时间:2023-12-18 11:22:44
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇可再生能源发展趋势范例。如需获取更多原创内容,可随时联系我们的客服老师。
【摘要】据农业部对全国农村可再生能源统计结果表明,农村居民生活用能呈稳步增长趋势,农村可再生能源发展迅速,目前能源消费结构以秸秆和薪柴为主,但存在着商品能源消费城乡差距较大,地域差异显著等问题。分析表明,商品能源无法满足中国农村能源发展需求。我国拥有丰富的可再生能源,可供农村地区开发利用的可再生能源主要包括太阳能、风能、小水电、地热能、生物质能。为促进在我国农村地区发展可再生能源产业,建议采取完善可再生能源开发利用的政策法规体系,消除可再生能源开发利用的市场障碍,加大资金投入力度,多能互补开发农村能源,加快服务体系建设等措施。
引言
农村能源是指农村地区的能源,包括能源消费和能源生产(主要是当地的可再生能源)[1]。实际上,农村能源是针对第三世界国家农村地区的基础设施不发达,很少获得商品能源供应,主要依靠当地生产的可再生能源资源满足需要而提出的一个概念。中国是一个农业大国,2006年乡村人口总数达7.37亿人,占全国总人口的比重为56.10%[2],农村能源关系到全国1/2以上人口的生活用能供应和生活质量改善的问题。
党的“十七大”提出要建设生态文明,走生产发展、生活富裕、生态良好的文明发展道路。农村可再生能源开发符合科学发展观和循环经济的理念,是落实党的“十七大”精神的具体体现,有利于建设资源节约型和环境友好型社会,促进农村社会经济可持续发展。搞好农业农村节能减排,不仅有利于合理有效地利用农业资源,优化农村地区能源消费结构,缓解化石能源供应的紧张局面,保障国家能源安全,有利于建立可持续发展的能源供应体系,促进经济社会可持续发展,是我国能源战略的重要组成部分。随着农村经济的发展和农民生活水平的提高,对能源需求提出了更高的要求。认识中国农村能源发展趋势,选择合适的农村能源发展战略是十分必要的。本文通过对《2007年度全国农村可再生能源统计汇总表》分析,研究了我国农村可再生能源发展现状、趋势、制约因素和发展对策。
在中国农村可再生能源发展现状据农业部对全国农村可再生能源统计结果,截至2007年底,全国省柴节煤灶保有量1.5亿户,节能炉3471万户,节能炕2024万铺;农村户用沼气保有量总数已经达到了2650万户;太阳热水器保有量达4300万米2,太阳灶保有量112万台;已建成秸秆集中供气站734处,建立了一批秸秆固化成型示范点,为生物质能源规模化开发利用奠定了良好的基础。(l)农村居民生活用能消费总t稳步增加与20。。年相比,2。。7年农村居民生活能源消费总量增加了32.1%,年均增长率为4.。%,低于全国同期能源消费增长速度,呈稳步增长态势(图1)。其中,商品能源增加了47.6%,年均增长率为6.7%;非商品能源增加了26.4%,年均增长率为3.4环。在农村居民生活用能费中,优质能源的增长速度较快。其中,农村户用沼气消费增长速度最快,与2000年相比,2007年增长了350.5%,年均增长率为24.0%。其次为液化石油气和电力,分别增长了122.5%和95.0%,年均增长速度分别为14.3%和n.8%。而煤油消费呈负增长,与2000年相比减少了67.7%,年增长率为一17.2%(图2)。中国农村居民生活用能正朝着商品化、优质化的方向发展。2)能源消费结构仍以秸秆和薪桨为主2007年中国农村居民生活用能消费结构中,秸秆占48.33%,薪柴占28.10%,煤占14.08%,电力占5.47%,沼气占2.21%,液化石油气占1.71%(图3)。目前,我国农村居民生活用能仍以秸秆、薪柴为主,大部分用于炊事和取暖之用,优质能源比例低,能源消费结构极不合理。这种情况可能是由于秸秆、薪柴容易获得,几乎不需要任何费用造成的。从发展趋势来看,在未来相当长的时期内,秸秆、薪柴等传统生物质能仍是我国农村居民的主要生活用能。
(一)数据来源及说明本文的数据来源于笔者对吉林、陕西、山东、浙江4个省份农村地区2008年和2012年409户农户的可再生能源消费情况的跟踪调查(如表1所示)。实地调研分别于2009年和2013年进行,调研结合采用多阶段抽样、分层随机抽样的方法选取样本省、县、乡镇、村和农户。首先,考虑地区代表性和农业发展水平,选取了山东、陕西、吉林、浙江4个省份;其次,每个地区按县人均收入高、中、低三层各随机抽取一个县;然后,每个县随机选取了2个乡,每个乡随机选取2个村,每个村随机选取12户农户。第一期共调查576户农户,获得有效问卷570份。第二期追踪样本480户。由于部分农户对个别可再生能源消费量的估计存在困难,两期调研中各种可再生能源消费量数据均被完整获得的样本为409户,占追踪样本的85.2%。根据农户收入等家庭特征因素的分析发现,跟踪调查样本与非有效样本没有显著差异,因此,本研究中409份有效样本具有较好的代表性。
(二)农村可再生能源生活消费的现状与发展趋势根据实地调研数据,中国农村家庭消费的可再生能源主要包括秸秆、薪柴、太阳能和沼气4种。本文在分析中将可再生能源分为传统可再生能源和新型可再生能源两大类,其中传统可再生能源包括直接燃烧的秸秆和薪柴,新型可再生能源包括太阳能和沼气。1.中国农村可再生能源消费总量呈现下降趋势,并且消费结构明显变化。2008年,中国农村可再生能源人均年消费量为417.87千克标准煤,2012年下降为349.85千克标准煤,降幅为16.28%(如表2所示)。其中,传统可再生能源的人均年消费量从408.56千克标准煤下降为323.45千克标准煤,降幅达20.83%。虽然相比2008年,传统可再生能源在可再生能源消费中所占的比重有所下降,但其仍以92.45%的比例占据中国农村可再生能源消费的主体地位。传统可再生能源中,农作物秸秆和薪柴在农村可再生能源消费总量中占比分别为64.03%和28.43%。2.中国农村新型可再生能源消费发展较快,但消费所占比例依然较低。2008年新型能源人均年消费量仅为9.31千克标准煤,2012年上升到26.41千克标准煤,增长将近2倍(如表2所示)。虽然新型可再生能源发展较快,但从消费比例看其发展程度并不高,2012年新型可再生能源人均年消费量占当年可再生能源人均年消费总量的7.55%,不足传统可再生能源消费量的十分之一。此外,当前中国农村新型可再生能源种类相对单一,太阳能占新型可再生能源消费的绝大部分,沼气消费占比不足1%。3.不同地区农村可再生能源的消费差异较大。北方地区传统可再生能源消费较多,南方地区新型可再生能源发展较快。在2012年4个调研省份中,农村可再生能源人均年消费量最大的是吉林(615.74千克标准煤),山东(311.51千克标准煤)、陕西(268.89千克标准煤)次之,浙江最小(206.72千克标准煤),地区排序与2008年完全一致,这可能与中国北方地区冬季气温较低、供暖能源需求较大有关。各地区农村可再生能源消费结构也存在较大差异,吉林、山东两省以秸秆为主要能源(分别占可再生能源消费量的93.97%和87.86%),陕西、浙江两省则以薪柴消费为主(分别占其可再生能源消费量的79.42%和61.67%)。2012年浙江省新型可再生能源的消费量为75.57千克标准煤,占其可再生能源消费总量的36.56%,发展程度远远高于其他3个省份,如表3所示。
(三)影响中国农村可再生能源消费的相关因素分析本文进一步对可能影响中国农村可再生能源消费的因素做了统计分析,分析结果表明,农户可再生能源的消费量与家庭经济水平、劳动力机会成本、不可再生能源价格、作物耕种面积、到集贸市场的距离、家庭人口特征等因素密切相关,如表4所示。统计结果表明,随着人均财产水平上升,农户家庭传统可再生能源消费量明显减少,新型可再生能源消费量显著增加。数据分析结果显示,当人均财产低于1万元时,传统可再生能源人均年消费量为418.48千克标准煤,新型可再生能源消费量为4.93千克标准煤;当人均财产水平高于3万元时,传统可再生能源人均消费量下降为230.67千克标准煤,新型可再生能源消费量上升为43.92千克标准煤。农业劳动力价格也可能明显影响农村人均可再生能源消费。研究发现,随着劳动力价格上升,农户家庭传统可再生能源消费量逐渐减少,新型可再生能源消费量显著增加。当劳动力价格低于1000元/月时,传统可再生能源人均年消费量为433.70千克标准煤,新型可再生能源为6千克标准煤;当劳动力价格上升到2000元/月以上时,传统可再生能源人均年消费下降到286.23千克标准煤,新型可再生能源人均年消费上升到44.27千克标准煤。电能等替代能源的价格也与可再生能源的人均消费密切相关。表4显示,电能价格在每度0.55元以下时,传统可再生能源人均年消费量为355.64千克标准煤;当电价高于0.55元时,传统能源人均年消费量上升至402.17千克标准煤。燃油价格低于7元/千克时,新型能源人均年消费量为6.88千克标准煤;当油价超过到8.5元/千克以上时,新型能源人均年消费量提高到28.78千克标准煤。能源获取难易程度以及家庭人口特征等因素也可能影响农村可再生能源的消费。表4的统计结果表明,当家庭人均农作物面积从小于1亩增加到3亩以上时,传统可再生能源人均年消费量从218.66千克标准煤上升到608.49千克标准煤,同时新型可再生能源人均年消费量从30.55千克标准煤下降到4.22千克标准煤。传统可再生能源消费量随村委到集贸市场距离的增加而增加。此外,家庭住家人口规模、劳动力占家庭人口比例、户主受教育程度、家庭成年务农女性比例等也与可再生能源消费存在明显相关关系。例如,户主受教育程度越高,人均传统可再生能源的消费量呈明显下降趋势,而新型可再生能源的消费量呈明显上升趋势。
二、模型设计与估计结果
(一)模型设计与变量选择上述相关性分析结果表明,中国农村家庭生活可再生能源消费可能与农户家庭经济水平、劳动力机会成本、获得能源难易程度、家庭人口特征等因素有关。但是,单因素分析没有控制其他因素的影响,无法将不同因素对农村地区能源消费的影响分离出来。因此,本文进一步建立计量经济模型,系统估计不同因素对中国农村地区生活可再生能源消费的影响。已有农村能源消费方面的研究大多采用单期调研数据,并且仅对某一类能源的消费展开分析而没有考虑到不同类型能源之间的相互替代关系。本研究基于两期调研的面板数据展开分析,能更有效地控制潜在的遗漏变量所导致的估计偏误。另外,考虑到不同可再生能源消费之间可能存在相互替代作用,因此,建立不同可再生能源消费的联立方程模型估计可以提高模型的估计效率[13]。由于现有的计量模型分析工具(如STATA)还难以实现对联立模型方程的固定效应估计,因此本研究采用随机效应的联立模型系统展开估计。模型设计如下Y1it=β10+β11Eit+β12Wit+β13Pit+β14Ait+β15Zit+β16SC+ε1itY2it=β20+β21Eit+β22Wit+β23Pit+β24Ait+β25Zit+β26SC+ε2it!(1)式中,Yit为被解释变量,表示第t期第i户农户某类可再生能源的人均年消费量,1表示传统可再生能源消费量(秸秆与薪柴之和),2代表新型可再生能源(太阳能和沼气);Eit、Wit、Pit、Ait、Zit分别代表家庭经济水平、劳动力价格、不可再生能源价格、能源可获得性、家庭人口特征等5类解释变量;SC表示县级地区虚变量;β表示待估计参数;εit为误差项。模型中解释变量的定义及描述性统计结果如表5所示,其中,2012年财产水平、价格水平等变量利用消费品价格指数调整为2008年的不变价。
