欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

减少二氧化碳排放优选九篇

时间:2023-12-23 15:54:42

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇减少二氧化碳排放范例。如需获取更多原创内容,可随时联系我们的客服老师。

第1篇

[关键词]二氧化碳 能源强度 产业结构

中图分类号:X32 文献标识码:A 文章编号:1009-914X(2016)28-0146-01

引言

二氧化碳气体的排放是全球关注的重大环境问题,他直接导致了全球气候的变暖,严重影响着地球的环境,破坏生态平衡。为了应对全球变暖的问题,我国在2009年的常务委员会中结合当前我国二氧化碳的排放状况,给出了未来的排放指标。指标要求在2020年的时候总排放量要比2009年下降40%。这就要求各地政府要充分做好优化二氧化碳排放的工作,实现二氧化碳的排放目标。根据调查显示,我国在1952年到2011年间,制造企业的增长速度由原来的19%增加到40%上升了21个百分点。制造企业是我国最大的能源消耗企业,因此要想降低二氧化碳的排放就必须控制好我国制造业能源消耗量。根据2008年的ipcc的第5次评估报告显示,我国的二氧化碳排放主要是由于化工燃料的燃烧,根据调查显示,我国的化石燃料燃烧所产生的二氧化碳排放量达到全国总排放量的90%多。

一、 研究方法与数据来源

本篇文章是用“转换份额分析”(Shift--shareAnalysis)的模式对制造业二氧化碳的排放数据进行分解。

根据以上的公式我们可以看出影响制造业二氧化碳排放指标变化的因素主要可以分为7个。(1)技术进步因素。它主要是反映了制造业个行业的能源消耗变化对制造业二氧化碳排放量的影响。这种影响主要是基于制造业的产品工艺的不同。所以制造业应该努力提高自己产品的生产工艺,开发研究新的产品,让单位产品在能源消耗上发生变化,这样就能做到节能减排的效果。(2)行业结构的变化。它主要是反应制造业各个行业的产品结构对二氧化碳排放强度的影响。这种影响主要是外部环境以及内部生产调整的影响。(3)能源结构效应。他主要是指制造业中由于生产使用的能源变化对二氧化碳排放的影响。(4)技术进步与行业结构相互影响的作用。是指由于技术的进步和产业结构的变动对二氧化碳排放强度的影响。(5)技术与能源结构的效应。我国制造产业的的技术不断改进和能源结构的不断调整对二氧化碳排放产生的影响。(6)行业结构与能源的相互效应。制造业行业结构的变动与能源变动的综合变动对二氧化碳排放的影响。(7)技术进步,行业结构与能源结构的相互作用。主要是针对这三者的结合对制造业二氧化碳排放的影响。

二、制造业二氧化碳排放强度变动总体效应分析

在1999到2009年这十年之间,技术的进步是影响二氧化碳排放强度的最大影响因素。接着是行业结构的变动,能源消耗的减少等因素。通过历年数据的分析我们不难看出各种因素影响对二氧化碳排放的影响比值,其实技术的进步使得二氧化碳的排放量减少了24%左右,行业结构的变动让二氧化碳减少19%左右,能源消耗的减少使得二氧化的排放量减少了10%左右。由此可见技术的创新和生产工艺的改良对制造业二氧化碳的排放量影响最大。由于制造行业中一般都是以煤炭作为主要的能源,因而能源结构的{整对制造业二氧化碳的排放影响也是极为重要的。

三、行业数据分析

在制造业各个行业的数据分析中我们不难看出对制造业技术进步影响最大的是金属的冶炼及锻压行业,技术进步与改良让整个行业中的二氧化碳排放量减少了30%多。紧着是非金属的矿物质制品和化学原料及化学制品企业,由于技术的改良和创新让二氧化碳的排放量减少了20%多。其原因是这些行业的产品创新和技术工艺的水平发展比较快,使得能源的消耗大量减少。还有一些行业的技术进步比较缓慢。如通信设备,计算机,纺织业,皮毛加工制造业以及木材的加工制造业等等,这些产业的技术进步对能源的消耗影响不大。所以这些行业的技术进步对整个行业中的二氧化碳排放强度影响较小。

在行业结构效应中,对制造业影响最大的是石油化工,炼焦,以及核燃料的加工。他们平均让二氧化碳的排放强度减少了42%。其次是化学原料及化工制品企业,他们的行业结构调整让二氧化碳的排放强度减少了33%。这些行业的结构调整使得二氧化碳的排放强度减少。但是制作行业中别的产业的行业调整对二氧化碳强度的排放影响甚微。甚至有些行业的调整没有让二氧化碳的排放强度减少却还在增加。比如黑色金属的冶炼及压延,交通运输设备的制造企业,医药制造企业,专用设备的制造企业等。由于这些行业的产出比重增加的速度大大超过了能源消耗的下降速度,所以对制造业二氧化碳的排放强度没有起到积极的影响。

结论

气候变暖是如今世界最为关注的问题之一,减少二氧化碳的排放,缩短气候变暖的程度已经变得刻不容缓。我国制造业是关系国民经济发展的支柱产业。由于我国的各种原因导致很多高能耗,高污染的企业技术得不到改善。根据本文的研究发现经济的增长和能源的消耗对制造企业的影响最大。

为了贯彻落实我国节能减排的政策,降低二氧化碳的排放强度,需要从二个方面入手,一方面要切实做好节能减排的具体措施。另一方面要密切关注整个制造行业的减排效果。在减排的手段方面要促进制造业的技术改进,让企业在优化生产技术的同时节约能源的消耗,以实现减排的目的。具体产业的变动对二氧化碳的排放影响比较小,还存在着很大的改良空间。可以多促进绿色制造,新兴制造业,大力开发可持续能源与再生能源。

参考文献

[1]李晶. 产业政策对产业结构变迁、二氧化碳排放的影响[D].山东大学,2014.

[2]郭杰. 中国碳减排政策分析与评估方法及应用研究[D].中国科学技术大学,2011.

第2篇

随着全球环保意识高涨,二氧化碳排放权交易正成为新兴投资商品。世界各大银行与专业投资机构正逐步进入这一交易市场,他们积极参与规划发展中国家减少温室气体排放的项目建设,希望借此获得排碳配额,再卖到欧洲市场牟利。

据悉,欧盟排放交易机制(EU ETS)是目前最大的商业化碳交易机制,主要在欧洲气候交易所(ECX)交易。欧盟27国厂商必须符合EU ETS规定的二氧化碳减排标准,如果减量超过标准,就可卖出称为“欧盟排碳配额”(EUA)的二氧化碳排放权;反之,如果减排没有达标,就必须从市场购买相应配额的排放权。

目前,欧盟法规主导的欧洲碳交易,已成为全球最大、最活跃的市场。欧洲气候交易所的二氧化碳排放权期货,自2005年4月开始到2007年6月,总交易额已达165亿欧元(237亿美元),并预计将继续增加。二氧化碳排放权期货市场的成熟扩大,使二氧化碳排放权和小麦、原油等商品一样,可自由流通,提供了减少排放的商业诱因。

分析人士指出,随着二氧化碳排放权市场扩大,欧洲企业现在希望从中国大陆、印度等发展中国家购得较便宜的二氧化碳排放权。这些国家可根据京都议定书规定,在减排之后获取“合格减排配额”(CER)的二氧化碳排放权。CER2007年已开始在ECX交易。

由于发展中国家现行技术水准低,改善幅度大,因此引进新技术、获取二氧化碳排放权的成本比在欧洲便宜。举例而言,CER目前售价约为每吨7到17欧元,而EUA在欧洲气候交易所的价格约为24欧元。

与欧洲相同,美国虽然尚未签字加入规范全球温室气体排放的京都议定书,但美国企业却早已对这个商机庞大的二氧化碳排放权交易市场蠢蠢欲动。尽管大多数专家认为美国全国最快要到2010年才会全部通过温室气体排放规范,但越来越多的美国企业正为京都议定书通过后必将欣欣向荣的二氧化碳排放权交易市场开始做出积极的准备。

目前,虽然美国企业并未被硬性规定从事二氧化排放权交易,而是采取自愿性质,但已有225家承诺在2010年以前减少6%温室气体的公司,正在芝加哥交易气候交易所(CCX)交易二氧化碳排放权。二氧化碳排放权每吨价格从CCX在2000年成立时的90美分飙升至现在已超过4美元。

七年来一直致力于减少欧洲温室气体的益可环境国际金融集团,目前已在纽约成立办事处,开始正式进军美国市场。该公司新事业发展部主管指出:“美国市场将是二氧化碳排放权交易的宝藏,因此我们现在就要开始建立自有品牌。”

第3篇

【关键词】二氧化碳;科学视野;学习兴趣

初中化学新课标指出:在化学教学中,通过帮助学生了解化学制品对人类健康的影响,懂得运用化学知识和方法治理环境,合理地开发和利用化学资源,逐步学会从化学的角度认识自然与环境的关系,分析有关的社会现象。

本文以二氧化碳一节内容的学习为例,在讲授完毕本节内容后,教师可以设置问题或布置任务:如果二氧化碳过度排放,将对人类产生什么危害呢?人类又将如何应对呢?由此引导学生深入思考。然后老师可以依据调研情况向学生说明:空气中大量排放的二氧化碳导致地表温度上升、冰川溶化、海平面上升、给人类带来灾难。尽管目前还无法科学计量,但确有迹象表明CO2所引起的气候变化是很显著的。控制减少大气中二氧化碳的含量已引起全世界科学家的重视,在努力寻找转化的方法,以保护环境。那么如何做到CO2的减排、封存和利用呢。在此可以向学生讲授当今二氧化碳处理利用的现状,以达到拓展学生科学视野、激发学习兴趣、提高环保意识的目的。

