,并进行了课程群改革与建设,本文仅探讨该课程教学体系中“硬件与结构”课程群。

2课程群的组织

根据CC2005和CC2001的体系结构,计算机硬件与结构方向知识点包括的核心内容包括:数字逻辑、数据在机器中的表示、汇编级机器组织、存储组织与结构、人机交互、机器功能结构、多处理机技术等,而高性能系统、网络与分布式系统结构是选修内容。这些知识在CC2005中定义为:

AR1. Digital logic and digital systems [core]

AR2. Machine level representation of data [core]

AR3. Assembly level machine organization [core]

AR4. Memory system organization and architecture [core]

AR5. Interfacing and communication [core]

AR6. Functional organization [core]

AR7. Multiprocessing and alternative architectures [core]

AR8. Performance enhancements [elective]

AR9. Architecture for networks and distributed systems [elective]

在目前国内的普通高校本科“计算机科学与技术”专业中,上述这些“计算机硬件与结构”方向的核心和普通知识点一般体现在以下几门课程中:“数字逻辑(数字电子技术)”、“计算机组成原理”、“微机原理”、“微机接口技术”、“汇编语言”、“计算机系统结构”。在实际教学过程中,各门课程相互之间内容衔接较多,重复之处也比较多,各个学校一般是按照自己的教学大纲和计划对各门课程的内容进行划定,往往缺乏系统性和科学性。这些课程中普遍存在的一个问题是学生学习没有兴趣,教师上课缺乏激情的情况。很多高校在学生对教师的评价中,讲授此类课程的教师往往得分比较低。究其原因,是现有的课程和教材内容陈旧,远远落后于现代计算机硬件技术的发展;课程组织缺乏系统性,某些知识点在多门课程中反复出现;而某些知识点缺乏前导,造成断层。

对此,我们提出了以专业需求为基础的“平台+模块”人才培养模式,以CC2005的五个知识层次中的核心内容构建学科平台,以不同的专业需求方向构建专业模块。下面重点讨论CC2005构架下的计算机学科“硬件与结构”课程群。此课程群包括:计算机组成原理、硬件知识和系统结构方面的课程,核心课程为“计算机组成原理与结构”、 “汇编语言与微机接口技术”,选修课程为“计算机系统结构”、“单片计算机应用技术”、“分布式系统结构”、“嵌入式系统”、“VLSI设计”等课程。从“平台+模块”整体培养模式考虑,将“数字逻辑(数字电子技术)”归入“数字技术与模拟技术”课程群。

2.1核心课程

在新的“硬件与结构”课程群中,根据CC2005精神,将“微机原理”、“汇编语言”、“微机接口技术”、“计算机组成原理”四门课程系统地整合为“计算机组成原理与结构”、“汇编语言与微机接口技术”两门课程作为课程群内核心课程。新旧课程体系的逻辑关系如图1所示。

图1 新旧课程设置对应关系

“计算机组成原理与结构”课程重点介绍单处理器计算机的组成原理与结构体系,包括数据在机器中的表示、总线系统、设备接口、存储器组织与结构、指令系统、中央处理器(含运算器与控制器)、流水与并行处理等内容。其中重点是数据在机器中的表示、总线系统、存储器组织与结构、中央处理器等内容。

“汇编语言与微机接口技术”将汇编语言程序设计和微机接口技术融为一体。根据CC2005精神,本课程中先介绍微型计算机原理、汇编语言,在此基础上讲授汇编程序设计技术、微机接口技术(包括典型接口如并行、串行、定时、DMA、中断、A/D及D/A)以及新型的USB和IEEE1394接口技术。

2.2选修课程

根据CC2005精神,“硬件与结构”课程群还应该包括“计算机系统结构”、“单片计算机应用技术”、“网络与分布式系统”、“嵌入式系统”、“VLSI设计”等选修课程,整个课程群概貌如图2所示。在本课程群建设中,首先对于各门选修课程的内容与组织进行系统地规划,注意先导和后续,同时避免重复和脱节现象。在课程的教学中,采用灵活的教学方法和教学形式,包括小组讨论、专题报告、大作业、专业论文等形式,注重学生学习的主体作用,重点培养学生的创新性与自主学习能力。