(二)模型估计结果与分析回归结果表明(如表6所示),家庭经济水平对新型可再生能源消费的影响在1%的置信水平上显著为正,但对传统可再生能源消费的影响不显著。人均财产水平每提高1万元,新型可再生能源人均年消费量增加0.74千克标准煤。劳动力价格对农户传统可再生能源和新型可再生能源消费的影响显著,但方向相反。模型估计结果表明,农业劳动力价格每提高1000元/月,传统可再生能源的人均年消费量下降52.44千克标准煤,而新型可再生能源人均年消费量上升10.82千克标准煤。电能价格对农户传统可再生能源和新型可再生能源的消费均产生显著的正向影响,电价每提高0.1元/度,传统可再生能源的人均年消费量将增加40.54千克标准煤,新型可再生能源人均年消费量也将增加4.50千克标准煤。燃油价格对两类可再生能源均有正向影响,但不显著,可能因为燃油主要为生活出行的交通工具所用,与可再生能源做饭供暖的主要用途竞争性不强。村委到最近的集贸市场的距离增大会显著增加农村居民对可再生能源的消费量。村委到最近集贸市场的距离每增加1公里,农村人均传统可再生能源的人均年消费将增加3.56千克标准煤,新型可再生能源消费量增加0.62千克标准煤。这可能是因为随着农户离集贸市场距离的增加,其获得替代性商品能源成本提高,农户因此将减少替代性商品能源的消费并导致可再生能源消费量的增加。家庭人口规模也会显著影响人均农村传统可再生能源的消费。家庭住家人口每增加1人,传统生物质能源的人均年消费量下降57.22千克标准煤。另外,户主的受教育水平、非农工作经历、家庭中务农女性的比例等也会对可再生能源消费产生影响。例如,户主受教育程度为小学以下的家庭,其传统可再生能源消费量显著高于其他家庭。
三、研究结论与政策启示
一、可再生能源全球发展趋势
(一)各国将可再生能源开发利用提升到战略高度并制定激励政策
世界大部分国家能源供应不足,各国努力寻求稳定充足的能源供应,都对发展能源的战略决策给予极大的重视,其中可再生能源的开发与利用尤为引人注目。化石能源的利用会产生温室效应,污染环境等,这一系列问题都使可再生能源在全球范围内迅速升温。从目前世界各国既定能源战略来看,大规模地开发利用可再生能源已成为未来各国能源战略的重要组成部分。
根据国际能源署不完全统计,截至2005年底,已有50多个国家制定了激励可再生能源发展的政策,43个国家制定了国家级可再生能源发展目标,30多个国家对可再生能源发展提供了直接的财政补贴或其他优惠措施,32个国家出台了可再生能源发电强制上网政策。
(二)随着技术进步,可再生能源进入能源市场成为可能
从世界可再生能源的利用与发展趋势看,风能、太阳能和生物质能发展最快,产业前景最好。风力发电技术成本最接近于常规能源,因而也成为产业化发展最快的清洁能源技术。风电是世界上增长最快的能源,年增长率达27%。太阳能、生物质能、地热能等其他可再生能源发电成本也已接近或达到大规模商业生产的要求,为可再生能源的进一步推广利用奠定了基础。
国际能源署的研究资料表明,在大力鼓励可再生能源进入能源市场的条件下,到2020年新的可再生能源(不包括传统生物质能和大水电)将占全球能源消费的20%,可再生能源在能源消费中的总比例将达30%。
2004年,美国、德国、英国和法国可再生能源发电占总发电量的比重分别为1%、8%、4.3%和6.8%;到2010年将分别达到7.5%、20.5%、10%和22%;到2020年将都提高到20%以上;到2050年,德国和法国可再生能源发电将达到50%。韩国可再生能源消费比重将由2004年的2.1%提高到2010年的5%。日本和中国的可再生能源消费比重将由2004年的3%和7.5%提高到2010年的10%左右,2020年分别达到20%和15%。
(三)国际社会对再生能源开发的投资加大
根据《经济学家》杂志2006第11期的研究文章,国际社会对清洁、可再生能源投资幅度增长很快,2004年为300亿美元,2005年为490亿美元(其中政府投资约100亿美元,私人投资约250亿美元),估计2006年将超过630亿美元。目前,可再生能源公司股市市值达300多亿美元,一些风险投资正从IT行业转入可再生能源开发领域。
二、开发可再生能源的政策与举措
(一)部分欧洲国家的政策与措施
德国通过了新的《可再生能源法》,为投资可再生能源提供了可靠的法律保障。德国制定了《未来投资计划》以促进可再生能源的开发,迄今投入研发经费17.4亿欧元。2004年,德国可再生能源发电量占总发电量的8%,年销售额达100亿欧元。风力发电占可再生能源发电量的54%,太阳能供热器总面积突破600万平方米。
法国推出了生物能源发展计划,2007年之前将生物燃料的产量提高3倍,使其成为欧洲生物燃料第一大生产国。其具体内容包括:建设4个生物能源工厂,年均生产能力达到20万吨,生物燃料的总产量将从目前的45万吨上升到125万吨,用于生产生物燃料的作物面积也将达到100万公顷。由于生物燃料目前的成本比汽油和柴油贵两倍,因此法国已出台一系列优惠措施,鼓励生物燃料的生产和消费。
英国把研究海洋风能、潮汐能、波浪能等作为开发新能源的突破口,设立了5000万英镑的专项资金,重点开发海洋能源。不久前,在苏格兰奥克尼群岛的世界首座海洋能量试验场正式启动。英国第一座大型风电场一直在不断发展,目前风电装机总量已达650兆瓦,可满足44万多个家庭的电力需求,近期还将建设10座类似规模的风电场。
(二)亚洲发展中国家对可再生能源发展的政策与计划
中国、印度、印度尼西亚和巴西等国家越来越重视可再生能源对满足未来发展需求的重要性。
中国制定实施了《可再生能源法》,编制了《可再生能源中长期发展规划》,并为大力发展可再生能源确定了明确目标。
印度成立了可再生能源部,政府全力推动可再生能源资源的开发利用,目前印度在风电和太阳能利用规模上已居世界前列。
东盟国家也开始重视可再生能源的开发工作。10个成员国各自都有了发展可再生能源的计划,包括地热、水电、风能、太阳能和来自棕榈或椰子油的植物燃料等。按照东盟的计划,到2010年各成员国的可再生能源电力将达到2.75万兆瓦,其中印尼、菲律宾和泰国将成为领先者。
三、可再生能源的技术状况与发展
(一)太阳能的发展与利用
太阳能发电以其无污染、安全、维护简单、资源永不枯竭等特点被认为是21世纪最重要的新能源。自20世纪80年代以来,全球光伏电池生产每年以30%至40%的速度递增。整个光伏行业从原材料到终端产品都出现了供不应求的局面,在世界范围内形成特有的“卖方市场”格局。太阳能市场目前占全球能源市场的1%,市值约70亿美元。据欧洲可再生能源委员会研究报告,太阳能工业2030年将占到全球能源市场的8%。
(二)风力发电的发展与利用
丹麦BTM咨询公司估计,2004年至2008年世界风电当年平均增长率约为10.4%,累计装机增长率约为18.8%,欧洲风电在近海风电场真正“起飞”之前将保持中等增长。2002年欧洲风能协会与绿色和平组织发表了一份《风电在2020年达到世界电量12%的蓝图》的报告,对展望未来20年风电的发展很有参考价值。报告认为,首先,推动风电发展的因素是气候变化,风电不排放任何温室效应气体,在电网中可以达到工业规模。京都议定书的减排温室效应气体指标已经分配到地区和国家层面,各国一定会增加包括风电在内的可再生能源比例。其次,市场已经表明风电成本正在显著下降,目前的发电成本仅相当于20年前的五分之一。风电机组的单机容量不断增长,最大的商业化机组达到2500千瓦。迅速增长的风电商务引起金融和投资市场的密切关注,新的投资商如石油公司等正在进入这个市场。第三,世界各国已积累了丰富的发展风电的经验。在欧洲的德国、丹麦和西班牙;美洲的美国以及发展中国家的印度,都积累了成功发展风电产业的重要经验。第四,近海风电正在开辟新兴市场,欧洲北部将要建设2000万千瓦的海上风电。
(三)生物质能的发展与利用
生物质能是太阳能以化学能形式贮存在生物中的一种能量形式,一种以生物质为载体的能量,它直接或间接地来源于植物的光合作用,在各种可再生能源中,生物质是独特的,它贮存的是太阳能,更是唯一一种可再生的碳源,可转化成常规的固态、液态和气态燃料。
生物质能也称“绿色能源”。 开发“绿色能源”已成为当今世界工业化国家开源节流、化害为利和保护环境的重要手段。至少有14个工业化国家在开发“绿色能源”方面取得了良好成绩,其中有些国家通过实施“绿色能源”政策,在相当大程度上缓解了本国能源不足的矛盾,而且显著改善了环境。
生物质能有其独特的优势,首先,生物质能发电在可再生能源发电中电能质量最好、可靠性最高,其效果远高于小水电风电和太阳能发电等间歇性发电,可以作为小水电、风电、太阳能发电的补充能源,具有很高的经济价值。其次,农村能源结构由传统生物质能利用为主向现代化方向转化,生物质能发电是这种转化的重要途径。第三,丰富的生物质能资源亟待有效开发利用,加工增值,促进经济发展。第四,生物质能发电技术比较成熟。
到2020年,西方工业国家15%的电力将来自生物能发电,而目前生物能发电只占整个电力生产的1%。届时,西方将有1亿家庭使用生物能电力。生物能资源的开发和利用还能为社会创造近40万个就业岗位。
(四)水电的发展与利用
水电是可再生能源,而通常的大型水电属于传统能源,而小水电却属于新能源。小水电从容量角度来说处于所有水电站的末端,它一般是指容量5万千瓦以下的水电站。据2003年世界水能大会估计,世界小水电可开发资源大致为1.2-1.44亿千瓦。中国可开发小水电资源如以原统计数7000万千瓦计,占世界总量的一半左右。到目前为止,全世界可供利用的水电资源只开发利用了18%。小水电站具有投资小、风险低、效益稳、运营成本比较低等优势。许多发展中国家都制订了一系列鼓励民企投资小水电的政策。中国于2006年颁布的《可再生能源法》就鼓励包括小水电在内的可再生能源开发。
四、工发组织的促进举措
联合国工发组织将能源与环境作为组织工作的三个重点领域之一,并于近年来开展了一系列活动。工发组织在推进可再生能源的工作主要包括以下方面:
(一)生物质能
2005年12月,工发组织与印度科学院合作,以促进现代生物质能(BIOMASS)技术和非洲南南合作为框架,在印度班加罗尔举行专家会议。这次会议增强了来自非洲政策制定者和专家对生物质能气化技术现状和所提供机会的认识,这些技术可利用当地生物废渣为农村地区发电,为工业应用供热。
(二)小水电技术
推进亚洲与非洲之间的可再生能源项目合作,其中中国与非洲国家进行小水电技术合作,工发组织与国际小水电中心合作,帮助建立印度、尼日利亚分中心,培训发展中国家的技术人员,提供咨询与设备,在非洲建立多个示范项目点。工发组织将进一步加强与杭州国际小水电中心的合作,在未来三至五年内探讨签署一揽子合作协议,在非洲10国开展“点亮非洲”及“发展生产”的试点项目,这些活动预计需筹资1000万美元。工发组织计划于2007年5月在马来西亚召开棕榈柴油亚非合作会议,推进棕榈柴油在亚非国家的发展。
(三)氢能技术
2004年在土耳其建立国际氢能技术中心,计划五年内得到土耳其政府4000万美元捐助,该中心目前正在实施若干项目,并侧重生产“清洁能源载体”氢。
(四)海流发电技术
在意大利政府的资助下,中国、印度尼西亚、菲律宾开始实施海流技术区域方案。这个由联合国工业发展组织资助并实施的项目使用的是一家意大利公司与意科研机构合作开发的海洋流发电机组。有关机构认为它是国际上将海洋流动力能转变为电能的最为成熟的发电技术。这个项目的开发建设将为发展中国家可再生能源的充分利用开辟出一条新路。
(五)与拉美开展区域可持续发展合作方案
2006年9月26-27日,工发组织与乌拉圭合作在Montevideo召开了“生产应用型可再生能源部长级会议”,15国能源部长通过了“部长宣言”,加强区域合作以提高能源利用,提高可再生能源供应以及促进可再生能源研究与开发,并在乌拉圭建立“可再生能源与有效利用区域检测中心”。
五、中国可再生能源的发展