1.生物技术

利用光合作用吸收储存二氧化碳,是控制二氧化碳最直接、副作用最小的方法。减少大气中二氧化碳含量最简单的办法就是植树造林,也是最廉价的解决方案。树木在生长的过程中从空气吸收二氧化碳,放出氧气,以木材的形式存储碳。据估计,全世界森林中总共存储着近1万亿吨碳。然而,利用植物光合作用降低二氧化碳的效率很低,因为需要大量的土地来植树或农作物。据计算,要平衡目前全球二氧化碳排放值,人们必须每年种植相当于整个印度国土那么大面积的森林,显然这是不可能的。但生物吸收二氧化碳的方法并非穷途末路,研究发现海洋生物吸收二氧化碳的潜力巨大。日本科学家已经筛选出几种能在高浓度二氧化碳下繁殖的海藻并计划在太平洋海岸进行繁殖,以吸收附近工业区排出的二氧化碳。美国一些研究人员以加州巨藻为载体,繁殖一种可吸收二氧化碳的钙质海藻,形成碳酸钙沉入海底,腾出的巨藻表面可供继续繁殖。

2.能源革新

二氧化碳的排放在很大程度上取决于为获得能量而进行的矿物燃料燃烧,因此改革能源形式或能量来源称为减少二氧化碳排放的一个突破口,这也符合污染控制的原则,从源头上控制二氧化碳的生产。

(1)燃料脱碳:即以含碳量较低的燃料(如石油和天然气)或无碳燃料(如氢气)取代含碳量较高的燃料(如煤),使得每单位能耗量的平均二氧化碳排放量减少。20世纪80年代美国化工界就提出将煤、生物体等不清洁燃料与氢气反应生成甲烷、一氧化碳、氢以及固态焦炭等,再将甲烷高温分解成氢,一氧化碳以及固体炭黑,然后氢与一氧化碳合成甲醇,未反应的氢与一氧化碳作为原料循环使用。

(2)燃料电池:即以电化学氧化产生电力,直接将化学能转化为电能,燃烧效率达到40%-60%(与之相比火力发电的效率仅为30%左右),大幅节约了初级能源,避免了大量污染。重要的是,燃料电池是以氢为燃料的,燃烧产物是水,既解决了能源产生和输送,又避免了环境污染。

3.二氧化碳的收集

二氧化碳的人为排放源主要有汽车、工厂等。然而在众多汽车上安装收集二氧化碳的设备不现实,目前把收集二氧化碳的工作重点放在了以燃烧矿物燃料为主的发电厂上,这些发电厂的二氧化碳排放量大约占全世界二氧化碳排放量的1/4。在吸收塔中二氧化碳与醇胺接触发生反应,释放出浓缩的二氧化碳,并还原成化学吸收剂。另外,比较理想的办法是将收集到的二氧化碳输送到地下或海洋深处埋藏起来。石油开采行业中有些油田为了增加留在地层孔隙中难以开采的石油产量,向地下注入压缩二氧化碳,以增大地下压力,增强原油流动性,提高原油的采收率。目前,美国每年有近百个油田为提高原油产量向地下注入500万吨左右的二氧化碳。尽管封闭的地质结构是人们最理想的二氧化碳储存之处,但是一些科学家指出,深海才是未来温室气体最大的潜在储存库。海洋表面每天都要吸收2000万吨的二氧化碳。据估计,以海水溶解方式总共储有46万亿吨二氧化碳,但其容量还要大很多。因此即使人类向海洋加入两倍前工业时代大气浓度的二氧化碳,海洋的碳含量的变化也不超过2%。而且,通过自然过程,排放到大气中的二氧化碳早晚也会转移到海洋中。

4.二氧化碳的资源化利用

二氧化碳作为新的碳源,开发绿色合成工艺已引起普遍关注。综合利用二氧化碳并使之转化为附加值较高的化工产品,不仅为碳一化工提供了廉价易得的原料,开辟了一条极为重要的非石油原料化学工业路线,而且在减轻全球温室效应方面也具有重要的生态与社会意义。随着人们对二氧化碳性质的深入了解,以及化工原料的改革,二氧化碳作为一种潜在的碳资源,越来越受到人们的重视,应用领域将得到有效开发。

【参考文献】

[1] 赵成美.二氧化碳的性质, 中学化学教学参考,2000(5):27-28

[2]Garola Hanisch.二氧化碳储存的来龙去脉[J].环境科技动态,1998,2:9-12

[3]周欢怀,艾宇.二氧化碳减排与可持续发展[J].杭州化工,2005,32(2):15-18

【作者简介】

第4篇

碳捕捉,就是捕捉释放到大气中的二氧化碳,压缩之后,压回到枯竭的油田和天然气领域或者其他安全的地下场所。

如今,全世界各个国家研究二氧化碳捕集和封存的技术方兴未艾、如火如荼。但6月19日,美国国家研究委员会的一项独立研究发出警告,二氧化碳的排放导致温室效应,被认为是引发全球变暖的一大重要原因,(CCS)有可能诱发更大的地震。

碳捕集与封存

(CCS)是指将大型发电厂、钢铁厂、化工厂等排放源产生的二氧化碳收集起来,并用各种方法储存以避免其排放到大气中的一种技术。 CCS技术包括二氧化碳捕集、运输以及封存三个环节,它可以使单位发电碳排放减少85%-90%。

这项技术的研究可以追溯至1975年,当时的美国将二氧化碳注入地下以提高石油开采率,但将它作为一项存储二氧化碳以减少温室气体排放的环保工程,则开始于1989年的麻省理工大学,直至近年来,这项技术得到更多的重视和研究,它被认为是一种可以减少空气中二氧化碳浓度的方法。目前,据专家介绍,从技术层面来说,应用于碳的捕集、运输以及封存的各项技术其实都是已有的、成熟的,只不过在此前并未应用于CCS方向,问题主要存在于现有发电厂的改造以及新建发电厂的技术和资金投入。

二氧化碳的捕集方式主要有三种:燃烧前捕集(Pre-combustion)、富氧燃烧(Oxy-fuel combustion)和燃烧后捕集(Post-combustion)。无论哪种捕集方法,简而言之是将燃煤发电厂产生的气体收集起来,经过脱硫、氮氧化物等等制备后,将二氧化碳分离并收集起来。

二氧化碳运输,捕集到的二氧化碳必须运输到合适的地点进行封存,可以使用汽车、火车、轮船以及管道来进行运输。一般说来,管道是最经济的运输方式。 2008年,美国约有 5800千米的二氧化碳管道,这些管道大都用以将二氧化碳运输到油田,注入地下油层以提高石油采收率(Enhanced Oil Recovery,EOR)。

“捉拿”技术各显千秋

2010年7月,由我国安徽理工大学张明旭教授带领的科研团队在实验室小试装置成功的基础上,自行设计和建造的利用稀氨水捕集二氧化碳中试装置在安徽淮化集团实现连续运转,并顺利生产出了首批合格的碳酸氢铵产品。该装置具有常温、常压、一次吸收和反应、能耗低、工艺简单、安全稳定等显著特点。该装置通过氨法对烟道气中的二氧化碳进行捕集和吸收,每小时可处理烟道气1000立方米左右,烟道气中的二氧化碳脱除效率达80%以上,减排二氧化碳超过110立方米(烟道气中二氧化碳浓度按13%计算)以上,每小时可生产碳酸氢铵肥料270公斤左右。该技术的研究开发既可以减少二氧化碳排放,保护环境,又可使污染物变废为宝。

今年2月,美国一个研究团队发现一种具有八角形孔窗的天然沸石尤其擅长捕捉二氧化碳的行踪,在效率和经济上远胜于目前的工业洗涤器。沸石是一种矿石,其晶格中存在很多大小均一的通道和空腔,一克沸石孔穴和通道的内表面积可达500平方米到1000平方米,这种沸石每立方厘米的小孔足可吸附0.31克的二氧化碳。由此可以吸取或过滤大小不同的分子,并可重复使用几百次,是过滤、擦洗含许多杂质气体的混合气体中有害分子的理想选择,也在化学工业中被广泛应用于催化剂和过滤器。

挪威在5月份,启用了世界上规模最大的碳捕获和储存(CCS)技术发展设施。由挪威政府投资10亿美元(约为63亿元人民币)资助的蒙斯塔德技术中心将测试两种燃烧后碳捕获技术,一种以胺为基础,另外一种以冷冻的氨溶剂为基础。该设施的独特之处在于,它可以测试来自附近两个地点的废气——一个280兆瓦的热电联产工厂和每年产生1000万吨排放的蒙斯塔德炼油厂。它们制造的烟气里二氧化碳的含量各不同,分别约为3.5%和13%。

6月份,英国研究人员研发出一种新型多孔材料,这种材料中的孔洞就像一个个“笼子”。诺丁汉大学等机构研究人员在英国《自然?材料》杂志上报告说,这是一种名为NOTT-202a的新材料。如果把空气压入这种多孔材料之中,大部分气体如氮气、氧气、氢气和甲烷等随后可以从“笼子”中出来,唯独二氧化碳会被留下,锁在“笼子”中。

碳捕的争议

二氧化碳的排放导致温室效应,被认为是引发全球变暖的一大重要原因。6月19日,美国国家研究委员会的一项独立研究发出警告,二氧化碳捕获与封存(CCS)风险太大,地下封存有可能诱发更大的地震。该研究已发表在最新一期美国《国家科学院院刊》上。

地球物理和环境地球系统科学部门教授马克和史蒂文?戈雷利克发表文章说:“将大量的二氧化碳注入大陆内部常见的脆性岩石当中会高概率地触发地震。而且即使是小到中等规模的地震都会威胁到二氧化碳库密封的完整性,在此背景下,大规模的实施CCS可能是一个具有高风险且不会显著减少温室气体排放的战略。”