2.3一体化的实验与课程设计改革

在“硬件与结构”课程群建设中,强调的是“实践教学”的重要性。在本课程群建设中,不是以单一的课程为单位设计实验,而是按照整个课程群来设计一体化的实验环境与实验内容,将汇编语言方向、微机接口方向、组成原理方向的实验有机地结合在一起,创建良好的实验环境,灵活运用实验室、开放式实验室、实习基地等多种手段,尽量多地为学生创造条件,同时通过实验课程、开放实验、大作业、课程设计、竞赛等多种手段和形式培养学生的研究能力与团队精神。

图2 “计算机硬件与结构”课程群概貌

3进一步的思考

课程群设置与专业培养计划的关系

课程群在构造和设置的时候,需要与整个专业人才培养计划相适应,构建基于CC2005“平台+模块”的教学模式为课程群的教学改革奠定了基础,在新的课程群设置中,以学科方向和模块为核心,凝聚课程群的设置,同时将其与专业培养计划相适应。在设置课程群的时候,打破“系、专业”的限制,使不同专业的教师根据学科课程方向凝聚一起。

不同课程群之间的衔接关系

在“计算机硬件与结构”课程群建设的过程中,另外一个重要的问题是各个课程群之间的衔接关系。正是因为课程群的设置和建设关系到整个专业的培养计划,“计算机硬件与结构”的课程群在设置的时候,将计算机硬件方向另外一个专业基础课程“数字逻辑”(或“数字电子技术”)划入另外一个课程群“模拟与数字电子技术课程群”。因此不同的课程群在建设的时候,也需要注意课程群与课程群之间的衔接关系,考虑整个学科系统的有序、协调发展。

课程群内核心课程与选修课程之间的关系

“计算机硬件与结构”课程群在建设的时候,还必须注意内部核心课程“计算机组成原理与结构”、“汇编语言与微机接口技术”与其他选修课程群之间的内容衔接和侧重点,既要保证核心课程的课时与内容,也同时需要根据学科方向的发展,及时开设反映最新技术成果的选修课程,这样才可以培养符合社会需求的人才。

课程群内容的更新

如何根据计算机学科发展以及信息科技发展情况,及时、动态地调整课程群内核心课程、选修课程的设置,甚至每一门课程具体内容的设置,将是课程群建设的一个重要内容。

参考文献

第7篇

关键词:硬件教学;应用型人才;改革

中图分类号:G642 文献标识码:A 文章编号:1009-3044(2013)18-4259-02

随着计算机应用领域的扩展,尤其是各种智能化电子电器产品的诞生与使用,近年来IT企业对计算机硬件系统设计与开发人员的需求急剧增加。而目前大多数地方院校,计算机硬件课程教学相对薄弱,培养的计算机硬件人才无论从数量上还是质量上均无法满足市场需求[1]。计算机硬件课程不仅难教难学,且对于硬件设备和实验条件有较高要求,教学成本远远高于计算机软件课程教学,因此形成了计算机专业建设“重软轻硬”和师生教学“喜软怕硬”的畸形发展现象。然而计算机是由硬件和软件组成的,缺了任何一样都无法运行。不重视计算机硬件教学与科研的结果之一,就是近年来计算机软件人才相对过剩,硬件人才相对不足。另一方面,目前我国使用的计算机核心芯片几乎都是从国外进口。核心器件严重依赖国外芯片制造商,这给国家信息安全造成了严重隐患[2]。加强计算机硬件教学势在必行。