作为全球能源市场日趋重要的一个组成部分,中国目前的能源消费已占世界能源消费总量的13.6%,世界能源消费将越来越向中国和亚太地区聚集。据预测,目前中国主要能源煤炭、石油和天然气的储采比分别为80、15和50,大致为全球平均水平的50%、40%和70%,均快于全球化石能源枯竭速度。未来五至十年内,中国煤炭国内生产量基本能够满足国内消费量,原油和天然气的生产则不能满足需求,特别是原油的缺口最大。注重能源资源的节约,提高能源利用效率,加快可再生能源的开发利用,对于中国来说既重要又迫切。我国能源工业面临着经济增长和环境污染的双重压力,因此,开发利用新能源具有重大意义。经过多年的努力,新能源的开发在我国已经取得了一定的成效。
近几年来,我国小水电装机容量每年以超过250万千瓦的速度迅速发展。风电发展也很快,2005年底建成装机达到100万千瓦以上。太阳能光伏发电6.5万千瓦,解决了约300万偏远地区人口基本用电问题。沼气年利用量达到50亿立方米,改善了1400万农户的生活用能条件。预计到2020年,中国水电装机总容量将达到2.9亿千瓦,风电达到3000万千瓦,太阳能发电达到200万千瓦,太阳能热水器总集热面积达到3亿平方米,沼气年利用量达到240亿立方米,生物质成型颗粒燃料年利用量达到5000万吨左右,生物质发电达到2000万千瓦。虽然新能源发展潜力巨大,但与传统化石能源相比,仍面临着成本高、规模小等困难。例如,小水电发电成本约为煤电成本的1.2倍,生物质发电成本为煤电成本的1.5倍。
我国政府高度重视新能源发展,针对这些问题采取了一系列的积极措施。通过颁布《可再生能源法》及可再生能源发展规划等鼓励产业发展和技术开发,解决了可再生能源开发在法律、政策和市场层面的障碍,并给予相关产业以资金支持。
在中国经济发展过程中,能源问题始终不容忽视。为此我们应该做好以下工作:
一是加强与国际能源署(IEA)等国际组织和各国能源研究机构的合作,加强能源战略研究与统计,跟踪世界能源的最新发展动态,积极参与能源合作论坛与交流机制,增加我国的话语权,参与国际能源体制与政策的制定,并为我国及时制定战略、政策提供参考。
二是扩大与发达国家以及发展中国家在可再生能源技术研发与推广上的合作,利用亚欧合作机制,借鉴其他国家的政策、经验与技术,吸引外来投资,促进我国可再生能源中风能、太阳能、海洋能等的开发与利用,并提高能源利用效率。
关键词:可再生能源 我国现状 思考 应对方法
一、 我国能源使用现状
可再生能源,即太阳能、风能、生物质能、地热能、水能、海洋能等非化石能源。
为何要使用可再生能源,因为我国的常规能源状况表现为以下两个方面:
(一) 消耗大,浪费情况相当突出
虽然我国能源资源极度匮乏,但依然没有找到合适的途径,故而消耗极大。例如我国单位产出的资源消耗和能耗远高于国际水平,建筑能耗是同纬度国家的3-4倍,大中型钢铁企业每吨钢材能耗高于20%,火力供电超过22%,远远高于国际平均水平,更遑论那些发达国家。每吨标准煤的产出效率相当于美国的28.6%,欧盟的16.8%,日本的10.3%。能源不足缺依然存在各种情况,严重影响可持续发展的道路。
(二) 能源匮乏,污染加重
1.由于我国的能源产出依然是以煤炭为主,占据我国能源消费的67%,而煤炭的开采,燃烧等等能源产出的过程导致一系列环境问题,温室气体的超标排放依然没有得到有效的解决办法。而我国依然以直接燃烧作为使用煤炭资源的方法,从而导致全国90%以上的二氧化硫排放来自于煤的直接燃烧,更有70%的燃尘是燃煤造成,这些气体的和燃尘的排放不仅加剧了温室效应,更导致酸雨的形成,以至粮食减产,土地营养衰退以及绿色植物的破坏。
2.虽然我国国土面积大,但人均占有资源量极少,除煤炭外,石油和天然气极度短缺,甚至连世界人均占有量的11%都不到。以长远的目光看,石油,煤,天然总有开采完的一天,不能让能源不足成为制约国家经济发展的障碍,因而走可持续发展的道路已经刻不容缓。
二、 思考
面临现在这种严峻的情况,不只是我国,更是全世界都必须停下畸形的增长,思考如何应对能源不足这个即将出现的大问题。我们不能只为了满足我们现在的发展需求,从而导致人类以后的灭绝!所以,可再生能源就必须提上日程,我们的形式已然岌岌可危,我们要行动起来,保证我们的环境和子孙后代和谐发展!虽然我国有可再生能源法,但却未能对违反此法的制裁措施进行明细,因而一部较完善的能源法已经需要我们一起完善,加强监督管理,上下举措,方能走上和谐大道。
三、 应对方法
(一) 加强监督,明细法律法规
可再生能源法的完善一定要提上日程,完备法案,才能做到有法可依,有法必依,违法必究。从而使国民对可再生能源有所了解。
(二) 借鉴国外,提高观念认识
我国已探明的煤炭总量约9.7千亿吨,水能资源较为丰富,理论蕴藏量和可开发总量均位居世界第一,经济可开发装机量约3.9亿千瓦,年发电量可达到1.7万亿千瓦时,不过其利用却受到各种情况的影响,例如淹没和移民等等。因而我国的能源不足乃是一项长远而艰巨的难题。为了现在的国民经济发展,更为了子孙后代有能源可用,我们必须将能源形势由以往的不可再生资源向可再生资源方向发展。虽然我国做的不够好,但可以借鉴世界上其他国家的成功案例,例如冰岛的氢能源发电,巴西的乙醇动力运船,都可以作为我们实际操作的经验。
(三) 政府带头,加强宣传力度
唯有从上而下的贯彻实施,才能保证可再生能源的利用。首先,国家要提供资金扶助,使得可再生能源可以产业化;其次加强对可再生能源的舆论支持,从而从根本上改善国民对可再生能源的认识;最后,在税收方面给予一定程度的减免,给可再生能源的发展提供一个良好的平台。
四、 结论
可再生能源虽然具有广阔发展空间和良好的发展前景,但就从目前而言,国人对其的了解还停留在一个相对比较肤浅的认识上,所以,我们一定要从根本上去认知可再生能源。只有举国举措,方能贯彻好总书记的和谐发展观,使用可再生能源,不仅能减少污染排放改善环境,更能保证中国自身战略能源安全,可持续经济的不断发展,从而加快我国社会主义现代化的进程!虽然改革的路上充满荆棘,但是只要我们万众一心,必定能够实现我们的既定目标,从而使得我们的生产生活环境与社会发展相和谐。
参考文献:
【关键词】能源;可持续发展;战略的探析
1 长期坚持节能优先战略
改革开放以来,面对改革开放带来的经济高速发展态势,能源供应难以满足迅速增长的需求,节能受到必要的重视,在新的市场条件下,解决能源短缺已不是节能和提高能效的驱动力。一些能源供应部门反而出现了由于供应能力过剩而要开辟新的消费市场,以刺激能源消费的动机和做法,力图争取更大的市场份额和经济利益。为了经济发展的目标,必然要鼓励终端消费包括能源消费的扩张,鼓励新的消费以拉动需求,包括新的用能途径,其中建筑用能、交通用能的上升将比较明显。另一方面,对能源部门的经济效益和相关社会问题的关注和实际影响,大于节能的呼声。对长期的能源平衡和能源安全的关注难以和短期的、直接经济运行的利益取向有机地联系起来。
如果中国真正能够实现在本世纪中叶达到现代化的目标,中国将会面对重大的能源挑战。使中国的能源效率提到一个没有先例的高度,光靠市场经济的自发作用,是远远不够的,必须在政策介入方面找到新的途径。
在现阶段,提高全民的资源忧患意识,在市场经济的自然作用之外,采取适当的政策措施仍然十分必要。除信息、标准、技术推广等措施之外,还要进一步考虑长期的能源价格政策。同时,推动环境保护,也是节能的重要驱动力。中国还要及早考虑可持续发展的消费方式的设计和引导实施。没有这些努力,就难以实现有中国特色的现代化。长期坚持节能优先必须成为中国可持续发展能源战略的一个重要基本点。
2 从实际出发,实施煤炭的清洁利用
优化能源结构和充分合理利用我国的煤炭资源并不矛盾。在能源结构优化的过程中,煤炭必然将退出一些使用领域,但是煤在中国能源中的地位仍然将十分重要。目前我国煤炭的使用技术和方式与可持续发展的社会经济发展目标有很大的差距,是我国环境污染的主要来源。在可持续发展能源战略中,煤炭的利用,首先要解决相应的环境污染问题。
从世界能源系统的发展趋势看,未来煤炭的主要应用途径仍然是发电。在有天然气可以利用的地方,天然气燃气蒸汽联合循环技术可以达到更高的发电效率,也有更好的环保性能。但是只要采取适当的措施,燃煤电厂仍然可以做到清洁发电,效率的提高也还有较大余地。从中国的实际情况出发,煤的清洁利用首先要解决的是落实目前直接燃煤的大气污染问题。其中,燃煤电厂的脱硫问题应该首先予以解决。燃煤电厂脱硫技术是十分成熟技术,现在是干不干的问题。目前煤炭供应过程和转换过程中,有大量可以立即行动而且对煤炭的清洁利用有明显实效的事情可做。如煤炭的筛选和洗选,更加合理的煤质管理和配送,型煤的利用等等,都大有潜力。
3 推动环境保护,为可持续发展能源战略的实施创造必要的外部条件
环境保护是可持续发展的一个基本点,也是推动能源技术发展的基本动力之一,当前在发达国家,环境保护要求已经成为决定能源结构,从而决定能源成本的重要因素。我国的环境保护将在今后逐步成为能源结构选择的越来越重要的因素,能源结构的清洁化,对能效的提高也有很大的推动作用。
为了实现可持续发展的能源战略,应该在能源发展的各个环节充分考虑环保的需要。能源基础设施庞大,使用期很长。能源系统一旦建成,改变起来不但成本很高,还要用几十年的时间。所以在能源建设中不但要考虑环境保护现在的要求,而且要充分预见今后的环境要求。
4 适应终端能源需求的变化趋势,实现能源结构的转变,加快发展天然气
中国长期以来能源结构以煤为主,是造成能源效率低下、环境污染严重的重。近年来终端能源需求的结构和总量变化,以及以中心城市为开端的环保要求,使优化一次能源结构成为能源发展的重要趋势。
当前和今后几十年内,石油和天然气仍将是世界范围的主要能源。特别是天然气的发展。天然气的利用不仅有很好的环境效果,建立在天然气基础上的能源技术,也是当前和今后长时期内能源效率最高的技术。我国的天然气基础比较薄弱,在形成天然气基础设施网络的时期,需要大量的投入和政策支持。国家正在实施的西气东送工程意义重大,天然气基础管网一旦建成,将带动天然气开发的进程,可望使天然气的实际成本明显降低。在天然气的发展问题上,需要国家的支持和协调。
5 做好可再生能源发展的战略安排
中国在可再生能源发展方面做了很多工作。过去的重点放在解决农村和边远地区的能源供应上。近几年来,现代商品化可再生能源逐渐成为发展的重点。其中,太阳能热水器已形成规模市场,大型风力发电也有多种示范。但总的说来,商品化可再生能源的发展仍然十分有限。
随着社会经济的不断发展,以及城市地区扩大了对农村地区的经济辐射作用,农村地区从传统可再生能源向商品化石能源的转换步伐加大。特别是在经济发达地区和城市周边地区,农村能源商品化的比例已经不小。但是目前的现代可再生能源技术还不能适应这个转换过程,或是技术不够成熟,或是成本太高,难以和传统的化石能源竞争。中国发展可再生能源必须考虑农村发展的要求。我国城市化的过程还要持续几十年。我们不可能要求农民长期使用落后的传统可再生能源,也不可能让农民一下子跳越到比商品化石能源还贵的现代可再生能源系统上去。我们必须在借鉴先进再生能源技术的同时,自主开发适合于国情的技术。这不仅对我国是十分有益的,而且可以为很多发展中国家提供新的选择。
中国的电力系统发展迅速,扩张势头还要保持许多年,为现代可再生能源的发展创造了潜在的可观的市场。在推动现代可再生能源发电应用时,应充分考虑可再生能源发电的环境效益,使其环境外部性能够反映到合理的电价体系中来。在不考虑环境成本条件下,可再生能源很难和传统化石能源相竞争。
对风电等可再生能源发电提供优惠政策,要对各种政策的经济成本和效益进行详细的分析和评估,特别是应对支持政策条件下风电等可再生能源发电技术成本下降的可能潜力和进度要有具体分析。这种分析必须结合我国的风电产业的发展实际。另一方面,对大水电等影响重大的可再生能源也应重点考虑,综合协调。这样,才有利于有效推动我国的可再生能源事业的发展。
【参考文献】
[1]余谋昌.环境意识与可持续发展[J].世界环境,1995,4.