美国国家研究委员会指出,CCS将涉及长时间注入地下最大量的流体,可能会导致更大的地震。CCS需要地下泄漏率每千年小于1%,以达到可再生能源相同的气候效益。而近年来在美国注入到地下的污水已经与发生小到中级的地震有所关联。理由之一是,早在1960年,科罗拉多州就有明显例证;另外的例子出现在去年阿肯色州和俄亥俄州。如果试图将二氧化碳封存地层数百年到数千万年,引发类似规模的地震可能性将相当大。

环保组织地球之友的一份报告指出:以英国为中心的碳抵消行业有着数十亿美元的交易量,但这个行业并没有起到降低全球温室气体排放的作用。碳抵消计划的问题在于,它减少的温室气体比科学家所说的避免灾难性气候变化所需的量要小的多。如果是这样的话,抵消计划就不可能够推行,也不能够计算清楚一项计划究竟能够减少多少碳排放。

第5篇

关键词 二氧化碳排放;投入产出法;影响因素

中图分类号 F205 文献标识码 A 文章编号 1002-2104(2015)09-0021-08 doi:10.3969/j.issn.1002-2104.2015.09.004

进入21世纪以来,温室效应逐渐凸显,能源流失问题也日益严重,二氧化碳排放的控制问题已上升到全球层面。在这种背景下,针对二氧化碳排放量的计算在当前的研究中显得尤为重要,其计算结果的准确性不仅直接决定了社会和政府对于碳排放状况的认识,更会对我国的高耗能产业结构调整、减排计划的执行以及国际碳排责任的判定产生影响。因此,不断分析、对比各种计算方法的影响因素、改进计算方法、修正计算结果并对计算进行深入分析,已经成为碳排放相关研究的重要基石。

1 文献综述

目前主要的二氧化碳计算方法有能源消耗法、生命周期评价法(LCA,Life Circle Assessment)和投入产出法(IO,InputOutput)。能源消耗法计算二氧化碳排放量是指以统计资料为依托,根据能源的消耗量以及二氧化碳的排放系数进行对二氧化碳排放量的估算。这一计算方法的数据选取较为灵活,可以针对具体的问题选取适合的数据进行分析,许多学者采用这一方法进行计算。但该方法也存在一定问题,比如数据来源不正统可能会导致计算结果较实际偏差过大。何建坤[1]根据Kaya公式及其变化率分析了中国及一些发达国家的二氧化碳排放峰值,并发现单位能耗的二氧化碳排放强度年下降率大于能源消费的年下降率。赵敏等[2]根据2006年IPCC二氧化碳排放计算指南中的公式及二氧化碳排放系数,计算了上海市1994-2006年间能源消费的二氧化碳排放量,并以此分析了二氧化碳排放强度下降的原因。曹孜等[3]根据化石能源的消耗量计算了2008年总体与各部门的二氧化碳排放量以及1990-2008年碳排放强度的发展趋势,从而进一步研究二氧化碳排放量与产业增长之间的关系。汪莉丽等[4]根据全球及各地区的能源消费历史数据分析了以往的二氧化碳排放总量、二氧化碳排放累积量和人均二氧化碳排放量,并以此预测了未来的能源消费二氧化碳排放情况。李宗逊等[5]根据昆明市的工业能耗统计数据对昆明市的工业二氧化碳排放、行业二氧化碳排放强度及行业分布做了探究。

生命周期评价法计算二氧化碳排放通常以活动环节为分类单位,要求详细研究测度对象生命周期内的能源需求、原材料利用和活动造成的废弃物排放。这一方法能够具体到产品原材料资源化、开采、运输、制造/加工、分配、利用/再利用/维护以及过后的废弃物处理等各个环节,多被用于建筑领域。但在计算生产工序复杂的产品时,存在计算工作量大等缺陷。刘强等[6]利用全生命周期评价的方法对中国出口的46种重点产品进行了碳排放测算,发现这些产品的二氧化碳排放量占全国二氧化碳排放量的比例非常高。张智慧等[7]基于可持续发展及生命周期评价理论界定了建筑物生命周期二氧化碳排放的核算范围并给出了评价框架和核算方法。张陶新等[8]利用生命周期法构建了测算建筑二氧化碳排放的计算模型,并通过构建的模型分析了中国城市建筑二氧化碳排放的现状。

投入产出法计算二氧化碳排放量主要以投入产出表为依据,可以根据产品的直接消耗系数及完全消耗系数分别估算二氧化碳的直接排放和间接排放。直接消耗系数是指某一产品部门在单位总产出下直接消耗各产品部门的产品或服务总额。完全消耗系数是指某一部门每提供一个单位的最终产品,需要直接和间接消耗(即完全消耗)各部门的产品或服务总额。这一计算方法的优势在于可以进行隐含二氧化碳排放(Embodied Carbon Emission)的估算,并且在对于多行业二氧化碳排放进行计算时通过直接消耗系数矩阵以及完全消耗系数矩阵进行一次性估算,减少行业分类的工作量。但是,投入产出法的缺点在于其在计算结果的准确度上不如前两种二氧化碳排放计算法,因而多被用于隐含二氧化碳排放的计算。Lenzen[9]利用投入产出模型研究了1992年和1993年澳大利亚居民最终需求的能源消费及温室气体排放情况,发现65%以上的温室气体来自能源的隐含消费。Ahmed和Wyckof[10]根据投入产出方法估算了全球24个国家的贸易隐含碳,证实了产业地理转移对全球二氧化碳排放的影响。刘红光等[11]、孙建卫等[12]均采用区域间的投入产出表对中国各区域各行业的二氧化碳排放量做了测算,并针对区域碳减排做了分析。何艳秋[13]利用投入产出法计算了各行业的二氧化碳排放系数,并进一步计算了行业最终产品的直接二氧化碳排放量以及消费中间产品的间接二氧化碳排放量。

二氧化碳排放量的计算方法种类繁多,各有利弊,而现有文献大多是选取其中一种方法对二氧化碳排放量进行估算,少有针对不同方法的比较研究和对不同影响因素的量化分析。本文梳理了当前主要的二氧化碳排放量计算方法,并基于投入产出法,对比计算了不同考虑因素对于二氧化碳排放量计算的影响,得到各种条件变动情况下所导致的测算偏差。基于投入产出法,对比分析了不同考虑因素对于二氧化碳排放量计算的影响,并计算了各种条件变动情况下的计算偏差。

2 计算方法及数据来源

二氧化碳排放主要包括能源燃烧的二氧化碳排放和水泥生产过程的二氧化碳排放两类。其中,能源燃烧的二氧化碳排放是指各行业燃烧各种能源所产生的二氧化碳排放,主要根据能源行业对各个行业的能源投入进行计算。水泥生产过程的二氧化碳排放是指在水泥生产过程中因化学反应而产生的二氧化碳排放,主要根据水泥的产量及相关的排放系数进行计算。两种来源涉及不同的行业,由于各行业在生产、加工过程中都需要能源提供热力、动力等,因此各行业均存在能源燃烧二氧化碳排放,而水泥生产的过程排放主要与水泥生产相关,属于非金属矿物制品业的二氧化碳排放。具体来说,这两类二氧化碳排放量的计算思路如下:

本文所介绍的二氧化碳排放量计算法适用于各类能源消耗量已知、各行业的能源使用量已知、水泥产量已知并且能源燃烧和水泥生产过程的二氧化碳排放系数均已知的情况,可以计算各年度国家或地区的总二氧化碳排放情况以及分行业二氧化碳排放情况。为方便介绍,本文以2007年中国的二氧化碳排放情况为例,给出其排放量的计算方法。选取的数据来源主要包括2007年的中国能源平衡表与投入产出表,各能源的平均低位发热量以及单位产热量下的二氧化碳排放系数,此外还需要水泥产量与水泥生产的二氧化碳排放系数等。其中,2007年的中国能源平衡表与各能源的平均低位发热量取自国家统计局出版的《2008年能源统计年鉴》,内容包括2007年中国的能源使用情况;各能源在单位产热量下的二氧化碳排放系数取自日本全球环境战略研究所出版的《2006年IPCC国家温室气体清单指南》,指的是各能源在燃烧后每产生单位热量所排放的二氧化碳量;水泥产量取自国家统计局公布的2007年全国30个省份水泥产量数据,全国的水泥产量本文认为是各省水泥产量的加总;而水泥生产的二氧化碳排放系数取自Greenhouse Gas Protocol网站关于波特兰水泥系数的计算。波特兰水泥是以水硬性硅酸钙类为主要成分之熟料研磨而得之水硬性水泥,通常并与一种或一种以上不同型态之硫酸钙为添加物共同研磨,其二氧化碳排放系数适用于对水泥生产过程中普遍的二氧化碳排放量计算。

3 二氧化碳排放量计算

3.1 能源燃烧的二氧化碳排放

全国的总二氧化碳排放量主要通过能源消耗量计算,而分行业的二氧化碳排放主要是将全国的二氧化碳排放总量按行业能耗的比例进行分解得出。在已知能源的燃烧量及二氧化碳排放系数时,二氧化碳排放量为能源的燃烧量与二氧化碳排放系数的乘积。

3.1.1 能源燃烧量

能源的燃烧量计算的关键问题在于将“没有用于燃烧”的能源消费量从总量中剔除。根据能源平衡表显示,各种能源用于燃烧的部分包括能源的终端消费量、用于火力发电的消费量以及用于供热的消费量,不包括在工业中被用作原料、材料的部分。