1 传统教学中存在的问题

我校积极开展以应用型人才培养为导向的学科建设,多次制定和修改人才培养方案,有了一定的经验积累,其中计算机硬件类课程的教学改革仍处于起步阶段,具体教学中仍存在一些问题。一、很多教学内容陈旧,与实际应用脱节,对学生缺少吸引力。如仍以8086和DOS操作系统为平台来讲解微机原理。二、有些内容在多门课中重复出现,降低了学生的注意力,并使学生对课程设置产生疑问。如中断、接口等知识在组成原理、汇编、单片机、微机原理中均有涉及。三、作为应用型人才,大多数学生就业后没有机会构造计算机系统,许多教学内容会让他们感到没有学习的必要,从而丧失学习的兴趣。如加法器的具体电路实现等。四、与软件技术知识联系不够,如与C语言、操作系统等软件课程的关联性强调的不够,使学生没有形成完整的知识体系,即软硬件知识的融会贯通。例如如何通过操作系统提供的接口设置硬件的工作方式等。五、实验教学急需改革。受实验硬件条件所限,实验教学模式较为传统,综合应用型项目较少。传统实验教学多为验证性实验,很难引起学生的学习兴趣,限制了学生创造力的发挥。少数几个综合应用型项目无论是数量还是质量均无法取得更好的教学效果。

2 培养模式的改革与探索

如何培养出应用型人才,这对很多高校来说,仍是一个正在探索中的重大命题。社会需求在不断变化,计算机知识也在不断更新,相关专业的学生具体应该具备什么样的能力,掌握什么样的知识,也在不断变化。我校计算机专业采取了“3+1”的人才培养模式,即将四年的在校学习压缩到三年,第四年改在校外实训基地参加集训的培养方式。这种培养模式优点显著,即加强了学生实践能力的培养,有助于学生更好地融入社会。但“3+1”的人才培养模式在实施之初也暴露一些问题,比如伴随课程整合,学生的周学时数达到或超过30学时,这影响了学生课外文娱活动的开展。有些学生为了参加课外活动而请假,反过来又影响了学习。同时课时的缩减,特别是理论学时的减少,使得在教学过程中知识的系统性较难体现,个别课程出现用什么就只教什么,造成学生会操作,但对操作原理模糊不清。这对希望考研深造的学生不利。

经过七年的实践,我校计算机专业逐步完善“3+1”的人才培养模式,课程设置更加合理。对于硬件类课程进行了整合,形成了电路基础,微机原理,组成原理,单片机四大基础课程,不再单独开设汇编语言,缩减了组成原理,微机原理的课时,增加了单片机的课时,对硬件类课程相应增加实验课时的比例,增加课程设计环节,组织学生参加学科竞赛。对于部分知识点的重合,各门课选择不同角度学习或进行相应删减,比如译码器,在电路中侧重介绍其电路构成,在微机原理中介绍其在计算机中的应用;对于一些过于专业的知识点,适当降低学习难度,或改为选修知识点,供感兴趣的学生进行研究;对于硬件设计中使用的软件编程,逐步采用C,C++等高级语言来实现,通过课程设计来加强学生对知识的理解。在学生学习的最后一年里,计算机科学与技术专业正在尝试对学生的分流教育,即允许学生选择在校外实习基地集训,由合作单位及指导教师负责学生学习的评价,不选择集训的学生在校组织参加考研,参加相关理论课程的学习,由授课教师进行评价。

3 实验教学的改革与创新

计算机硬件教学中,实验是一个重要环节。由于实验课时的相应增加,如何充分利用课时,加强学生对知识的理解与运用成了教学改革中的重要问题。在这方面,单片机的教学改革值得借鉴。以往的单片机教学中,以课本知识为主线,通过试验箱完成实验,学生的学习兴趣不是很浓厚。改革后的单片机教学,首先学习单片机方面的一些基础知识,然后介绍一款具体的单片机——5-1单片机的基本组成、使用方法、编程案例,再将学生三五人分为一组,选择不同的单片机课程设计题目,实验课上学生自行讨论设计方案并逐步实现,理论课上教师讲解学生实验过程中的问题及知识点并组织学生交流设计思路与经验。改革后的课程更受学生喜爱,充分调动了学生的学习兴趣,而实验环节也形成了一个连续的有机环节,学生目标更明确。