[2]中华人民共和国循环经济促进法[Z].2008-8-29.
关键词 省域可再生能源规划;可再生能源行业增长模型;阶段目标分解
中图分类号 C921.2 文献标识码 A 文章编号 1002-2104(2011)04-0100-05 doi:10.3969/j.issn.1002-2104.2011.04.016
规划包括三要素,即什么时机、采取什么措施、完成什么样的指标。不同的规划是在此基础之上不断的迭加约束条件。如能源规划是在此基础上进一步考虑资源约束,在开采的时候不但要考虑当前能源供给和能源需求的均衡,还需要考虑未来能源供给和需求的均衡。由于可再生能源在总能源消费总重较低,因此,当前的规划并不需要考虑可再生能源对整体能源系统的均衡的影响。其主要约束条件是可再生能源资源条件约束和可再生能源配额产生的市场约束。
1 可再生能源规划研究方法概述
当前我国的规划处于一种从计划经济时期到市场经济时期的转折点。保留较多的计划经济特点,同时又增添了较多的市场经济特色。魏后凯认为我国规划体制的改革尚处于探索过程中,国家、省级和市县级规划的编制也缺乏科学的技术规划[1]。樊元也认为对规划目标如何在各地区缺乏科学合理的依据[2]。
可再生能源发展是我国经济和社会发展的一项长远战略方针,也是我国目前情况下的一项极为紧迫的任务。2007年国家“可再生能源中长期规划”提出2010年占能源消费总量的10%,到2020年占能源消费总量15%。如何落实可再生能源发展目标,是当前研究的热点。可再生能源规划与政策体制相关,美国可再生能源规划是由各州自己确定,然后,汇总成国家总体可再生能源规划,这些规划通常是由一个研究机构或咨询公司制定,广大群众参与,最终以立法的形势体现出来。
在目前国内研究中,把目标分解到各个省市的国内文献尚不多见,但我们可以从其他行业规划研究中得到一些启示,如官义高研究了节能降耗目标的分解,提出一种如何将节能降耗目标向各省、自治区、直辖市进行分解的模型,主要考虑了各地能耗比重、产业结构和节能潜力等因素[3]。樊元考虑各行业能耗比重,构建基于部分方案偏好强度的赋权方法、因子分析法、熵值法和均方差法得到权向量矩阵,以甘肃省为例求出各地区的节能减排目标[2]。尧德明研究了土地利用总体规划用地指标分解的分解,综合考虑影响土地使用四个因素,采用层次分析法用地面积的权重[4]。
申兵认为,应加强规划编制和实施过程中的环境评价和“三期”评估。加强评估工作可以发现规划执行中的问题,以便根据环境的变化等因素对于规划目标等进行调整[5]。任东明认为可再生能源目标分解不仅能在不同地区、部门和行业进行分解,而且还应提出可再生能源的阶段性目标,即提出的目标要分成几个阶段来实现[6]。但这种把可再生能源目标分解到各个阶段的研究尚处于建议或萌芽状态。类推,把可再生能源目标落实到各个省的各个阶段的研究目标的研究更不多见。官义高[3]采用指数平均方法把节能减排目标分解到每一年,求出“十一五”期间每年降低率、降低量和累计降低量。欧盟在监督各成员国可再生能源目标实施进度时,采用的是等分方法把2020年的可再生能源规划目标,以每二年作为一个阶段,分解到每一阶段[7]。南非西开普省到2014年的电力消费将有12%的来自到可再生能源,到2020年这一数字将达到18%,到2030年将达到30%。
上述研究文献为可再生能源规划目标分解做出巨大的贡献,本文在上述研究文献的研究上,考虑可再生能源行业发展特点,构建了可再生能源行业成长曲线,依据成长曲线,确定各个阶段的可再生能源发展目标。在此基础上,提出了各省各个阶段的可再生能源份额。
2 可再生能源行业增长模型
2.1 行业增长模型
产业经济学认为,一个产业的发展主要取决于对其产品的需求,而不是它的供给。因此,若以变量Y=F(t)表示t时刻能源行业的总开采量,则其任一时刻的增长速度不仅与此时刻的总量成正比,同时还要同它与其的资源开采上限Ymax之差成正比,即:
dYdt=γ′Y(Ymax-Y)(1)
=γ′YmaxY1-YYmax
则微分方程的积分形式为:
Y=F(t)=Ymax1+C•exp(-γt)(2)
Y(t)=A(1+Be-kt)
对方程求导,得
dYdt=γY1-YYmax=γCYmaxexp(γt)+2C+C2•exp(-γt)
(3)
S(t)=kBAekt+2B+B2e-kt
方程(3)是可再生能源行业的发展速度,这里定义为可再生能源行业的生长曲线。方程(2)显示其相应的积累,可定义为可再生能源行业的生命曲线。下面,我们依据产业发展的特点,求出中国可再生能源增长模型及其曲线。2.2 可再生能源行业增长模型实证研究
以风电、水电和太阳能发电为代表的可再生能源行业的增长来代表可再生能源的生命曲线。表1给出了历年中国主要可再生能源发电的装机容量状况。
Y(t)[WB]=A(1+Be-kt)1+Be-kt=AY(t)AY(t)-1
=Be-kt
lnAY(t)-1=lnB-kt
令,u=lnAY(t)-1,c=lnB,
则U=C-kt
利用Eviews进行对该模型回归分析可得:c=8.29,k=037,则B=exp(c)=3983.83。
其可再生能源的生命曲线函数为:
Y(t)=20000(1+3983.83e-0.37t)
S(t)=2948034.2e0.37t+7967.66+1587091.47e-0.37t
以逻辑曲线模型对中国的可再生能源产业发展各阶段进行预测,可行到能源产业发展趋势综合预测结果。起动点(1995),起飞点(2007);飞跃点(2018);成熟点(2025);鼎盛点(2035)。
从图1、图2可以看出,2007年之前,中国可再生能源
图1 可再生能源发电行业生命曲线
Fig.1 The Life curve of renewable energy power industry
图2 可再生能源发电行业增长曲线
Fig.2 The growth curve of renewable energy power industry
产业尚处阶段仍为孕育期,增长速度较慢;到2007年才进入成长期,此后,发展速度将大大加快;2018年左右是飞跃点,可再生能源的发展迅速提高;2035年以后为可再生能源产业的全盛时期,可再生能源的接近到技术装机容量,此后的发展速度渐缓。
2.3 可再生能源行业增长曲线特征分析
综合比较分析图1 和表1, 对之进行定量与定性意义上的双重再思考, 我们可得如下结论:
(1) 生长曲线上升段拐点处, 产业发展的加速度最大; 下降段拐点处其负加速度最大, 这两个时刻分别被定义为“起飞点”和“成熟点”。以前者为例,“起飞前”, 加速度递增,“起飞”后, 加速度递减; 对应在生命曲线上,“起飞”前, 生长量的累积由缓而急, 呈指数型增长;“起飞”后, 增长性质变为准线性。换句话说,生命曲线上的“起飞规模”也就是生命曲线的性态由指数型增长变为准线性增长的转折点, 此时的可再生能源行业产能在理论上等于其极限值的13+[KF(]3[KF)](即21%)。
(2)当可再生能源产业产能达到技术可开发极限值的1/2时, 生命曲线线性最显著(因为曲率为0), 发展速度最快, 故谓之“鼎盛点”。当可再生能源产业产能累积至极限值的13-[KF(]3[KF)](即71%)时, 生命曲线又由准线性增长变为反指数型增长, 相应在此点曲率又是最大(与“起飞点”曲率相等)。当能源产业产能达到“成熟点”后, 生命曲线开始由疾而缓趋近极限, 至“淘汰点”时累积量一般已达极限值的99%以上(因为一般C 值均大于100), 在实践中此时可以认为可再生能源产业发展过程已暂时告以段落。
3 省域可再生能源发展阶段目标的确定
依据可再生能源的行业发展曲线,可以得到不同年份的可再生能源量占装机目标的份额。
依据表2所提出的数据,为了便于监管,取较为接近的值。从而可以制定出如公式4所示各省可再生能源发展规划阶段性目标:
Ri,2001-2012=Ri,2007+0.15(Ri,2020-Ri,2007)
Ri,2013-2014=Ri,2007+0.30(Ri,2020-Ri,2007)
Ri,2015-2016=Ri,2007+0.50(Ri,2020-Ri,2007)
Ri,2017-2018=Ri,2007+0.75(Ri,2020-Ri,2007)(4)
其中,Ri,2007是省在2007年可再生能源占本省总能源的实际份额。Ri,2020是各省在2020年可再生能源占本省总能源的目标份额。
依据可再生能源目标分解得到各省域的2020年目标份额,在2007年期初份额的基础上,依据学习曲线的特点,对2012年、2014年、2016年、2018年及2020年的可再生能源份额,通过公式4进行计算求解。其求解结果见表3。从表中可这看出,由于初始份额和目标份额不同各省的可再生能源阶段目标份额增长不同。对于资源量较优的省份,其可再生能源份额的增长速度大王发资源量较差的省份。这其中存在一个问题,由于可再生能源份额是依据能源消费而定的,可能有些省份的可再生能源份额远远大于其可再生能源资源总量,在这种情况下,我们可以采取两种方式来进行调整。其一是采用减少按可再生能源消费进行份额分配的比重,同时提高按资源量进行分配 的比重。这样,更多的依据可再生能源资源储量,减少了消费对可再生能源份额的影响。当经济发展处于调整增长阶段时,通常采用这种方式。其二是,构建可再生能源交易机制,允许可再生能源在不同的省份之间进行交易。这样,可激励各省充分利用本省可再生能源资源优势,当经济发展到较高水平时,通常采用市场交易机制。因为此时更看重的是各省可再生能源发展的公平性。
4 结论及发展
本文提出一种可再生能源阶段目标分解模型,模型考虑可再生能源行业的特点,构建了可再生能源行业增长曲线,在国家和各省当前可再生能源份额的基本上提出了不同时期的各省可再生能源发展阶段目标。从而有效的实施国家总体可再生能源目标战略。
本研究考虑了不同省份的可再生能源消费份额和资源储量份额所占的比重,可以有效地平衡地区间的利益关系。这是我国在从发展中国家过渡到中等发达国家时所需要考虑的如何平衡公平与效率之间关系的问题。即规划中考虑了两个重要原则:①目标可分解原则。国家的总量目标可以根据一定的标准在不同地区、部门和行业进行分解,由全社会共同完成发展目标。②公平性和区域间差异的原则。制定规划时,考虑资源禀赋和社会经济发展水平存在的差距,因此各地的总量目标应该有所区别,为实现总量目标所采取的措施也同样实事求是、因地制宜。
参考文献(References)
[1]魏后凯. 规划编制中的“央地矛盾”[J]. 望新闻周刊, 2005,(45). [Wei Houkai. Planning the “Centralperipheral Contradiction” [J]. Outlook News Weekly, 2005,(45).]