3.1.2 能源的二氧化碳排放系数

能源燃烧的二氧化碳排放系数通过平均低位发热量和单位热量的二氧化碳排放系数计算。已知各能源燃烧产生单位热量的二氧化碳排放系数和各能源的平均低位发热量(即单位质量的各类能源在燃烧过程中产生的热量),将各能源燃烧产生单位热量的二氧化碳排放系数与其平均低位发热量相乘,即可得出每单位质量的各类能源在燃烧过程中排放的二氧化碳总量,也即各能源的二氧化碳排放系数,计算过程如公式(4)所示,其计算结果见表2。

3.1.3 能源行业的二氧化碳排放系数

通过以上两部分计算,已经可以得到全国的二氧化碳排放量,接下来需要计算分行业的二氧化碳排放量。如图1的计算流程图所示,计算各行业的二氧化碳排放需要用到各能源行业的二氧排放系数以及各能源行业向所有行业的投入关系。

燃烧所产生的二氧化碳排放量,但由于本文使用的中国42部门投入产出表中提供的能源行业仅有煤炭开采和洗选业、石油和天然气开采业、石油加工炼焦及核燃料加工业、燃气生产和供应业4个,这些能源行业与各个化石能源之间存在的对应关系如下:煤炭开采和洗选业包括的能源有原煤、洗精煤和其他洗煤,石油和天然气开采业包括原油和天然气,石油加工、炼焦及核燃料加工业包括汽油、煤油、柴油、燃料油、液化石油气、炼厂干气、其他石油制品、焦炭和其他焦化产品,燃气生产和供应业包括焦炉煤气和其他煤气。各能源行业产生的二氧化碳排放量即为燃烧与其相关能源产品所产生的二氧化碳排放量之和。

这里需要说明的是,在使用投入产出法计算各行业的能源消耗量时,是否剔除能源的转化部分、是否减去固定资本形成及出口投入都会导致二氧化碳排放结果的不同。原因在于,虽然全国42部门所需的能源均是由四个能源行业提供,但这四个能源行业所投入的能源却并非全部用于国内产品生产的能耗,其中有三种用途需要在计算时单独处理:①作为原材料进行加工转换的部分,如煤炭炼焦、原油加工为成品油、天然气液化等的消耗;②作为存货及固定资本形成等的部分;③作为能源产品出口给国外或调出本地的部分。由于这些部分的燃烧过程不在本地,所排放的二氧化碳也不属于本地排放。因此,在计算能源行业的投入金额时,是否剔除这三部分,会对计算结果产生影响。

本文将分别计算是否剔除以上三部分能源消耗的情况。首先,在不剔除这三类能源消耗的情况下,各能源行业用于燃烧部分的总投入金额为:

3.1.4 各行业的能源燃烧排放

在以上计算的基础上,可以计算投入产出表中42行业各自的能源燃烧排放量。计算方法如公式(8)所示,将投入产出表中能源行业j对行业k的能源投入,乘以公式(7)中能源行业j的二氧化碳排放系数,可以计算得出能源行业j给行业k带来的二氧化碳排放量。而行业k的能源燃烧排放为各能源行业投入到行业k的能源燃烧排放量之和,即:

3.2 水泥生产过程的二氧化碳的排放

由于水泥在生产过程中会产生复杂的化学反应,产生二氧化碳,这部分二氧化碳排放被称之为水泥生产的过程排放,在我国二氧化碳排放总量中占到相当比例,因此,在计算中国的二氧化碳排放总量时,是否考虑水泥的过程排放也会影响最终的计算结果。

水泥的生产属于非金属矿物制品业,其二氧化碳排放的计算公式为:

EC=QC×v (9)

其中:EC为水泥生产中的二氧化碳排放量,QC为水泥的总产量,v为水泥生产的二氧化碳排放系数。

本文选取的水泥生产二氧化碳排放系数为波特兰水泥系数,根据Greenhouse Gas Protocol,取值为每t的水泥产量在生产过程中排放

0.502 101 6 t的二氧化碳。水泥产量方面,根据国家统计局统计数据,将中国各省在2007年的水泥产量加总后可得全国在2007年的水泥总产量,共计135 957.6万t。将这两个数据代入公式(9)中计算可得,2007年中国水泥生产过程中的二氧化碳排放总量为68 264.5万t。需要指出的是,在分行业统计的二氧化碳 排放中这一排放属于非金属矿物制品业。

4 不同考虑因素对计算结果的影响

根据本文第二部分对计算方法的介绍可以发现,从“是否剔除能源的转化部分”、“是否减去固定资本形成总额与出口、调出的能源投入”以及“是否考虑水泥生产的过程排放”这3个角度出发,我们可以用23=8种方式对二氧化碳的排放量进行计算,如表3所示。理论上“剔除能源的转化部分,减去固定资本形成总额与出口、调出的能源投入并且加上水泥生产过程排放”的情况下所得计算结果是最为准确的。因此,为了保证计算结果的准确性,在条件允许的情况下,上述三个角度的问题均需要考虑在内。当数据缺失的时候,就需要进行折衷,采取其他几种“不完美的”方法进行计算:比如当能源转化情况不明,即

能源转化率或能源转化量未知的情况下,应选取不剔除能源的转化部分的方法计算;当缺乏固定资本形成总额与出口、调出能源投入的信息,也即投入产出表最终使用部分情况不明时,应选取不减固定资本形成总额与出口、调出的能源投入的方法计算;而在水泥产量或水泥生产的二氧化碳排放系数未知时,计算中不考虑水泥生产的过程排放。相应地,如果这三个角度的问题没有被完全考虑,计算结果也会存在一定程度的偏差。只有在偏差度允许的情况下,该计算方法才是有意义的。因此在采取这些方法计算时,应首先确定各个方法计算结果的准确性。

为了分析各种方法计算得到的二氧化碳排放量的准确性,本文分别利用以上8种“不完美的”计算方法计算了中国2007年的二氧化碳排放量。表3中以“是否剔除能源的转化部分”、“是否减去固定资本形成总额与出口、调出的能源投入”以及“是否考虑水泥生产的过程排放”作为计算变量,展示了各种计算方法得到的结果。当变量取1时为考虑该角度的计算方法,变量取0时为不考虑该角度的计算方法,一共列出8种二氧化碳排放量的计算方法。其中,由于三个变量均取1时,(即“剔除能源的转化部分,减去固定资本形成总额与出口、调出的能源投入并且加上水泥生产的过程排放时”)所得到的计算结果最为准确,因此表3中以三个变量均取1的情况为基准情况,并将其余方法的计算结果与基准情况进行比较,得出各方法下计算结果的准确性偏差。

总排放量方面,计算结果显示,总排放量仅受“是否考虑水泥的过程排放”影响。如表3所示,总排放量的取值仅有两种情况,考虑水泥的过程排放时总排放量为695 167.1万t,不考虑水泥的过程排放时总排放量为626 902.6万t。原因在于本文中二氧化碳排放量的计算包括能源燃烧二氧化碳排放量的计算和水泥生产二氧化碳排放量的计算两类,其中燃烧排放的总量是根据能源平衡表中能源燃烧量计算得出,如前文中的公式(3)所示,与公式(5)、(6)中“是否剔除能源的转化部分”、“是否减去资本形成总额及出口和调出”无关(只影响结构不影响总量),因此总排放量仅受“是否考虑水泥的过程排放”影响。

不考虑能源的转化部分会使中间使用二氧化碳排放量被高估,最终使用二氧化碳排放量被低估。如表3所示,在不剔除能源的转化部分,减去资本形成总额及出口、调出的能源投入,并考虑水泥的过程排放时,中间使用的二氧化碳排放量较基准情况高出0.3%,最终使用的二氧化碳排放量较基准情况低11.7%。原因在于不剔除能源的转化部分即认为所有的能源投入均被用于燃烧,这其中包括真正用于燃烧的部分和实际用于转化的部分,而用于转化的部分在转化成新的能源后也会再次作为燃烧部分计算,也即这部分能源燃烧会被计算两次。这意味着在计算各行业的二氧化碳排放量时,存在转化工序的行业,其能源燃烧量被高估,总燃烧量一定的情况下,其他没有转化工序的行业和最终使用中的能源燃烧量会被低估,导致最终使用二氧化碳排放量的低估及中间使用二氧化碳排放量的高估。不考虑资本形成总额及出口、调出的能源投入会使中间使用二氧化碳排放量被低估,最终使用二氧化碳排放量被高估。表3显示,在不减资本形成总额及出口、调出的能源投入,剔除能源的转化部分,并考虑水泥的过程排放时,中间使用二氧化碳排放量较基准情况低3.0%,最终使用二氧化碳排放量较基准情况高103.5%。原因在于能源行业对资本形成总额(包括固定资本形成总额和存货增加)的投入是将该部分能源以固定资本的形式保留到库存中,并未用于燃烧,而能源行业的出口与调出是将能源以商品的形式转移出本地,其之后无论是否用于燃烧,产生的二氧化碳均不属于本地排放。如果不考虑公式(6)中能源行业j对资本形成总额及出口、调出的能源投入,会使得该能源行业j的总投入金额Dj被高估,从而导致公式(7)中二氧化碳排放系数ej被低估,那么所有通过ej计算的行业二氧化碳排放量均会被低估,使得计算所得各行业的二氧化碳排放量下降,中间使用的二氧化碳排放量减少,而最终使用的二氧化碳排放量增加。