4 学生学习评价机制的探索

以往教学中,学生的成绩主要是由考试成绩与平时成绩构成,对于计算机硬件类课程的实践性没有很好体现。上个学期,微机原理与接口技术这门课尝试采取了课程设计加设计答辩的成绩评定方式。学生分组完成课程设计,提交设计报告,组织学生参加课程设计答辩,由教师根据课程设计的完成度及学生在答辩环节的表现来打分。新的评价机制更加灵活,能够直观地考察学生对知识的掌握情况,也可以当做一次毕业设计答辩的预演,但这种方式也存在一些问题,比如学生现场答辩时可能较紧张,没有完全体现自身水平,同时对教师的主观判断能力也有较高要求。未来可能将这种评价方式与传统评价方式进行适当结合,提高评价的公正性与全面性,从而调动学生的学习兴趣。

5 结论

加强计算机硬件教学,培养应用型人才,仍是我校计算机专业建设的重要方向。通过前一阶段的努力与实践,我校计算机专业学生的硬件知识水平有了一定提高,实践能力得到加强,在专业学科竞赛中屡创佳绩,获得过安徽省电子设计大赛高职高专类一等奖,安徽省单片机应用竞赛二等奖,安徽省机器人大赛二、三等奖等。同时改革也拓宽了学生的就业面,增加了就业机会。但在改革过程中,仍有环节需要加强,如新的培养方式中对教师要求更高,师资队伍建设刻不容缓,教学管理激励机制也应相应改革等。

参考文献:

第8篇

关键词:计算机;硬件教学

现阶段我国各级院校在计算机硬件教学方面都存在着比较多的问题,从教师的角度来说,过度的强调理论,而忽视了实践,这对计算机专业教学而言,是一种本末倒置的行为,而从学校的角度来说,并没有计算机硬件这一学科,因此安排的课时比较少,聘请的相关教师也不够专业,而从学生的角度来说,并不喜欢这一学科,因此其学习热情并不高,综上原因导致了计算机硬件教学的如今的现状。

1 计算机硬件教学现状

计算机硬件教学是计算机课程中作为重要的教学内容,但是也是教师最容易忽略的教学内容,因此我国的计算机硬件教学现状问题突出,其中体现在以下几点:

1.1 过度强度理论知识

因为计算机硬件主要讲授的是计算机的各个硬件,因此需要学生首先要认识这些各个硬件,之后才能依据其性能特点来学习其与之相关的理论知识,这样能够达到良好的教学效果。但是大部分计算机硬件教师往往都首先进行理论知识的讲解,将大部分时间都分配给理论知识,要求学生死记硬背下相关的硬件理论,这使得学生厌烦心理也越来越强烈,不愿意上这门课。但是实际上,计算机硬件教学应该更多的偏向操作实践,计算机专业的学生的就业能力也主要体现在实践能力方面,因为教师没有注意到这一点,因此很多学生并不懂得基本的的操作,甚至学习的相关理论与计算机硬件无法对应上,这严重影响了学生们的就业前景。

1.2 教学内容没有得到及时的更新

信息化时代,计算机的有关技术更新换代非常快,而计算机硬件教学内容还停留在最初的阶段,或者其更新的速度远远低于技术更新的速度,这为提高学生的能力非常不利。也正是因为如此,计算机硬件教学与现实企业需求才出现了严重的脱节现象,学生毕业之后,进入企业往往需要重新学习,重新培养,这是社会资源的一种严重浪费。同时对于刚刚入职的学生来说,也会对其自信心造成很大影响。除此之外,教学设备也十分落后,难以满足现实的要求。