[2]樊元, 王红波. 节能指标的分解模型与实证[J]. 统计与决策, 2009, 24(1):32-34. [Fan Yuan, Wang Hongbo. Energysaving Model and Empirical Indicators of Decomposition[J]. Statistics and Decision, 2009, 24 (1):32-34.]
[3]官义高. GDP能耗降低指标如何分解[J]. 中国能源, 2006,28(9):19-31. [Guan Yigao. How to Decompose the Energy Consumption Target per GDP[J]. China Energy, 2006, 28 (9):19-31.]
[4]尧德明, 陈玉福,张富刚. 层次分析法在土地利用总体规划用地指标分解中的应用[J].安徽农业科学, 2007, 35(34):11175-11178. [Yao Deming, Chen Yufu, Zhang Fugang. The Application in Land Index of AHP in Land Use Planning [J]. Anhui Agricultural Sciences, 2007, 35 (34):11175-11178.]
[5]申兵. 国外规划体制与规划政策的经验及启示[J]. 宏观经济管理, 2008,(3):72-74. [Shen Bing. The Experience and Enlightenment of Planning System and Planning Policy in Foreign Countries [J]. Macroeconomic Management, 2008, (3) 72-74.]
[6]任东明. 关于建立中国可再生能源发展总量目标制度若干问题的探讨[J]. 中国能源,2005, 27(4):21-25. [Ren Dongming. How to Establish the Target System of the Renewable Energy Development in China[J]. China Energy, 2005, 27 (4):21-25.]
[7]刘贞. 欧盟可再生能源目标分解对我国省域规划的启示[J]. 中国矿业, 2009,18(9):66-70. [Liu Zhen. The Revelation of EU Renewable Energy Target Decomposition to Provincial Planning [J]. China Mining, 2009, 18 (9):66-70.]
[8]张庭伟.转型时期中国的规划理论和规划改革[J]. 城市规划, 2008,32(3):15-24. [The Redevelopment. Transformation of Chinas Reform of Planning Theory and Planning [J]. Town Planning, 2008, 32 (3):15-24.]
[9]Coakley S,Dunsky P, Faesy R, et al. New Jersey’s draft Energy Master Plan, Modeling Report for the Draft Energy Master Plan, Draft Implementation Strategies Report[EB/OL]. [2010-01-08]. state.nj.us/emp.
[10]European Commission. Proposal for a Directive of the European Parliament and of the Council on the Promotion of the Use of Energy from Renewable Sources[EB/OL]. [2010-01-08]. ec.europa.eu/energy/climate_actions.
[11]Winde A, Gildenhuys A, Stegmann J C, et al. The Renewable Energy Plan of Action[EB/OL]. [2010-01-08]. capegateway.gov.za/Text/2008/3/4._ses_re_banks_resources_scenarios_plan_drafoctt20070523v5_print.pdf.
[12]Lund H, Mathiesena B V. Energy System Analysis of 100% Renewable Energy Systems: The Case of Denmark in Years 2030 and 2050 [J]. Energy, 2009, 34(5):524-531.
[13]Connolly D, Lund H, Mathiesen B V, et al. A Review of Computer Tools for Analysing the Integration of Renewable Energy into Various Energy Systems [J]. Applied Energy, 2010, 87(4):1059-1082.
[14]Denis G, Parker P. Community Energy Planning in Canada: The Role of Renewable Energy [J]. Renewable and Sustainable Energy Reviews, 2009, 13(8):2088-2095.
Target Decomposition of Renewable Energy Based on Industrial Growth
LIU Zhen1 ZHANG Xiliang1 GAO Hu2
(1.Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China;
2. Energy Research Institute, NDRC, Beijing 100038,China)
【关键词】既有建筑,可再生能源,节能改造
一、前言
随着时代的不断发展,对可再生能源节能改造技术的需求也越来越高,这就要求设计和施工单位必须加强对可再生能源节能改造技术的研讨,努力提高既有建筑可再生能源节能改造技术,为既有建筑工程质量提供有力的保障。
二、可再生能源的现状与发展趋势
现在石油、煤炭、天然气是全世界各个国家大规模生产利用的主要能源,但是从世界经济的可持续发展来看,这些广泛利用的不可再生能源逐渐显示其局限性。在这种情况下,可再生能源的重要性将与日俱增,太阳能、风能、地热能等可再生能源的开发和利用,会在未来社会的经济发展具有重要地位。在当今不可再生能源日益局限的情况下,开发利用可再生能源是未来能源安全的需要,也是为了减少当今社会环境污染的需要,更是能源可持续发展的需要。
我国是以煤炭为主要能源的国家,经过不断的发展努力,我国能源消耗中煤炭的比重已经逐年下降,而可再生能源的开发利用受到高度重视。现阶段,降低矿物能源的开发利用,从以煤炭、石油、天然气为主的矿物能源系统转向可再生能源持久性能源系统,提到可再生能源在经济发展中的结构比重,推动可再生能源的开发利用已成为我国经济发展的一项基本国策。而在既有建筑行业中,如何最少的消耗资源,合理规划设计以求用最小量达到最高效率的使用能源,将既有建筑这一高消耗发展转变为低耗能高效率的问题,已是我国未来既有建筑业发展的必然选择。
三、可再生能源在既有建筑领域应用现状
1、太阳能
太阳能是各种可再生能源中最重要的基本能源,也是人类可利用的最清洁环保且取之不尽的优质能源。按照利用途径,太阳能在既有建筑领域的应用技术可分为太阳能热利用、太阳能光利用和太阳能储存转换利用三大类。目前多数既有建筑对太阳能的光热利用还普遍停留在“生产生活热水”这样低水平的应用层面上,加之产品成本较高,价格恶性竞争等原因,一些产品粗制滥造质量低劣,导致消费者对太阳能的技术产生信任危机,从而使太阳能技术产品的推广应用陷入举步维艰的境地。
2、风能
风是一种由太阳辐射热引起的自然现象。风能利用主要是风力发电和风能动力两种主要形式,其中又以风力发电为主。我国风能资源丰富的地区主要分布在东南沿海及附近岛屿,内蒙古、新疆和甘肃河西走廊以及东北、西北、华北和青藏高原的部分地区。我国目前在风电技术和设备制造方面也已处于世界领先地位,当务之急应当加快探索在我国沿海岛屿、城镇乡村的既有建筑领域、尤其是城市高层既有建筑因地制宜地发展直接利用风能资源技术。
3、地热能
地热能是贮存于地球内部的一种巨大的洁净能源。我国拥有丰富的地热资源,全国地热资源可采储量是已探明煤炭可采储量的2.5倍,其中距地表2000米以内储藏的地热能约为2500亿吨标准煤。目前正在逐渐受到人们重视且在既有建筑领域应用潜力巨大的是地源热泵技术,其最大的技术特点就是消耗少量的高品位能源,即能开发利用蕴藏在浅层地下的低品位能源满足既有建筑物的供暖、空调和热水供应需求,既实现了节能减排,又不污染环境,因此,利用热泵技术开发利用浅层地热能是目前最受欢迎的一项新技术。但是,和发达国家相比,我国的热泵技术还处于初级阶段,其主要差距是我国各地区目前还缺少对岩土地质材料性质进行全面系统的测试和统计分析工作,地源热泵技术仍处于按经验设计实施阶段,热泵系统运行效果与设计要求偏离过大的现象时有发生,造成地热资源的浪费或不足。
四、既有建筑可再生能源节能改造技术
1、风能
(一)、风力发电
风力发电的历史非常悠久,时间可以追溯到公元五千年前,它是埃及人在进行航海活动时,借助风能推动航行速度。风能在发展中慢慢的被推广使用,人们逐渐的利用风能来研磨谷物以及汲水等等。随着社会生产力不断发展,在上个世纪中风力涡轮机被生产而出。该设备可以给偏远地区带来电力,电力得到了普及,人们的生活质量得到了提高。
(二)、既有建筑设计思路
既有建筑设计中要融入风力发电系统,必须考察好当地的风力资源状况,设计中考虑设备噪音度,尽量的减少噪音给居民带来的影响。风力大电机虽然具有取之不尽用之不竭的好处,但是和其他能源相比,稳定性掌握比较难。解决了风力发电的稳定性问题,该发电方式将被普及,将提高能源可持续发展程度。解决该问题主要几种解决方案:可以通过电网连接的方式,将高效的电能引入。使用大型蓄电池自行产电,从而控制产电的功率。也可以使用风力采油机帮助发电,从而得到较强的电力资源。风轮机的产电功率和风速形成正比的关系,风力越大发电的功率越大,因此风力发电机一般都放置在房顶上。
(三)、自然通风
人们都希望既有建筑物能够接受到自然风,达到自然通风的效果。这主要考虑到自然通风的作用,首先:自然通风能够改善室内温度,净化室内空气。在炎热的夏季,人们都希望室内温度低,自然通风能够自行降低室内温度,减少空调耗能节约了电能,有效的减少了“既有建筑综合症“出现。自然通风能够消除室内污染物和潮气的程度,降低了空调耗能。自然通风实现被动式降温主要有两种方式:一是通风能够增强人体舒适度,二是夜间通风协助降温。其次,在冬季人们的需求成反向,人们希望室内温度高,也愿室内空气质量高。
2、既有建筑设计思路
(一)、分析数据
既有建筑想要提高风能的利用率,想要获得良好的室内温度,最关键在于设计既有建筑初期的材料收集和分析。气象材料的收集必须准确,场地调查数据获取来源必须精准,风环境数据分析思路也必须清晰。场地的风能数据收集必须包含以下几个方面:无风日数、平均风速、场地既有建筑以及风速频率等等。这是构成场地数据收集的重要组成部分,它对设计既有建筑有着推动作用。前期准备工作落实之后,在设计阶段时,可以根据这些数据设计出高质量的方案,通过风洞检验以及计算机计算,模拟出精准的建设模型,从而制作出风压分布图。该分布图给建设师带来极大的帮助,高效的优化了既有建筑外形,将设计中的优势发挥出来。适当调能进口高度,精准计算出中面性的位置,提高室内适宜温度。
(二)、注意问题