不考虑水泥的过程排放会使中间使用中非金属矿物制品业的二氧化碳排放量被低估。水泥的二氧化碳排放是指在水泥生产过程中,由于化学反应产生的二氧化碳排放,它属于非能源燃烧的二氧化碳排放。根据前文的计算,2007年全国水泥生产的过程二氧化碳排放量为68 344.7万t,因此表3所示“是否考虑水泥的过程排放”,也即是否在非金属矿物制品业的二氧化碳排放中加上水泥生产的过程排放量,可以看到在不考虑水泥的过程排放,剔除能源的转化部分,并减去资本形成总额及出口、调出的能源投入时,中间使用部分的二氧化碳排放量较基准情况减少10.1%。实际上,非能源排放,也即过程排放还包括其他化学反应排放、碳水饮料的排放等,本文仅考虑水泥生产这一项过程排放的做法也有待在后续研究中进行进一步的完善。

综上所述,在剔除能源的转化部分、减去资本形成总额及出口调出的能源投入并考虑水泥的过程排放时计算方法最为准确,与之相反,忽略所有以上因素的计算方法偏差最大。此外,不剔除能源的转化部分、不减资本形成总额及出口调出的能源投入、不考虑水泥的过程排放均会导致计算结果被高估或低估。根据中间使用排放量比较,这三个变量的计算优先度为水泥的过程排放最重要(缺失导致结果偏低10.1%),资本形成总额及出口、调出的能源投入次之(缺失导致结果偏低3.0%),能源的转化部分最末(缺失导致结果偏高0.3%)。根据最终使用排放量比较,这三个变量的计算优先度为资本形成总额及出口、调出的能源投入最重要(缺失导致结果偏高103.5%),能源的转化部分次之(缺失导致结果偏低11.7%),水泥的过程排放不产生影响。根据总排放量比较,这三个变量的计算优先度为水泥的过程排放最重要(缺失导致结果偏低9.8%),能源的转化部分与资本形成总额及出口、调出的能源投入不产生影响。不仅如此,当这三个变量中有两个或三个取0时,计算结果同时受这两三个变量缺失的影响,二氧化碳排放量的变化幅度叠加。表3显示,仅考虑剔除能源的转化部分时,中间使用排放量被低估13.2%,最终使用排放量被高估103.5%;仅考虑资本形成总额及出口、调出的能源投入时,中间使用排放量被低估9.8%,最终使用排放量被低估11.7%;仅考虑水泥的过程排放时,中间使用排放量被低估2.1%,最终使用排放量被高估71.0%;三个变量均不考虑时,中间使用排放量被低估12.2%,最终使用排放量被高估71.0%。

5 结论及建议

本文梳理了当前主要的二氧化碳排放量计算方法,并基于投入产出法,对比计算了不同考虑因素对于二氧化碳排放量计算的影响,研究发现:计算方法方面,本文认为二氧化碳排放的主要来源可以分为能源燃烧排放和水泥生产过程排放两大类,在进行行业二氧化碳排放量的计算时应将这两部分都考虑在内。其中,能源燃烧的二氧化碳排放量可根据分行业的能源消耗量计算,水泥生产的二氧化碳排放量可根据全国水泥产量计算。该方法不仅可以避免能源消耗法数据选取不统一、生命周期评价法多行业计算工作量大,投入产出法计算结果较粗糙等缺陷,得出较为准确的计算结果,还可以同时进行多省份、多行业二氧化碳排放量的计算,简化计算步骤,提升计算效率。计算准确性方面,“是否剔除能源的转化部分”、“是否减去固定资本形成总额与出口、调出的能源投入”以及“是否考虑水泥生产的过程排放”3个因素将对我国二氧化碳排放量的计算结果产生影响。其中,“是否考虑水泥生产的过程排放”影响碳排总量的计算,而其他2个因素主要影响碳排放量的结构。本文认为,在“剔除能源的转化部分、减去资本形成总额及出口调出的能源投入、考虑水泥的过程排放”情况下得到的二氧化碳排放量计算结果最为准确。在此基础上,若不剔除能源的转化部分,会使中间使用排放量被高估0.3%,最终使用排放量被低估11.7%;若不减去资本形成总额及出口调出的能源投入,会使中间使用排放量被低估3.0%,最终使用排放量被高估103.5%;若不考虑水泥的过程排放,会使中间使用排放量被低估10.1%,总排放量被低估9.8%。

基于以上结论,本文提出以下建议:

(1)不断推进二氧化碳计算方法的相关研究,提高对计算结果准确性的关注和重视。二氧化碳排放量作为衡量多种能源和环境问题的主要指标,其计算结果的准确性具有非常重要的意义。从总量上看,我国二氧化碳排放量的大小直接决定了社会各界对于我国碳排放现状的认识,然而,忽视水泥生产过程排放等因素将会使我国碳排总量被低估接近10%,这将直接影响我国社会各界对自身排放现状的正确认识,难以引起人们对能源和环境问题的重视,拖缓减排政策的推广力度和执行程度,甚至影响我国减排目标的达成。排放结构上看,能源转化、资本形成以及出口和调出等因素将会影响我国碳排结构的准确性,影响高耗能产业的确定和低碳产业结构调整。此外,在国际社会方面,各国减排责任的划分越来越多受到关注,我国作为快速崛起的重要经济体,其减排责任的确认更是备受瞩目。因此,我国碳排量计算的准确性决定着我国在国际社会是否承担了合理的减排责任,这一点不仅关乎我国和其他发展中国家的国际责任,更是世界环境问题的主要议题。

(2)关注二氧化碳排放量计算方式的选择,在误差允许的范围内选择准确度更高的方式进行计算。本文从3个角度出发,提供了计算二氧化碳排放量的8种不同方式,确定了最为准确的计算方式并对其他方式的偏差进行了计算和分析。各种方式对不同的影响因素各有取舍,侧重点各不相同,准确度也有所偏差。因此,在数据可及性满足且工作量大小适当的前提下,建议学者采用本文确定的准确方法进行二氧化碳排放量的计算,然而,如果数据不够充分或受工作量大小限制,则应根据本文得到的各种方法的偏差原因和偏差幅度,在误差允许的范围内,针对不同的研究目的选取各自重点关注的主要问题,进而选取在重要环节上准确度更高的方法进行计算,以在最大程度上保证计算结果的准确性。

参考文献(References)

第6篇

关键词甲烷排放;减排政策;国际气候谈判;应对气候变化;国家战略

中图分类号X32文献标识码A文章编号1002-2104(2012)07-0008-07doi:103969/jissn1002-2104201207002

作为负责任的发展中大国,中国政府已经把应对气候变化纳入到社会经济发展规划,并不断采取强有力的措施[1]。应对气候变化已经或者未来相当长时期内一直是中国经济社会发展面临的主要任务,也是影响中国未来可持续发展的重大议题。科学合理地制定应对气候变化国家战略,需要正确认识温室气体排放问题。

甲烷(CH4)是仅次于二氧化碳的全球第二大温室气体,占2004年全球人为源温室气体排放总量的14.3%[2]。中国的甲烷排放问题同样十分突出,仅考虑二氧化碳排放已经不能全面代表中国的温室气体排放[3]。根据国家气候变化初始信息通报公布的中国温室气体排放国家清单,1994年中国甲烷排放总量为34 287 Gg,占温室气体排放总量(以二氧化碳排放当量计,不考虑土地利用变化的二氧化碳排放)的23.4%[4]。据Zhang和Chen[3]的估计,在2007年中国经济部门温室气体排放的构成中,仅考虑甲烷一项,其当量二氧化碳排放量已达989.8 Mt,这一数值均已远高于英国、加拿大、德国等国化石燃料燃烧产生的二氧化碳排放量。因此,考虑甲烷对于反映中国温室气体排放的历史与发展趋势同等重要。

然而,尽管甲烷排放在中国温室气体排放整体格局中具有重要地位,国家尺度甲烷减排相关的政策研究仍然相对薄弱,诸多问题亟待进一步厘清。本文将从中国甲烷排放的研究进展出发,立足于甲烷排放的历史和现状,力图通过辨析甲烷与中国温室气体减排战略、中国甲烷系统减排策略与措施、中国甲烷排放与国际气候谈判的国家立场等问题,系统阐述中国甲烷排放与应对气候变化国家战略之间的关系,为我国政府相关政策的制定提供决策参考。

1甲烷与中国温室气体减排战略

全球大气中的甲烷与二氧化碳相比,其浓度要低2个数量级,属于大气痕量气体,其排放量的微小增加将会导致大气中甲烷浓度的明显升高。由于甲烷在大气中的寿命较短(12-17年),减缓甲烷排放对大气中甲烷的减少具有迅速的影响,而二氧化碳在大气中存留时间很长(50-200年),减少大气中二氧化碳则需要更长时间才能见效。因此,大气中甲烷浓度可以相对迅速地对甲烷减排活动做出响应。虽然多数研究集中于中国二氧化碳的减排策略,然而在《京都议定书》中,除二氧化碳以外,甲烷、氧化亚氮、氢氟化碳、全氟化碳和六氟化碳五种温室气体均在限制之列。显然,甲烷的纳入统计将拓宽中国温室气体减排的选择,甚至可以以最低的减排成本为目标实现优化减排。

甲烷排放在中国整体温室气体排放格局中占有极其重要的地位,在未来温室气体减排战略的实施过程中,甲烷减排可以做出直接贡献。2002-2007年,中国甲烷排放的年均增长率为4.2%,而同期中国二氧化碳排放的年均增长率为12.5%[5]。从排放强度来看,中国政府已经承诺到2020年单位GDP的二氧化碳排放与2005年水平相比减排40%-45%。按照历年单位GDP甲烷排放的下降趋势,在保持目前的经济增长速度情况下,中国甲烷排放也完全能实现相应40%-45%的减排目标。2005-2007年,中国单位GDP的甲烷排放已经下降了20.7%,而同期中国单位GDP的二氧化碳排放仅下降了4.3%[5]。即使基于最低的全球增温潜势(CO2∶CH4∶N2O=1∶25∶298)计算,甲烷排放强度(单位GDP排放量)降低了47.6 g CO2-eq/元,而同期二氧化碳排放强度降低了48.4 g CO2-eq/元。甲烷排放强度与二氧化碳排放强度的降低幅度基本相当。显然,甲烷强度减排对中国温室气体强度减排产生直接影响。