1.3 课程体系不健全,教学缺乏系统性

计算机技术的系统性较强,是由硬件技术和软件技术构成的庞大系统。在当前的教学中整体缺乏系统性,忽视教学内容和知识之间的有效衔接。一个问题是课程体系不健全,由于师资力量的不足和教学资源不足等特点,存在自身课程体系缺乏特色和忽视学生学习能力和学习特点等问题,存在课程名称种类繁多,但是变动性大,稳定性不强等诸多问题,另一个问题是教学缺乏系统性,计算机硬件技术和软件技术本应是一个完整的系统,知识内容是相互交叉和互补的,但是由于课程体系缺乏系统性,导致这些知识内容缺乏有效衔接,学生无法建立完整的知识体系。在教学过程中由于教学衔接不够,知识点重,缺失现象严重,这些导致了学生对于计算机硬件的结构缺乏完整认识,学生缺乏持续学习的耐性、也缺乏学习的兴趣和积极性。

2 计算机硬件教学水平提高的对策

正是由于计算机硬件教学还存在着比较多的问题,因此教师、学校以及相关部门都有责任采取措施,提高计算机硬件教学水平,以此增加其课堂教学的有效性。针对上述问题,其采取的措施如下:

2.1 注重实践教学

计算机硬件教学的最终目标是通过教学能够提高学生的实践操作能力,对计算机硬件能有一个整体的把握,与此同时,培养学生分析以及解决问题的能力。但是因为现阶段计算机硬件教师并没有将重点放在实践中,因此上述目标并没有完全的实现,为此,教师应该注重实践教学,教师布置作业时,要求学生以实践的方式完成,在学生作任务时,教师可以从旁协助,在适当的时机进行适当的指导,如果学校有条件,教师可以带领学生进行社会实践,进入到企业或者公司中参与实践,这样学生对计算机硬件会有更深入的了解,同时教师也可以根据企业或者公司所需,适当的调整教学内容,以此确保教学与社会需求接轨,这为学生更好的就业提供帮助。

2.2 加强课程体系的建设

积极建设计算机硬件教学的课程体系,能够有效实现教育教学的实用性和创新性。加强课程体系的建设,可以从以下几方面入手:一是选择合适教材。二是加强实践课程的教学。在教学过程中,要将基础知识学习和实践课程学习结合起来,实践教学的内容可分为验证性实践、设计性实践、综合性实践三个方面,验证性实践是根据实验要求和实验步骤开始试验,测试所需数据,并验证数据的合理性和正确性,这是在学习基础知识之后走向实践的第一步,这是学生学习的基础;二是设计性实践,是通过学生通过将所学的基础知识运用到实践过程中,学生自行设计试验方面,形成初步的分析问题和解决问题的能力;三是综合性实践,即学生在炎症性实践、设计性实践的基础上,灵活的运用所学计算机技术创新性的进行学习的过程。

2.3 灵活运用多种教学方法

灵活多样的教学方法能够充分发挥学生的主体作用,有效提升教学质量,因此,在实际的教学过程中要注重运用多种教学方法,使学生较好掌握计算机硬件的知识和技能。一是运用计算机辅助教学。通过运用软件的建模能力,对比真实实物建模建立计算机中主板、硬盘等核心硬件,同时完成内部构造,这样能够方便教师授课,同时方便学生使用,使其真正的服务于计算机教学。二是建立虚拟化计算机硬件课程,教师可以根据学生的能力和水平,设计具有不同层次,不同难度的教学实验,以及综合课程设计,为老师和学生提供一个跨越空间和时间的实验平台,即在基于构件化的虚拟实验室系统中,学生只需实现核心算法的构件即可。

结束语

综上所述,可知信息时代的大背景下,做好计算机硬件理论十分重要,为了达到良好的学习效果,设置该课程的院校,应该构建出一个优良的课程体系,教师应该端正自身的教学态度,为学生做一个好榜样,教师只有认真的教学,学生才能认真学习的可能,虽然我国在计算机硬件教学方面存在一些的问题,有些问题甚至比较严峻,相关院校以及教师应该正视这些问题,采取必要的手段,争取在一段时间内,获得良好的效果。

参考文献

[1]李继灿,郭麦成,沈疆海,张红民.“计算机硬件”教学与教材同步改革的思考[J].高等工程教育研究,2003(3).