在该设计中要注意一下几个问题:自然通风会引起采暖负荷过大,因此避免负荷出现;夏季出现过热现象常常出现,在进行设计时避免自然通风引起超能热度;房间内的风速保持在一定范围内,避免使用者因为风力过大出现不适症状;通风窗口要避免使用过程中造成的噪音,影响使用者正常休息等等。这些问题在设计既有建筑时,必须考虑到,这对提高能源利用率有推动作用。
3、地热能
地源热泵是一个广义的术语,它包括了使用土壤、地下水和地表水作为热源和冷源的系统。地源热泵技术是一项值得大面积推广的建筑供能技术。地源热泵是将浅层和深层的大地能量(土壤、地下水、地表水等天然能源)进行综合利用来作为冬季热源和夏季冷源,然后再由热泵机组向建筑物供冷供热的系统,是一种利用可再生能源的既可供暖又可制冷的新型中央空调系统。
五、结束语
综上所述,加强对既有建筑可再生能源节能改造技术的剖析,能够对可再生能源节能改造进行把握,进而能够提出一些好的对策,如此方可在工程建造中对提高可再生能源节能改造的效益。
参考文献
[1]诺伯特・莱希纳.既有建筑师技术设计指南――采暖・降温・照明[M].中国既有建筑工业出版社,2014
关键词:可再生能源;建筑节能;太阳能;地热能
1引言
中国现有建筑面积约为400亿m2,每年新建建筑面积约20亿m2,其中95%以上仍是高能耗建筑[1]。随着城市建设的高速发展,我国建筑能耗逐年大幅上升,已达全社会能源消耗量的32%,加上建筑材料生产能耗约13%,建筑总能耗已达全国能源总消耗量的45%。建筑用能的增加对全国的温室气体排放“贡献率”已达到了25%[2]。到2020年我国建筑耗能将达到1089亿t标准煤,建筑能耗已成为中国经济发展的软肋,建筑节能已刻不容缓。我国建筑节能始于20世纪80年代,节能政策由单一技术政策转为政策体系的构建,由强化规制约束向激发鼓励导向性政策发展,逐渐向节能政策与环境间互动开放性转变。然而由于我国建筑节能基础薄弱,相关法律法规不健全,政策落实不到位,设计标准实行率较低等原因我国建筑节能发展水平远低于发达国家。
能源是经济发展的引擎,社会进步的动力,而如今能源需求不断增长,化石燃料几近枯竭。可再生能源以其分布广,储量大,环保清洁等优点,得到了极大的关注并得以应用。财政部和住房城乡建设部联合[2011]61号文件《关于进一步推进可再生能源建筑应用的通知》明确指出在“十二五”期间:切实提高太阳能、浅地层地能、生物质能等可再生能源在建筑用能中的比重,到2020年新增可再生能源在建筑领域的消费比例占建筑耗能的15%以上[3]。随着我国建筑节能的发展,可再生能源在建筑中应用也将愈来愈广泛。这一应用极大丰富了建筑节能的形式,降低了建筑能耗,从而可极大推动建筑节能的发展。同时也会为能源结构多样化,应对全球气候环境问题和实现可持续发展起到举足轻重的作用。因此,可再生能源技术的研究将成为建筑界永恒的课题,把可再生能源技术应用于工程是我国建筑节能发展的必然趋势,也是改善我国生态环境,促进社会、经济全面协调发展的必由之路[4]。
2可再生能源在建筑节能中利用形式
可再生能源主要包括:太阳能、风能、生物质能、地热能和海洋能等。在建筑中主要利用太阳能、风能、地热能等能源直接与间接或被动与主动地为建筑物提供热水、采暖、空调、动力等一系列功能,以满足人们生活生产需要。其应用形式多种多样,本文主要围绕以下几种形式进行研究。
2.1太阳能热水系统
太阳能热水系统是一种太阳能光热利用技术,即利用温室原理,把太阳能转变为热能,并向水传递热量,从而获得热水的一种系统[5]。太阳能热水系统是太阳能利用技术最成熟、最经济,应用最广泛,产业化发展最快的领域。系统主要由太阳能集热器、蓄热容器、控制系统及管道等组成。目前,我国投入使用的太阳能热水系统仅提供生活热水的家用小型太阳能热水系统。据统计,2012年太阳能热水器产量约4968万m2(2484万台),以2012年全国太阳能热水器保有量2亿m2测算,每年可节能3000万t标准煤,减少CO2排放7470万t,具有良好的经济效益、社会效益和环境效益。从系统规模化降低成本以及系统控制的角度,集中式太阳能热水系统优于家用小型系统,以单栋集合住宅等为供热基本单元的集中式太阳能热水系统开始在国内工程中得到应用。随着城市高层建筑的普及,人均屋面面积越来越少,集热器采光面积与采暖面积配比受到限制。因此立面太阳能热水系统可能将成为未来发展的热点,要做到集热器与建筑立面相匹配,立面系统对太阳能热水系统要求较高(集热器设置于外墙表面会引起围护结构热工性能的变化以及安全方面问题等等),必须对传统模式加以改进;同时应调整太阳能集热器的形式使其与墙面的色彩和风格协调一致;太阳能热水系统配备的电缆、设备及输水管路等应与建筑物其他管线统筹安排、集中布置,便于安装维护。
2.2太阳能采暖技术
太阳能采暖分为主动式采暖和被动式采暖。被动式采暖通过建筑物朝向和周围环境的合理分布、立面处理以及建筑材料与结构的恰当选择,使建筑物合理汲取存储热能,解决采暖问题,同时减少常规能源的使用达到建筑节能目的。其形式有太阳房、太阳能温室、太阳干燥等。其共有特点是控制阳光和空气合理地进入建筑物并储存、分配热量。系统所需设备简单,投资低,适用于中小型住宅建筑。不足之处是太阳能利用率低,室内温度波动大,舒适性差,夜晚或连续阴天时无法维持室内温度。主动式采暖需要借助机械设备实现太阳能采暖,其采暖系统一般主要包括太阳能集热器、储热水箱、风机、管道、水泵、换热器及控制系统等部件。系统多采用水作热媒进行采暖,往往采取太阳能地板辐射采暖方式。尽管我国是太阳能热水器生产和应用的第一大国,但人均集热面积不到0.06m2,仅相当于日本、以色利等国的1/20。我国主动式太阳能供热采暖系统发展缓慢,其工程应用尚处于起步阶段。目前已建成了若干单体建筑太阳能供热采暖试点工程,如北京清华阳光能源开发办公楼,北京市平谷县将军关,门头沟新农村等太阳能采暖项目,但是太阳能区域供热采暖工程还没有应用的实践。太阳能采暖系统的主要障碍并不在于技术本身,而在于投资费用过高,春、夏、秋季热水过剩等问题,可以通过季节蓄能技术与地源热泵、生物质能等其他可再生能源的互为补充来实现全年的综合利用。
2.3太阳能制冷技术
太阳能制冷主要包括太阳能光伏系统驱动的蒸气压缩制冷、太阳能吸收式制冷、太阳能蒸汽喷射式制冷、太阳能固体吸附式制冷、太阳能干燥冷却系统等。基于经济性、可靠性及实用性等因素的考虑,太阳能溴化锂吸收式制冷技术研究和应用相对较多,发展也较为成熟,目前国内已有厂家实现了产品化。在太阳能溴化锂吸收式制冷系统中,太阳能集热器对于技术的发展有较大限制。平板集热器在超过90℃的高温下效率过低,真空管集热器与聚焦集热器在国际上成本普遍较高,因此太阳能驱动的溴化锂吸收式制冷系统,目前应用较多的是单效溴化锂吸收式制冷系统。北京太阳能研究所曾成功地在山东乳山完成了一个太阳空调示范项目,集热器面积为540m2,由2160根热管型真空管组成的高效集热器阵列,可提供88℃的高温热水,集热器在88℃的高温下集热效率可保持在40%。溴化锂吸收式制冷机采用大连三洋单效机组,太实现了100kW空调制冷或采暖量,可供给1000m2面积空调,每日可供生活热水32t。
2.4光伏建筑一体化(BIPV)技术
作为太阳能发电的一种新理念的光伏建筑一体化,就是将太阳能光伏发电方阵安装在建筑的维护结构外表面来提供电力,属于分布式发电的一种[6]。BIPV系统一般由光伏阵列、墙面(屋顶)和冷却空气流道、支架等组成,与建筑完美的结合在一起。具有建筑、节能、技术、经济和环保相结合的优势,可以有效利用围护结构表面,减少土地资源的占用;有效降低围护结构温升,改善室内环境;无污染,无噪音,可有效降低建筑物对一次能源的依赖,同时可减轻公共电网的压力。例如:上海世博园区作为亚洲最大的光伏建筑一体化工程,是“绿色世博”、“生态世博”理念的直接展现者。园区中国馆、主题馆、世博中心和未来馆四座标志性建筑上大规模应用太阳能建筑一体化技术,太阳能电池板总装机容量4.6MW,年均发电达406万kW・h,减排CO2总量逾3400t,大大缓解电网压力的同时实现了良好的环境效益,使发电与建筑完美地融为一体。
截止到2011年,我国光电建筑已建成的装机容量为535.6MW,在建筑中的应用尚处于示范与探索阶段。从发展趋势来看,今后光伏建筑技术的重点将以开发高效率、低成本新型光伏电池为主,在应用上将以并网屋顶系统和大型并网系统为主攻方向。
2.5地源热泵技术
地源热泵作为一种利用可再生能源的暖通空调新技术,是建筑节能领域的高效节能技术之一[7]。地源热泵技术是利用地下的土壤、地表水、地下水温相对稳定的特性,通过电能辅助,在冬天把低位热源中的热量转移到需要供热的地方,在夏天还可以将室内的余热转移到低位热源中,达到制冷降温的目的。地源热泵系统可分为3种:以利用土壤作为冷热源的土壤源热泵;以利用地下水为冷热源的地下水热泵系统;以利用地表水为冷热源的地表水热泵系统。地源热泵系统一般由三部分组成:室外地温能地下换热系统、水环管路与水源热泵机组和室内采暖空调末端系统。具有能量消耗低,运行灵活,经久耐用,全年满足温度要求等优点。世界上最大的地源热泵系统位于美国的路易维尔市,它使用地下水作为热源,空调面积达161650m2,系统制冷和制热量分别为15.8MW和19.6MW。在15年的运行中没有发生系统问题,与临近的一栋相似的建筑相比节约了47%的能源。
根据相关报告显示,2011年年底,我国地源热泵总应用面积为2.4亿m2,“十二五”期间将完成3.5亿m2,发展潜力巨大。但是地源热泵极强的地域适用性限制了它的使用区域。此外要促进地源热泵的推广还需要构建统一的地源热泵标准体系,开展地源热泵大规模应用对岩土长期影响的评价研究,制定相关技术与政策管理策略。
3可再生能源在建筑节能应用中存在的问题
(1)成本过高是可再生能源技术在建筑节能中应用的首要问题。目前太阳能光伏发电系统在建筑中使用时,由于造价过高,不能产生规模效应,所产生的电能效益与其系统造价严重脱节,投资回收极其困难;太阳能光伏电池制造成本虽逐年下降,但仍处于较高的水平,相应的发电成本与常规能源尚不具备可比性。太阳能采暖技术现仍处于试点阶段,同地源热泵都存在系统复杂,设备众多,初投资巨大且回收期较长的缺点,使其扩大推广的阻力增加。
(2)可再生能源的自身特性对其利用影响较大。就太阳能而言,辐射能量密度较低,需要较大的采光面积,而且太阳能具有不稳定性和间接性,随季节、气候、昼夜变化而变化,这与建筑太阳能可利用面积有限,所需能源的持续性产生矛盾,为太阳能利用增加了难度。在对地热能利用过程中,由于地下岩土层导热系数很小,热容量极大,热扩散能力极差,因此从地下取热需要大量的埋管,初投资偏大、需用大面积土地;同时对冬夏负荷不平衡的情况下,会造成地下能量积聚,历年累积的负荷总量随时间增加而累加,可能导致大地失去自然调节能力,致使地源热泵运行困难,造成夏季所需水源温度过高,系统难以运行等问题。
(3)技术问题。目前在建筑光电利用过程中光电转化率较低,用于商业生产的太阳电池板效率只有13%~15%,发电装置产生的电能与建筑系统自然对接技术有待提高。而对于地源热泵来说,对当地地质及气候条件依赖性强,运行过程中泵体及管道极易结垢、堵塞、腐蚀,大大地降低换热器的传热性能,使得系统效率下降,无法实现持续稳定的能量利用。且地源热泵受到自身系统深埋地下(水下)的特点的影响,无法回避设备维护维修极其不便的缺点。对于水源热泵,实际工程中回灌堵塞问题没有根本解决,存在地下水直接由地表排放的情况,这将加重地面沉降对周边环境的影响。目前国内缺少对地源热泵系统性能专门的评价标准对行业约束形成有效约束,技术在推广方面存在盲目性。
此外,新能源利用装置的最长设计寿命只有20年,在此期间,因为工作环境的变化等会对设备产生一定的影响,最终导致使用寿命减少,无法实现整个建筑生命周期的全过程、最大化节能利用。
4总结与建议
2014年1月绿色科技第1期在建筑能源消耗大,能源紧缺的形势下,把可再生能源应用于建筑节能是必然的发展趋势。太阳能、地热能等可再生能源在建筑上的有效应用,不仅可以代替有限的传统能源,提高城乡居民生活质量和住宅舒适度,而且可以减少污染物的排放,保护生态环境,可再生能源的开发和利用具有广阔的前景和深远的意义,必将在我国的建筑节能事业中发挥巨大的作用。作为建筑节能中的重要技术措施,可再生能源在利用时,也应注意以下3个方面。