第7篇

[关键词]二氧化碳排放税;会计处理;会计披露

[中图分类号]F275 [文献标识码]A [文章编号]1005-6432(2012)26-0085-02

1 碳税的提出

碳税,顾名思义,即对于二氧化碳的排放所征收的税。它是根据产品加工过程所排放碳的多少收取的一种环境税。在现实操作中也常常采用能源税的形式,直接提高燃料最终用户支付的价格,碳税能够有效降低二氧化碳的消耗,遏制环境恶化,调整资源配置,弥补我国环境税的缺位。

当然,如果将碳税放到一个更广的层面上来看,碳关税也属于碳税其中的一种特殊形式。而在本文则不予详细阐述。

2 征收碳税的动因

(1)我国面临着严峻的现实情况。我国是处于工业化,城市化的发展中大国,中国的温室气体排放量仅次于美国,是全球温室气体第二大排放国家,并且,根据资料显示,中国的温室气体排放量增大的势头非常强劲,当然,这种结果与我国严重依赖煤炭,能效水平低有密切的联系。我国的能源安全问题同样隐患不断。征收碳税,提高了化石能源使用者的负担,提高化石能源的产品价格,促使企业一方面提高能源利用率,尽量减少二氧化碳的排放,另一方面千方百计地开发和使用可再生能源,调整资源配置。这无疑有利于缓解我国所面临的严峻形势。从根本上转变现阶段不良的结构和方式。

(2)相对于其他缓解温室效应的方法,碳税是一种相对来说简洁、低成本的方法。它可以比管制手段成本更低却同样能达到环境政策目标的方式,与总量控制与排放贸易等市场竞争为基础的温室气体减排机制不同,增收碳税只需增加额外的非常少的管理成本即可。同时碳税也能够对消除污染和技术创新给予不断的刺激。

(3)发展低碳经济已经成为全球共识,征收二氧化碳排放税是我国转变经济增长方式,寻求快速增长,可持续经济发展的重要途径。我国经济的发展速度是极快的,然而这其中也存在着一些矛盾和问题,我国的粗放式发展,经济、结构不合理势必会成为发展低碳经济的一个重大障碍。二氧化碳排放税的征收,可以提高企业的环保意识,促使企业进行技术创新;税收专款专用,建立国家专项基金,专门用于研究如何提高能源的利用效率以及节省新能源。这种企业和国家两方共同努力地技术创新,会促使我国进行全方位的资源配置的优化,进而促使产业结构调整,使我国经济由粗放式发展转向集约式发展。

(4)美国等发达国家视低碳经济为一个新的经济增长点,合理合法的构建贸易壁垒将对我国的出口带来巨大的影响。我国所出口的产品大多为低端产品,含碳量相对较高,一旦美国等发达国家借碳关税知名阻碍我国高碳工业产品进入,那么势必会给我国的出口带来巨大的冲击。在此状况下,与其让美国等发达国家征收我国的碳关税,不如我国自己先征收碳税,所得税收补贴企业,以达到改变企业结构,走上良性发展的道路。

(5)1997年,各国在日本京都通过了世界上以法律约束力来控制温室气体排放的国际条约《京都议定书》,它引发了低碳经济,并催生了国际碳交易,碳交易是为促进全球温室气体减排,减少全球二氧化碳排放所采用的市场机制,即把二氧化碳排放权作为一种商品,从而形成了二氧化碳排放权的交易。二氧化碳排放税的征收,既可以有效地降低我国二氧化碳的排放量,也可以通过碳交易,增加企业的经济收入。

3 征收碳税的方式

(1)征税对象:在生产、经营等活动过程中因消耗化石燃料直接向自然环境排放的二氧化碳。但由于二氧化碳是由燃烧化石燃料产生的,因此,征税对象可以看做是煤炭、石油等化石燃料。

(2)征税范围:向自然环境中直接排放二氧化碳的单位和个人。

(3)计税方式:二氧化碳排放税应纳税额=课税数量×适用税率。

第一,课税数量的确定:在实际生活中,有三种确定课税数量的方式,分别为,以企业污染物排放量作为计税依据,以企业的生产产量作为计税依据,以销售收入作为计税依据。比较而言,二氧化碳排放税的征收应该采用以企业污染物排放量为计税依据,即以二氧化碳排放量为计税依据,因为在这种情况下,企业在维持或增加产出的情况下,只要减少排放量就可以减轻税负,有利于刺激企业引进或改良减排设备,减少二氧化碳的排放,如果以生产产量作为计税依据,企业有可能会通过减少产量进而减少税负,这会影响企业正常的生产经营,又因为在通常情况下,二氧化碳排放的数量是与生产的污染产品或消费的数量有关,与价格无关,因此以销售收入作为计税依据显然不合理,但是,以排放量作为计税依据也同样面临着技术上的困难,二氧化碳的排放量实际上是难以确定的,这就需要根据企业的设备生产能力及实际产量等相关指标来科学的估算排放量,进而支付税收。当然,有些专家认为,以排放量作为计税依据,忽略了自然界对于二氧化碳的自清能力,在笔者认为,自然界的自清能力是有限度的,而在征收二氧化碳排放税的同时还要考虑自然界的自清能力,显然需要复杂的计算和研究,且不是一件容易的事情,实践性差。

第二,税率的确定:以标准——定价为最基本的方法,综合考虑已经采用的各项政策,根据我国国情来确定适合我国的税率,并根据实施的效果逐渐调整,最终达到节能减排的目标。二氧化碳排放税的征收采用定额税的方式,由于技术上对二氧化碳排放量难以控制,因此实际上是对煤、石油、天然气等气体燃料按碳含量制定税率。

(4)税收优惠政策:税收优惠是国家对生产者改进技术和工艺流程,减少污染物排放和资源损耗所给予的一种正面的税收鼓励或间接的财政援助。而在笔者认为,进行税收优惠政策有其弊端,会给企业合理缴纳碳税带来负面的影响,例如,企业会想方设法得到税收优惠,会有投机取巧的现象产生,同时也有可能导致偷税漏税的情况发生,如果政府真的要鼓励企业改进技术,发掘新能源,给予企业额外的奖励则更加有效。这既可以刺激企业提高环保意识,研究开发新能源,又可以减少不必要的减免税收的程序,进而减少出现相关的偷税漏税。

4 碳税相关会计处理与披露

碳税的开征,必然会影响到企业的债务构成和损益的改变,从而影响企业的会计利润,因此会计上的核算处理是必不可少的。

(1)涉及科目:应缴税费,设立二级明细科目——应缴环境税,再设立三级明细科目——应缴二氧化碳排放税,制造费用。

(2)会计处理:发生时,借记制造费用科目,贷记应缴税费——应缴环境税(二氧化碳排放税)。

实际缴纳时,借记应缴税费——应缴环境税(二氧化碳排放税)科目,贷记库存现金或者银行存款科目。最终结转时,借记生产成本科目,贷记制造费用科目。

(3)会计记账方法,填制和审核凭证的方法以及登记账簿的方法,与一般财务会计基本一致。

(4)在财务报告中的披露:因为有二氧化碳排放税这一个新项目的出现,而会计信息又有多样性,因此需要在传统的财务报告的基础上进行披露。此披露在原有的会计报告模式中进行补充调整,其内容主要体现在利润表和会计报表附注中。

第一,会计报表附注中的相关披露:会计报表附注是为了方便会计报表使用者理解会计报表内容而对会计报表的编制基础,编制依据,编制原则和方法等所做解释以及对未能在会计报表中列示项目的说明。基于会计报表的基本形式,碳税在各报表中并未进行详尽的说明,因此,会计报表附注的披露则显得尤为重要。一方面,可以以价值量为基础,以数字为形式予以披露,另一方面,对于一些单纯用文字不足以体现其相关信息的,应该以文字的方式进行详细的说明。文字说明具体可包括碳税的征收范围,计税标准,税率的选择,以及生产成本中碳税所占比重,碳税的征收对企业利润的影响等,对于企业如何改进其生产结构,提高能源利用率,减少排放二氧化碳也可以进行披露。

第二,在企业社会责任会计报告中的披露:企业社会责任会计信息的披露是指通过运用会计特有的方法和技术,向企业内部和外部利害关系人反映企业承担的社会责任的情况,以及由此引发的对企业财务状况,经营成果,现金流量的影响等信息的过程。企业在财务会计报告中对二氧化碳排放税进行披露的同时,也应该在企业的社会责任会计报告中进行披露。披露内容不应该只包括企业对二氧化碳的排放对社会作出的贡献,同时也应该包含其排出的二氧化碳量对社会的不利影响以及其应该承担的社会责任。这方面的披露,不仅要采取文字叙述的介绍,还要通过运用具体的会计方法加以量化披露。

5 结 论

我国“十二五”规划指出,以加快转变经济发展方式为主线,是推动科学发展的必由之路,是中国经济社会领域的一场深刻变革,必须贯穿经济社会发展的全过程和各领域。而要想转变经济发展方式,走低碳经济的路子,就需要国家运用各种政策,税收政策可以说是锐不可当的一把利剑。对于我国二氧化碳排放税的征收,我们希望,它可以成为我国发展低碳经济的一个切入点,使我国在低碳经济的可持续发展道路上越走越顺利,越走越远。

参考文献:

[1]邢继俊,赵刚.低碳经济报告[M].北京:电子工业出版社,2010.