[2]钟乐海,王朝斌,唐新国.高等师范院校计算机科学与技术专业计算机硬件教学改革[J].四川师范学院学报(自然科学版),2003(1).

第9篇

摘 要:针对目前大部分课程各自为阵、互不往来,且部分课程内容陈旧的情况,本文提出了一种目标驱动的核心课程和实践体系设计的系统化方法,从具体的核心培养目标(对学生而言,应该是可操作可考核的综合能力指标)推出学生应该掌握的知识和能力,对其进行系统的分析,分解层次,形成系统的知识和能力体系;从而细化设计每年的培养目标,进而落实到课程的设计。该方法内容具体,系统性强,可操作性、可跟踪性好。

关键词:目标驱动;核心;课程;设计

中图分类号:G642

文献标识码:B

1 问题的提出

随着计算机技术的快速发展,课程内容更新的需求越来越强烈,事实上,这种需求一直没有间断。社会需要什么样的人才?随着计算机应用技术的普及,各个非计算机专业学生编程能力的提高,到底具备哪些知识、何种能力的计算机专业人才更具有竞争力,也是多年来困扰大家的问题。

我们不断地更新我们的教学计划、课程体系、课程内容,但是我们的更新合理吗?系统吗?满足目标吗?更多的时候,我们在头疼医头,我们在打补丁,结果让我们的课程体系补丁不少、漏洞也不少。更重要的是各门课程各自为阵,部分知识重复讲,而又因存在“知识缝隙(gap)”不能很好地衔接。面对这样的问题,我们提出了目标驱动的核心课程和实验体系设计方法,并在北航计算机学院新一轮核心课程与实验课程体系设计中进行了初步实践,有一些体会,和大家共享切磋。

2 目标驱动的核心课程和实验体系设计模型

总体思路:目标驱动的设计方法,从具体的核心培养目标(落实到可实现的指标),推出学生应该掌握的知识和能力,对其进行系统的分析,分解层次,形成系统的知识和能力体系;细化设计每年的培养目标,进而落实到课程的设计。

设计原则:

1) 和目标紧密结合,目标动,课程动。保持良好的可跟踪性,从而使该方法有很好的适应性,能适应计算机技术的快速发展;

2) 先考虑知识和能力体系,不考虑课程,有利于知识和能力设计的系统性,避免目前各门课程之间缺乏衔接、或者互相重复等问题。

3) 课程间衔接好,互相补充,完成同一个目标;

4) 强调能力的培养,重视实践环节。

5) 强调集成,重视综合能力的培养。

内容:本方法分解为几个阶段:

1) 具体核心培养目标的选择及其选择方法;

2) 面向培养目标的计算机专业核心知识和能力体系的设计;

3) 基于计算机专业核心知识和能力体系的核心课程体系、实践体系的设计和设计方法;

4) 分层次的综合能力实践环节的设计。

我们将结合我们的实践对该方法的应用做一个详细的阐述。

3 方法的使用:在北航计算机学院的实践

(1) 核心培养目标的选择和设计

核心培养目标的选择

根据北航本科生的培养要求和计算机学院的培养定位,我们考虑应满足如下原则:

1) 体现计算机专业学生的核心能力需求;对计算机的工作原理(软硬件)有深刻理解,并理解现有计算原理的局限;

2) 体现当前最新的、成熟的技术(目前产品的主流技术);