(1)因地制宜就地利用。可再生能源在应用时,应充分考虑当地的能源状况和气候条件,有选择、有侧重地利用可再生能源,尽量做到就地利用。
(2)多种可再生能源相结合。将分项技术整合,发挥各可再生能源的优势,弥补单一形式效率较低的缺陷,以期获得更大的经济和社会价值。
(3)新技术研发。加大可再生能源利用的新技术研发资金投入,优化系统模式,提高可再生能源的利用效率。
参考文献:
[1] 成志明.我国建筑节能现状及节能措施[J].山西建筑,2011,37(23):189~190.
[2] 李继业.建筑节能工程设计[M].北京:化学工业出版社,2012.
[3] 住房城乡建设部.[2011]61号文件,关于进一步推进可再生能源建筑应用的通知[R].北京:住房城乡建设部,2011.
[4] 任乃鑫,蒋文杰.解析新能源建筑及其技术[J].建筑节能,2011,39(4):31~35.
[5] 何江.太阳能建筑一体化技术应用[M].北京:科学出版社,2012.
[6] 韩利,艾芊.光伏技术在节能建筑中的应用术[J].低压电器,2009(2):5~8.
作者简介:刘贞,博士,副教授,主要研究方向为可再生能源与气候变化。
基金项目:国家973发展计划(编号:2010CB955602);国家自然科学基金(编号:71073095);教育部人文社科项目(编号:10YJC630161)。
(1.重庆理工大学工商管理学院,重庆 400054;2.清华大学能源环境经济研究所,北京 100084;
3.国家发改委能源研究所,北京 100038)
摘要 通过对当前主要的情景设计及评价方法的研究,认为目前我国可再生能源发展迅速,但初期的部分基本工作尚未完成。尤其是可再生能源的供给潜力及其经济可开发性评价。基于此,提出一种基于动态成本曲线的可再生能源发展战略情景仿真模型。动态成本曲线生成的基本原理是在静态成本曲线基础上,考虑技术进步、可再生能源外部价值对静态成本曲线的影响,从而生成不同时期的可再生能源成本曲线,进而构成可再生能源动态成本曲线。考虑不同种类可再生能源技术进步水平、外部环境价值的变化,设计不同的可再生能源发展情景。基于可再生能源动态成本曲线,并对不同的可再生能源发展情景下的投资成本、能源效益、经济效益和社会效益进行了综合评价。最后通过一个案例,分四种情景,即不考虑技术进步,低环境方案情景;不考虑技术进步,高环境方案情景;考虑技术进步,低环境方案情景;考虑技术进步,高环境方案情景;分别给出了四种情景下的装机总量、投资总额、创造就业、污染物和温室气体减排量。
关键词 可再生能源;动态成本曲线;技术进步;环境外部价值
中图分类号 F019.2文献标识码 A文章编号 1002-2104(2011)07-0028-05doi:10.3969/j.issn.1002-2104.2011.07.005
大力发展可再生能源是国家能源发展战略的重要组成部分,是提升能源安全、减少温室气体排放、调整能源结构、改善生态环境、缩小城乡贫富差距的重要举措之一。2005年国家《可再生能源法》颁布之后,国家可再生能源中长期发展规划于2007年出台。作为落实可再生能源法和中长期发展规划的重要环节,省级可再生能源规划逐步提上日程。
用于帮助制定能源政策的模型有情景优化模型和情景模拟模型两大类,最近出现了基于agent的能源政策情景仿真模型[1-6]。情景优化模型考虑一定的约束条件,通过线性规划确定最小成本的能源系统,其主要的代表模型有MARKAL[7-9]、EFOM和AIM/能源排放模型[10-12]等。情景模拟模型是以情景分析为基础,描述整体能源系统,其主要代表模型有LEAP[13-15]、MESSAGE[16-18]等。基于agent的政策情景仿真模型,观察能源系统的集聚演化过程,常见的平台主要有Swarm[19], ASPEN[20]等。本研究属于情景优化模型范畴。
通过对国内外区域可再生能源情景分析的相关理论、方法及案例进行研究。可以发现不同的可再生能源发展阶段,可再生能源发展考虑的内容不同:①在发展初期,可再生能源份额较小,对能源市场的影响非常小,技术水平较低,此时,主要研究的是由政府推动的供给侧市场;②随着技术的相对成熟,可再生能源开始参与能源供需平衡,此时的研究侧重于如何把可再生能源推向市场的政策研究;③技术发展已经达到可以与传统能源相竞争的程度,此时,重点研究能源市场机制、能源均衡及空间协调。
研究借鉴美国加州区域可再生能源规划方法、欧盟可再生能源目标分解方法、加拿大RETs模型,以及世行提出的RESCREEM模型,提出一种基于动态成本曲线的可再生能源发展情景分析方法,并把它应用到省级可再生能源发展情景分析与评价中。
1 可再生能源发展情景设计基本方法
可再生能源情景设计的基本原理是不同政策、不同时期的项目成本和环境外部价值对成本曲线产生影响,其交叉点为不同时期的可再生能源规划模型的成本最优量。
1.1 静态成本曲线的构建方法
可再生能源发电静态成本曲线需要考虑不同项目的单位成本及其开采量。
假设该地区共有m种可再生能源发电技术,第i种发电技术有ni个可再生能源发电厂。
第i种发电技术的第j个发电厂的装机容量为Hi,j,第k年的可再生能源发电满负荷小时数为ti,j,k,第i种发电技术的项目生命周期为Ti年。则第i种发电技术的第j个发电厂的可再生能源发电总量为:
Qi,j∑Tik1Hi,j×ti,j,k
第i种发电技术的第j个发电厂第k年的设备费用为cei,j,k,原材料总量为qri,j,k,原材料价格为pi,j,k,平均维护费用为cfi,j,k,工作人员数量qsi,j,k、人均工资wsi,j,k,则第i种发电技术的第j个发电厂的可再生能源发电的成本为:
Ci,j,k∑Tik1cei,j,k+qri,j,k×pi,j,k+cfi,j,k+qsi,j,k×wsi,j,k
假定第i种发电技术的第j个发电厂的网络约束成本为ci,t,第i种技术可再生能源发电厂的税率为ri,t,行业的边际收益率为Ri。则第i种发电技术的第j个发电厂的净现值为:
NPVi,j∑Tik1
假定NPVi,j0,则其单位发电成本为pi,j。依据各种可再生能源发电的单位发电成本,及其发电量Qi,j可以构建可再生能源发电静态成本曲线。
1.2 技术进步对静态成本曲线的影响
技术学习曲线是影响行业成本曲线模型变化的重要因素。不同时期,不同技术的投资成本是不同的。需要预测未来哪些项目是值得开发的,采用什么措施,可以把具有较高成本的项目降低到符合市场开发的价值区域内。
学习曲线的简单模型假设,每个时期的平均成本以一个不变的百分比下降。设qt表示t时期产出,Qt指累计至t时期的产量(自该产品投放开始);Ct表示在t时期内所负担的总成本,通常为可变成本。不变百分比学习曲线假设平均可变成本(或平均成本),即Ct/Qt以一个不变速率即指数下降,
Ct/QtAQ-bt-1
其中b为参数,其的绝对值越大,说明平均投入的成本下降的就越快。A表示生产第一个单位产品所需的平均成本,可由Q1时,AC/q 求得。
1.3 外部环境价值对静态成本曲线的影响
传统能源的外部环境成本主要包括直接环境成本和温室气体排放环境成本。即:外部环境成本直接环境成本+温室气体排放环境成本。其中,直接环境成本是指主要污染物排放产生的成本。目前,常用两种方法来量化燃煤发电的直接环境成本,一种是减排成本加排污费法,是通过加总各类污染物的减排成本和排污费来衡量的;另一种是价值评估法,是通过计算各种污染物排放所造成的实际价值损失(比如污染治理,对人体健康损害等)来衡量的。国内外很多机构和学者[21-22] 均采用过以上方法做相关的研究计算,结果具有一定的差异。总的来说,第一种方法的研究结果较第二种方法的研究结果偏小。温室气体减排成本是指由燃煤发电厂运行过程中对产生的温室气体进行减排行动而产生的成本。
2 可再生能源发展情景设计及评价
2.1 可再生能源发展情景设计
对于直接环境成本,低环境方案主要采用世界银行和我国相关研究机构于2005年合作开展中国地区大气排放环境损害的一项研究[23]。高环境方案则参考了欧盟国家2006年对欧盟地区大气排放所造成的环境损害的研究成果,通过欧盟与中国各省的人均GDP、人口密度的对比,将欧盟直接环境成本调整为中国各省的直接环境成本。
对于温室气体排放成本,参考目前全球碳市场中的碳交易价格。按照规定,我国可再生能源项目一般最低交易价格为10欧元/t。因此,在模型中,温室气体排放成本高环境方案为30美元/t CO2,低环境方案为15美元/t CO2。
在运算过程中,模型选取姜子英,程建平等[24]对燃煤电厂外部成本的分析结果,取典型燃煤电厂每千瓦时排放7.58 g SO2,3.6 g氮氧化物,3.19 g烟尘。CO2排放方面,借鉴IEA(2009)报告结果:我国每度煤电的CO2排放约为893 g。因此,模型环境成本内容如表1。
在对环境效应进行评价时,低环境情景和高环境情景的分别选用国内和欧盟的研究成果进行预测,其预测结果在表2中给出。
表1 单位电量环境成本
Tab.1 Environment cost per unit electricity(元/kWh)
资料来源:作者整理计算所得。
表2 燃煤发电环境成本预测
Tab.2 Environmental costs of coal-fired power
generation prediction(元/kWh)
2.2 各种可再生能源发展情景分析评价
依据供电量动态成本曲线和供电装机容量动态成本曲线,结合供电外部成本预测可得不同年份的发电装机容量。
图2给出了四种情景下,对应规划年份的可再生能源总投资。其中:NT-LE:表示不考虑技术进步,低环境方案情景;NT-HE:表示不考虑技术进步,高环境方案情景;YT-LE:表示考虑技术进步,低环境方案情景;YT-HE: 表示考虑技术进步,高环境方案情景。
在四种情景下,到2015年的累计总投资分别是413亿、678亿、444亿和331亿元人民币。到2020年累计总投资分别是474亿、1 180亿、637亿、1 320亿人民币;到2025年累计总投资分别为669亿、1 180亿、851亿、2 640亿元人民币;到2030年累计总投资分别为708亿、1 180亿、1 010亿和2 640亿元人民币。
图3给出了不同情景下的可再生能源投资所带来的就业总量。四种情景下,2015年的累计创造的就业分别为1.9万、2.2万、2万和1.9万个岗位,2020年累计创造的就业分别为2.1万、2.4万、2.3万和2.5万个岗位,
2025年累计创造2.2万、2.4万、2.3万、4.1万个岗位;2030年累计创造2.3万、2.4万、2.4万和4.1万个岗位。
图4给出不同情景下各个规划年份的可再生能源所带来的SO2减排总量。在四种情景下,2015年的SO2减排量分别为14.5万t,18.5万t,15.2万t和12.7万t;2020年的SO2减排量分别为15.9亿t,25.4万t,18.4万t,27.1万t;2025年的减排量分别为19.4万t,25.5万t,22.1万t和40.9万t;2030年的减排量分别为20.3亿t,25.95万t,25.24万t和40.9万t。
图5给出了不同方案减排CO2总量,四种情景下,2015年的减排量分别为1 302万t,1 665万t,1 364万t,1 145万t;2020年的减排量分别为1 438万t,2 288万t,1 656万t和2 443万t;2025年的减排量分别为1 743万t,2 297万t,1 988万t和3 680万t;2030年的减排量分别为1 831万t,2 336万t,2 272万t和3 680万t。
3 结 论
目前,中国可再生能源发展处于发展的第二阶段,然而中国可再生能源发展迅速,有部分第一阶段的基础工作尚未完成。因此政府采取了政府推动和市场推动两种手段。此阶段,在进行具体战略情景设计时,应重点考虑供给侧技术,同时考虑政策创造市场对能源供给的影响。
本文借鉴美国加州区域可再生能源规划方法、欧盟可再生能源目标分解方法、加拿大RETs模型,以及世行提出的RESCREEM模型,提出一种基于动态成本曲线的可再生能源发电情景设计及分析评价方法,并给出了一个情景分析评价案例。验证了该方法的可行性。
参考文献(References)