第8篇

全球变暖问题日益严重,减少温室气体排放的呼声高涨。从2007年的“巴厘岛路线图”到2009年的“哥本哈根气候变化峰会”,中国作为发展中国家虽不承担减排义务,但作为全球能源消耗和二氧化碳排放大国,减排压力与日俱增。中国政府在哥本哈根气候变化峰会上公布了“2020年单位GDP碳排放强度相对于2005年降低40%~45%”的减排目标。根据Laspeyres指数分解和Kaya公式可知,二氧化碳排放受人口、经济增长、产业结构、能源消费结构、技术进步等因素的影响,其中经济增长是二氧化碳排放增长的重要原因。因此,气候变化问题既是环境问题也是发展问题。而我国正处于工业化和城市化的进程中,重化工比例较高,能源消费增长较快,导致二氧化碳排放量较大,虽然实施碳减排政策有助于能源效率的提高,但要强制性减排必将对经济增长带来负面影响。在充分考虑国际环境与本国国情的情况下,“十二五”规划适度放慢了经济发展速度,要求加快转变经济发展方式,优化产业结构,降低能耗强度和碳排放强度、减少污染物排放等,说明我国越来越注重经济质量发展,注重经济、能源与环境的可持续发展。如何把总能源消耗、二氧化碳排放合理地分配到各省区,对实现能耗强度和碳排放强度双重约束目标非常关键。

许多学者对碳减排成本和配额分配进行了详细研究。高鹏飞等(2004)对2010-2050年中国的碳边际减排成本进行了研究,指出中国的碳边际减排成本是相当高的且越早开始实施碳减排约束越有利。王灿等(2005)分析了部门碳减排边际成本曲线,发现重工业、电力、煤炭部门是减排成本相对较低的行业。随着减排率的提高,所有部门成本急剧上升,重工业削减二氧化碳排放的弹性相对较大。韩一杰等(2010)在不同的减排目标和GDP增长率的假设下,测算了中国实现二氧化碳减排目标所需的增量成本,发现GDP增长速度越快或减排目标越高,减排增量成本也越高;但由GDP变化所引起的增量成本变化远小于由减排目标调整所引起的增量成本变化。巴曙松等(2010)发现各种主要能源消费的碳减排成本之间存在差异性,提出施行燃料转换政策是一个很好的减排政策选择。也有一些文献研究了省区减排成本和配额分配问题。褚景春等(2009)以综合能源成本为准则,对省区内外的各种资源进行筛选,得出总成本最小的电力资源组,然后将减排成本计入综合资源规划,使系统排放量达到最优水平。Klepper, G. 等(2006)研究了不同地区的减排成本、区域二氧化碳排放等问题。李陶等(2010)基于碳排放强度构建了省级减排成本模型,在全国减排成本最小的目标下,得到了各省减排配额分配方案,但其各省减排成本曲线与全国类似的假设,与现实情况有些差距。以上文献均是基于碳排放强度的单约束,通过估计碳边际减排成本曲线来分析减排配额的。但“十二五”规划中提出了能耗强度和碳排放强度分别降低16%和17%的双重约束目标,为完成此双重强度约束目标,国务院《“十二五”节能减排综合性工作方案》(国发[2011]26号)(下文简称《节能减排方案》)对各省设定了能耗强度降低目标,各省也相应制定了经济发展的年度规划目标。如何在双重强度约束下,实现各省经济增长、能源消耗和二氧化碳排放最优分配,对整个国民经济发展起着非常重要的作用。

本文基于以上想法,从全局最优的角度,建立在全国及各省的能耗强度和碳排放强度目标约束下的省际经济增长优化模型,考察全国及各省的能耗强度、碳排放强度及省际经济增长扩张约束对各省经济增长、能源消耗和二氧化碳排放的影响,找到各省经济增长、能源消耗和二氧化碳排放的最优分配值,比较各种情景下的节能成本和减排成本,分析全国能源消耗和二氧化碳排放对全国生产总值的脱钩状态,并对全国能耗强度和碳排放强度最大降低幅度进行了预测。

二、优化问题及模型

我国正处于快速工业化阶段,发展经济是当今及今后很长一段时期内的首要任务。因此,本模型的目标函数为最大化各省区生产总值总和,约束条件为全国及各省的能耗强度和碳排放强度的目标约束,以及经济增长扩张约束。根据分析问题的侧重点不同,可建立如下两个优化模型。

(一)如果2010-2015年全国能耗强度和碳排放强度至少降低16%和17%,各省能耗强度和能源碳强度与2005-2010年变化幅度相同,各省经济增长遵循历史发展趋势并兼顾东中西部协调发展,并且各省通过调整产业结构、能源消费结构、节能减排技术改造和技术进步等措施实现《节能减排方案》中各省区能耗强度的降低目标,那么就有关各省经济增长、能源消耗和二氧化碳排放应该如何优化分配问题,可建立如下模型来考察。

利用模型Ⅰ可分析以下两种情景:

情景1:2015年全国能够完成能耗强度和碳排放强度分别降低16%和17%的目标,各省能够完成《节能减排方案》中的下降目标,各省2010-2015年能源碳强度降低程度与2005-2010年相同。以各省政府工作报告中确定的2011年各省经济增长速度作为2010-2015年各省经济增长扩张约束上限;“十二五”规划中提出了2010-2015年国内生产总值增长7%的预期目标,本情景以7%作为2010-2015年各省经济增长扩张下限。

情景2:为适当减缓因经济发展过快而造成能源的过度消耗,实现经济可持续发展,本情景中各省经济扩张约束上限在情景1基础上同比例缩小,其他假设与情景1相同:全国能耗强度和碳排放强度分别降低16%和17%;各省能耗强度能够实现《节能减排方案》中的下降目标;各省2010-2015年能源碳强度降低率与2005-2010年相同;2010-2015年各省经济年均增长扩张下限为7%。

(二)能耗强度和能源碳强度共同决定碳排放强度的变化。若2010-2015年全国能源碳强度降低程度与2005-2010年相同,则全国能耗强度最大降低幅度是多少,以及全国能耗强度降度最大时各省经济增长、能源消耗和二氧化碳排放的最优分配值又是怎样的?此问题可转化为情景3。

情景3:2010-2015年全国能源碳强度降低程度与2005-2010年相同,全国能耗强度降低率为可变参数。其他假设与情景2相同:2015年各省能耗强度能实现《节能减排方案》中的下降目标,2010-2015年各省能源碳强度降低程度与2005-2010年能源碳强度降低程度相同;2010-2015年各省经济增长扩张下限为7%,上限在情景1基础上 同比例缩小。可利用以下模型分析。

三、数据来源及预处理

数据来源于历年《中国能源统计年鉴》和《中国统计年鉴》,数据样本期为2005-2010年,基期和分析期分别为2010年和2015年。因西藏能源消耗数据缺失,模型中暂不考虑。由于二氧化碳排放主要来源于化石能源消耗,本文主要计算了各省煤炭、石油、天然气三种主要化石能源的二氧化碳排放量,煤炭、石油、天然气的排放系数分别为2.69kg/kg、2.67kg/L、2.09kg/kg(采用IPCC推荐值)。由于统计口径不同,所有省区生产总值总和与国内生产总值数据不等,本文所说全国生产总值为所有省区(除西藏外)生产总值总和,所说全国能耗强度为所有省区能源消耗总量与全国生产总值之比,所说全国碳排放强度为所有省区二氧化碳排放总量与全国生产总值之比,所说全国能源碳强度为所有省区二氧化碳排放总量与所有省区能源消耗总量之比。从历年《中国统计年鉴》可得2005-2010年各省区生产总值(2005年不变价)。从历年《能源统计年鉴》可得各省各种能源消耗量。煤炭、石油和天然气的消耗量与它们相应的排放系数相乘,可分别得到煤炭、石油和天然气的二氧化碳排放量。进而可得样本期每年全国及各省区能耗强度和能源碳强度,可得样本期内各省及全国能源碳强度的变化率。能耗强度的降低率来源于《节能减排方案》。由于2010年各省区各种化石能源消耗量数据目前没有公布,无法算出2010年各省二氧化碳排放量,在此假设2010年各省化石能源消费结构与2009年相当,则各省2010年能源碳强度与2009年能源碳强度相同。情景1中参数标定见表1,其他情景中参数的具体变化见本文分析过程。

四、情景优化结果分析

下面利用所建模型来分析三种情景中各省经济增长、能源消耗和二氧化碳排放的优化分配。

(一)地区GDP优化分析

优化结果显示三种情景下模型均有最优解,说明从全局最优角度看,在全国及省际能耗强度和碳排放强度约束下,保持经济平稳较快发展,能够找到各省区经济增长的最优路径,进而可分析三种情景下各省区经济增长最优分配值的异同(见表2)。

情景1优化结果显示,2010-2015年全国经济年均增长率为10.2%,经济区域中,东北、中部、西北和西南地区经济发展较快,各省经济年均增长率均大于全国经济年均增长率;京津、北部沿海、华东沿海和南部沿海地区经济年均增长率均低于全国经济年均增长率,但均在9%以上。说明若各省能够实现节能减排目标,经济区域就能够协调发展,尤其是东北、中部和西南地区经济能够保持较好的发展势头。从省区看,山西、贵州、青海和宁夏的经济增长速度较慢,其中山西年均增长率为8.5%,没有达到本省经济增长扩张上限;贵州、青海和宁夏的年均增长率为7%,取值为经济增长扩张下限,经济增长速度最慢。其他省区经济年均增长率取值为各省经济增长扩张上限,经济发展较快。说明如果经济发展保持目前势头,现行的全国及各省能耗强度约束对山西、贵州、青海和宁夏的经济发展较为不利,对其他省区的经济发展较为有利。