3) 具备综合能力:系统的观点、工程的观点。

结果:基于MIPS指令系统,使学生有能力设计一台功能型计算机、一套操作系统和研发一套编译器,最终形成一个相对完整的功能型计算机系统。

细化核心培养目标

如何细化培养目标?最好的办法是实践。我们组织骨干教师设计了一台满足以上目标的功能型计算机,命名为MiniComputer。基本思路是:以数理逻辑为理论基础,设计和开发数字逻辑部件;以MIPS指令系统为基础,设计和开发计算机核心系统;以MIPS指令系统为目标语言,设计和开发编译系统;以自己研发计算机为环境,设计和开发操作系统。

之后,我们组织2-3年级的本科生在教师的指导下,分组进行培训和实验,在这个过程中发现学生已掌握知识是否充分,还有哪些欠缺,还需要补充哪些知识点,学生在这个过程中接收知识的难易程度(发现有时和老师的预期有差异)。教师的任务是要关注整个过程,记录整个过程,并给予学生适当的辅导和协调。实际实施过程对教师也是一个很大的挑战,尤其是硬件部分的调试、整个系统的集成。

几个关键问题:

1) 首先定义MiniComputer需要支持的高级程序设计语言,从而决定了该机器需要提供的支持能力,也在相当程度上决定了本项目的难易程度;

2) 根据语言的要求,考虑对操作系统的要求;根据语言的要求设计该机器应能支持的指令集合;

3) 得到指令系统的定义和硬件系统的需求定义;

4) 实验过程的记录和分析,了解学生在整个过程的学习和实验进展情况;

5) 开发相应的仿真软件,支持硬件、操作系统等的调试。

(2) 面向培养目标的计算机专业核心知识和能力体系设计方法

1) 通过对以上实验结果的分析,抽取计算机专业核心知识点及其关系、核心实验能力及其关系。

分析结果(粗略):

(a) 计算机工作原理的充分理解:掌握系统的观念、协作的原理和方法。

(b) 较强的软件实现能力(实现编译器、操作系统、硬件仿真器-调试器等),包括对高级程序设计语言的理解、高级语言程序设计能力、数据结构和算法(算法的分析能力)、基础的工程训练(软件工程基础知识);

(c) 硬件系统的理解和设计、实践能力:对数字逻辑、计算机部件的设计、计算机系统的设计、汇编语言的理解等。对系统的调试和集成、工程实践能力;

(d) 对数理逻辑的要求。

2) 对知识点和能力进行分析,分解能力的阶段和层次,获得计算机专业学生应具备的核心知识和能力体系(系统的知识和能力体系)。

注:这一阶段不涉及课程,不考虑课程。避免内容分散、缺乏系统性。

这部分的成果:整理出系统的知识点和路线图(前后关系图)(略)。

分解为各年级的培养目标

一年级的培养目标:计算机思维模式的培养,逻辑思维的培养,基本程序设计能力的培养。

二年级的培养目标:提高的程序设计能力、复杂数据结构的运用能力、算法分析能力。数字逻辑、计算机部件的设计,完成硬件设计的需求。

三年级要达到的目标:编译系统、操作系统的设计和实现。软件工程等知识和实践。

综合集成目标:软硬件的集成、应用程序的运行―系统测试,团队训练。

(3) 基于核心知识和能力体系的课程体系设计

根据知识体系和能力体系设计课程体系,并将知识点分解到理论课程。将能力培养落实到实验课程。从而得到课程体系和实验课程体系的蓝图,包括课程定位和衔接关系。

如《数理逻辑》:侧重布尔代数课堂教学,通过实验环节使得学生掌握根据需求建立逻辑描述的方法和能力,包括布尔逻辑及其变换、真值表的逻辑表示以及逻辑范式表示。

《数字逻辑与数字部件设计》:使得学生基于《数理逻辑》所建立逻辑描述,借助于硬件描述语言和EDA软件工具,完成包括寄存器、加法器、状态机等在内的一系列计算机基础硬件组件的设计和开发,为构造更加复杂的计算机硬件功能部件打下良好的基础。