[1]徐丽萍,林俐.基于学习曲线的中国风力发电成本发展趋势分析[J].电力科学工程,2008,24(3):1-4.[Xu Liping, Lin Li. Analysis on the Development Trend of China's Wind Power Generation Cost Based on the Learning Curve[J]. Electric Power Science and Engineering, 2008, 24 (3):1-4.]
[2]高虎,梁志鹏,庄幸.Leap模型在可再生能源规划中的应用[J].中国能源,2004,26(10):34-37.[Gao Hu, Liang Zhipeng, Zhuang Xing. The Applications of Leap Model in Renewable Energy Planning[J]. China Energy, 2004, 26 (10):34-37.]
[3]陈荣,张希良,何建坤.基于message模型的省级可再生能源规划方法[J].清华大学学报:自然科学版,2008,48(9):1525-1528.[Chen Rong, Zhang Xiliang, He Jiankun. Renewable Energy Planning Approach at the Provincial Level Based on Message Model[J]. Joural of Tsinghua University:Natural Science Edition, 2008, 48 (9):1525-1528.]
[4]Cormio C, Dicorato M, Minoia A, et al. A Regional Energy Planning Methodology Including Renewable Energy Sources and Environmental Constraints[J]. Renewable and Sustainable Energy Reviews, 2003, 7:99-130.
[5]Wene Co, Ryde'N B. A Comprehensive Energy Planning Model in the Municipal Energy Planning Process[J]. European Journal of Operational Research, 1988, 22:212-222.
[6]Tsioliaridou E, Bakos G C, Stadler M. A New Energy Planning Methodology for the Penetration of Renewable Energy Technologies in Electricity Sector-Application for the Island of Crete[J]. Energy Policy, 2006, 34:3757-3764.
[7]陈文颖,高鹏飞,何建坤.二氧化碳减排对中国未来GDP增长的影响[J].清华大学学报:自然科学版, 2004,44(6):744-747.[Chen Wenying, Gao Pengfei, He Jiankun. Carbon Emission Reductions on China'sFuture GDP Growth[J]. Joural of Tsinghua University:Natural Science Edition, 2004, 44 (6): 744-747.]
[8]佟庆,白泉,刘滨.Markal模型在北京中远期能源发展研究中的应用[J].中国能源,2004,26(6):36-40.[Tong Qing, Bai Quan, Liu Bin. Markat Model in Beijing in the Long-Term Studies of Energy Development[J]. China Energy, 2004,26 (6): 36-40.]
[9]余岳峰,胡建一,章树荣.上海能源系统markal模型与情景分析[J].上海交通大学学报,2008,42(3): 361-369.[Yu Yuefeng, Hu Jianyi, Zhang Shurong. Shanghai Energy System Markal Model and Scenario Analysis[J]. Journal of Shanghai Jiaotong University, 2008,42 (3): 361-369.]
[10]松岗让,姜克隽,胡秀莲.全球气候变化模型的研究与发展[J].中国能源,1998,(8):16-21.[Song Gangrang, Jiang Kejun, Hu Xiulian. Global Climate Change Models in Research and Development[J]. China Energy, 1998,(8): 16-21.]
[11]胡秀莲,姜克隽.减排对策分析:Aim/能源排放模型[J].中国能源,1998,(11):17-22.[Hu Xiulian, Jiang Kejun. The Analysis of Emission Policy:Aim/Energy Emissions Model[J]. China Energy, 1998,(11): 17-22.]
[12]杨宏伟.应用aim/Local中国模型定量分析减排技术协同效应对气候变化的影响[J].能源环境与保护,2004,18(2):1-4.[Yang Hongwei, Application of Aim/Local Model for Quantitative Analysis of China's Emission Reduction Technology Synergies of Climate Change[J]. Energy, Environment and Protection, 2004, 18(2): 1-4.]
[13]杜祥琬,黄其励,李俊峰,等.我国可再生能源战略地位和发展路线图研究[J].中国工程科学,2009,11(8):4-9.[Du Xiangwan, Huang Qili, Li Junfeng, et al. Strategic Role of Renewable Energy Research and Development Road Map[J]. China Engineering Science, 2009, 11 (8): 4-9.]
[14]张颖,王灿,王克.基于leap的中国电力行业CO2排放情景分析[J].清华大学学报:自然科学版,2007, 47(3):365-368.[Zhang Ying, Wang Can, Wang Ke. Leap of China's Power Industry Based on CO2 Emissions Scenarios[J]. Joural of Tsinghua University:Natural Science Edition, 2007,47 (3): 365-368.]
[15]迟春洁,于渤,张弛.基于leap模型的中国未来能源发展前景研究[J].技术经济与管理研究,2004,(5):73-74.[Chi Chunjie, Yu Bo, Zhang Chi. Leap Model Based on Prospects for the Development of China Future Energy[J]. Technical and Economic and Management Research, 2004,(5): 73-74.]
[16]Strubegger M. Global Energy Perspectives [EB/OL]. (1998-08-05)[2010-03-08]..
[17]Nebojsa N, Joseph A, Gerald D. IPCC Special Report On Emissions Scenarios[EB/OL].[2010-03-08]. grida. no/publications/other/lpcc_sr/?src/climate/lpcc/emission/.
[18]Ipcc Assessment Reports [EB/OL]. [2010-01-20]. lpcc.ch/publications_and_data/publications_and_data_reports. htm.
[19]Stefansson B. Swarm:An Object Oriented Simulation Platform Applied To Markets and Organizations[R]. Evolutionary Programming Vi Lecture Notes In Computer Science, 1997,1213: 59-71.
[20]Basu N, Pryor P, Quint T. Aspen: A Micro Simulation Model Of The Economy[J]. Computational Economics, 1998, 12(3): 223-241.
[21]张帆,徐莉,刘刚.火电企业环境成本估算与管理[J].武汉大学学报:工学版,2008,41(2):99-102.[Zhang Fan, Xu Li, Liu Gang. Fired Power Plants and Management of Environmental Cost Estimates [J]. Journal of Wuhan University:Engineering Science, 2008, 41 (2):99-102.]
[22]刘季江,蒋苏红,顾煜炯.燃煤电厂环境成本的分析与计算[J].电力技术经济,2005,17(6):60-62.[Liu Jijiang, Jiangsu Hong, Gu Yujiong. Coal-Fired Power Plant Analysis and Calculation of Environmental Costs [J]. Electric Power Economy, 2005, 17 (6):60-62.]
[23]温鸿钧.核电与煤电外部成本比较及对策研究[J].核科学与工程,2005,25(2):97-105.[Wen Hongjun. Comparison of External Costs of Nuclear Power, Coal Power and Countermeasures [J]. Nuclear Science and Engineering, 2005, 25 (2):97-105.]
[24]姜子英,程建平,刘森林等. 我国煤电的外部成本初步研究[J].煤炭学报,2008,33(11):1325-1327.[Jiang Ziying, Cheng Jianping, Liu Senlin, et al. The External Costs Of Coal Preliminary Study [J]. Journal of China Coal Society, 2008, 33 (11):1325-1327.]
Study on Design and Evaluation of the Development Scenarios ofRenewable Energy
LIU Zhen1,2 ZHANG Xi-liang2 GAO Hu3
(1.The School of Business Administration, Chongqing University of Technology, Chongqing 400054,China;
2. Institute of Energy, Environment and Economic, Tsinghua University, Beijing 100084,China;
3. NDRC Energy Research Institute, Beijing 100038,China)