《计算机组成原理》:在《数字逻辑与数字部件设计》实验环境所完成的各类硬件基础组件的基础上,同时利用软件模拟器和HDL作为主要的实验手段,使得学生深入理解处理器内部工作机理,掌握汇编级程序设计技术及技巧,并以此为基础利用HDL实现指令系统的子集及部分相应的计算机功能部件,完成一个功能型计算机硬件的核心部分,并能在其上运行简单的汇编程序。

《操作系统》:通过实验环节,一方面进一步丰富和完善该功能型计算机的硬件功能,另一方面学习系统软件开发方法和工具链,开发和移植一个简化的操作系统,最终构造出一个相对完整的计算机系统。

《编译技术》:通过实验环节,一方面丰富《计算机组成原理》中所完成功能型计算机硬件的指令系统,进一步完善该计算机硬件功能,另一方面为让学生了解编译器的构造技术,以及如何在一个裸机上实现对高级语言的支持,最终能在自己的机器上运行一个高级语言的程序。

(4) 进一步设计完善各门核心理论课程的培养大纲

(5) 进一步设计完善各门核心实验课程的实验大纲和手册

由于涉及到众多课程和知识点,将不在本文列出。回过来对照教学计划,我们发现几个大的变化:1)课程之间更加系统化,任课教师之间能更好的理解,尤其通过共同参与实验、共同的讨论,较好地解决了以前各门核心课程各自为阵、相互独立、知识不连贯同时有互相重复的现象; 2)课程之间的贯穿性得以体现,并获得深刻理解,如逻辑在后续课程的应用等;3)硬件类课程成体系,内容得到很好的更新,采用了MIPS指令集,硬件描述语言贯穿整个课程和实验体系;4)软硬件得到较好的集成,问题变得更加真实,不再是抽象的理论,如操作系统和硬件系统的接口、编译技术中面向特定体系结构的优化等,打通了软硬件之间的一个“Gap”;5)学生真正理解计算机系统,而不再是一个个的片段,从而深刻理解计算机的工作原理和局限。同时培养了学生较强的工程实践能力。满足北航计算机学院关于科学型和工程型相结合的人才培养定位。

4 一点体会和进一步的工作

通过这个项目,我们有一些体会。对目标系统的分析,必须做实验,而且需要学生的参与,即在教师的指导下由学生自己来完成,这样我们才能:1)深入细节;2)了解学生掌握知识的难易程度。通过实验,我们发现了很多预先没有考虑到的细节,而且发现一些我们认为简单的问题,学生理解起来可能很困难;而一些我们以为困难的地方,学生却很容易的掌握了。真正的深入实践可以让我们发现问题,从而调整课程内容的设置、课程讲解的方式以及深入的程度。当然,本方法还有很多地方需要进一步细化和总结,尤其在可跟踪性方面,希望有工具可以支持。

致谢:感谢北京市教学改革项目、北京航空航天大学教学改革项目的资助。感谢参与该项目的所有教师,他们是刘旭东、龙翔、高小鹏、王雷、史晓华、艾明晶等。

参考文献

[1] 高等学校计算机科学与技术专业发展战略研究报告暨专业规范(试行)[R]. 教育部高等学校计算机科学与技术教学指导委员会编制. 高等教育出版社, 2006, 9.

[2] 马殿富等. 计算机专业本科生核心综合实验设计与实践[R]. 北京市高等学校教育教学改革立项项目申请书, 2007.

[3] JOHN R.HAUSER, DON CLAUSING. “The House of Quality”, Harvard Business Review, vol. May-June, pp.63-73, 1988.

[4] R.Darimont, E.Delor, P.Massonet, and A. v. Lamsweerde. "GRAIL/KAOS: An Environment for Goal-Driven Requirements Analysis, Integration and Layout", presented at Requirements Engineering, Jan.1997.

[5] 马殿富. 如何培养社会需要的人才[R]. 长沙全国计算机学会YOCSEF年会上的特邀报告, 2004.

相关文章
相关期刊