为了维持能源、经济和环境的可持续发展,避免能源过度消耗,需要适度放慢经济发展速度。情景2在情景1基础上同比例缩小了经济扩张上限,为保证2010-2015年间各省年均增长率不低于8%,各省经济发展水平扩张上限缩小比例不超过4.504%。优化结果显示,同比例缩小上限约束对各省及全国经济发展的负面影响是全方位的。当各省经济扩张上限缩小比例为4.504%时,全国经济年均增长率为9%,下降了1.2个百分点。从经济区域看,京津、华东沿海、南部沿海、中部、西南、东北、北部沿海和西北地区经济年均增长率下降程度依次增大。从省区来看,河北、内蒙古、云南、甘肃和新疆经济增长率为7%,最优值从经济扩张上限降到经济扩张下限;辽宁年均增长率为9.1%,没有达到经济扩张上限。除此之外,其他省区的经济发展水平在情景1基础上同比例缩小了4.504%,最优值为经济扩张上限。

情景3优化结果显示,若2010-2015年全国能源碳强度降低程度与2005-2010年能源碳强度降低程度相同,则全国能耗强度的最大降低幅度为17.27%,与此同时全国碳排放强度降低了21.07%。与情景2对比,全国经济年均增长率为8%,下降了一个百分点。从经济区域看,东北、中部、西北和西南分别下降了2.9、1.7、1.2和2.8个百分点;其他区域没有改变。从省区来看,河北、山西、内蒙古、贵州、云南、甘肃、青海、宁夏和新疆的经济年均增长率分别为7%,最优值仍然是经济扩张下限;吉林、黑龙江、河南、湖北、湖南、重庆、四川和陕西的经济年均增长率分别为7%,最优值从经济扩张上限降低到经济扩张下限;辽宁年均增长率从9.1%下降到7%;广西年均增长率从扩张约束上限下降到7.3%,接近经济增长扩张下限。说明进一步降低全国能耗强度对东北、中部、西北和西南地区的经济增长有较强的阻碍作用。

(二)地区能源消耗和二氧化碳排放优化分析

各省GDP优化值乘以相应能耗强度和碳排放强度可分别得到各省能源消耗和二氧化碳排放的最优分配值。图1和图2分别为三种情景下各省能源消耗和二氧化碳排放增加量的变化情况。

图1 三种情景下2010-2015年能源消耗的增加量 单位:10000 tce

从图1中可见三种情景下,山东、广东、江苏、河北、河南、辽宁等省区能源消耗较大,北京、上海、江西、海南、贵州、青海、宁夏等省区能源消耗较少。情景2与情景1相比,北京、上海、贵州、青海和宁夏能源消耗量没有改变;其他省区均有不同幅度的减少,其中能源消耗变动幅度排在前十一位的省区依次是内蒙古、河北、辽宁、山东、甘肃、新疆、云南、江苏、广东、河南和山西。情景3与情景2相比,辽宁、吉林、黑龙江、河南、湖北、湖南、广西、重庆、四川、陕西等地区能源消耗进一步减少,其中河南、四川、重庆、黑龙江和辽宁的能源消耗减少幅度较大;其他省区的能源消耗没有改变。同理可分析各省区二氧化碳排放情况。三种情景中二氧化碳排放变动均较大的省区有河北、内蒙古、辽宁、黑龙江、山东、河南、广东、云南、陕西、甘肃、新疆等。从图2中可看出,情景2与情景1中各省二氧化碳排放的增减情况与能源消耗的增减情况一致。二氧化碳排放变动幅度排在前十一位的省区依次是内蒙古、辽宁、河北、山东、山西、新疆、甘肃、河南、云南、江苏和广东。但其省 区排序与能源消耗变动大小的省区排序有所不同,这是因为二氧化碳排放量不仅受能源消耗量的影响,而且还受能源碳强度的影响,即各省能源碳强度不同导致二氧化碳排放的变化与能源消耗的变化不一致。情景3与情景2相比,二氧化碳排放没有变化的省区和能源消耗没有变化的省区相同;二氧化碳排放减少的省区与能源消耗减少的省区也相同,但省区排序有所不同。

图2 三种情景下2010-2015年二氧化碳排放的增加量 单位:10000 t

结合情景2与情景1中的经济增长优化结果可知,能源消耗和二氧化碳排放变动较大的省区比较容易受经济扩张约束上限变化的影响。缩小经济扩张上限,虽然放慢了全国及一些省区的经济增长速度,但有利于节约能源和减少二氧化碳的排放。结合情景3与情景2中的经济增长优化结果可知,当2010-2015年各省能源碳强度与2005-2010年的能源碳强度变化相同时,能源消耗和二氧化碳排放变动较大的省区比较容易受全国能耗强度变化的影响。为了实现全国经济增长、能源消耗和二氧化碳排放的最优配置,各省区在制定政策时,要充分考虑本省区的具体情况,制定出适合本省低碳发展的路径。

(三)三种情景下全国节能减排成本与脱钩状态分析

我们把各种情景下全国总能源消耗和二氧化碳排放的优化结果进行对比,当GDP改变量与能耗改变量为负值时,令GDP改变量与能耗改变量比值为节能成本;当GDP改变量与二氧化碳排放改变量为负值时,令GDP改变量与二氧化碳排放改变量比值为减排成本。由三种情景的经济增长、能源消耗和二氧化碳排放的最优化分配可看出,情景2在情景1基础上同比例缩小了经济扩张上限,减慢了某些省区的经济增长速度,有利于节约能源和减少二氧化碳的排放,其节能成本和减排成本分别为0.963万元/吨标准煤和0.310万元/吨。情景3在情景2基础上考察了全国能耗强度和碳排放强度的最大降低幅度。在此种情况下,节能成本和减排成本分别为1.010万元/吨标准煤和0.339万元/吨。两种对比结果显示节能成本和减排成本均较低,说明适度放慢经济发展过快省区的经济发展和进一步加快全国能耗强度和碳排放强度的降低,虽然对全国及个别省区的经济发展有一定的阻碍作用,但对全国总体能源消耗和二氧化碳排放起着较强的抑制作用。

本文采用Tapio脱钩指标,将二氧化碳排放与经济增长的脱钩弹性分解如下:

其中分别称为碳排放弹性脱钩指标、能源消耗弹性脱钩指标和能源碳排放弹性脱钩指标,经济增长、能源消耗和二氧化碳排放增长率采用2010-2015年年均增长率。由三种情景的经济增长、能源消耗和二氧化碳排放的最优化分配,可计算出三种情景下2010-2015年年均碳排放弹性脱钩指标、能源消耗弹性脱钩指标、能源碳排放弹性脱钩指标(见表3)。结果显示,能源消耗在情景1中处于增长连接状态,在情景2和情景3中处于弱脱钩状态,且能源消耗脱钩指标值越来越小,说明能源消耗和全国生产总值的弱脱钩程度越来越强。能源碳排放在三种情景中虽均处于增长连接状态,但能源碳排放弹性脱钩指标值越来越趋于0.8(增长连接与弱脱钩状态的临界值),说明虽然二氧化碳排放与能源消耗之间还处于增长连接阶段,但越来越趋于弱脱钩状态。二氧化碳排放在三种情景中均处于弱脱钩状态,而且碳排放弹性脱钩指标值越来越小,说明二氧化碳排放与全国生产总值的弱脱钩程度越来越强。

五、结论及政策建议

本文根据所分析问题的侧重点不同,从全局最优的角度,建立了两个在全国及省际能耗强度和碳排放强度约束下省区经济增长优化模型。分析了三种情景下各省区经济增长的优化问题,比较了各省经济增长、能源消耗和二氧化碳排放的最优分配路径的异同。发现三种情景下均能实现“十二五”规划中对国内生产总值增长的预期目标、单位GDP能耗强度和碳排放强度的约束目标。若2010-2015年全国能源碳强度降低程度与2005-2010年能源碳强度降低程度相同,则全国能耗强度和碳排放强度的最大降低幅度约分别为17.27%和21.07%。

在地区经济发展方面,本文比较了三种情景下各省经济增长最优分配的异同,分析了缩小经济扩张上限和进一步降低全国能耗强度对全国及各省区的影响,指出了经济发展较慢和较快的省区。如果经济保持目前发展势头,那么现行的全国及各省能耗强度指标约束对山西、贵州、青海和宁夏的经济发展较为不利,对其他省区的经济发展较为有利。同比例缩小经济扩张上限,对各省及全国经济发展的负面影响是全方位的,中部、西南、东北、北部沿海和西北地区经济年均增长率下降程度较大,其中河北、内蒙古、云南、甘肃、新疆和辽宁经济增长速度明显减慢。若全国能耗强度降低率从16%进一步降低到17.27%,则全国经济年均增长率将进一步下降1.2个百分点,西北、中部、西南和东北地区经济增长速度明显减慢,其中吉林、黑龙江、河南、湖北、湖南、重庆、四川、陕西、辽宁和广西成为经济发展较慢省区的新成员。说明进一步降低全国能耗强度对西北、中部、西南和东北地区的经济增长有较强的阻碍作用。

第9篇

QUESTION

北京市海淀区给超过700名“两会”代表发放笔记本电脑和U盘,总价超过500万元。此举的理由是:节省纸张、开“低碳会议”。你认为:

A. 确实低碳。减少了纸张使用就减少了树木砍伐,还能降低硒鼓的污染。

B. 既环保(减少纸张的使用和污染)又拉动了内需,一举两得。

C. 只是看起来低碳。电脑的使用需要电能、电脑运输过程中也会耗能,电脑以后还会变成电子垃圾……算总账未必低碳。

D. 节约用纸是环保的,但购买多余的电子产品和开会又是不环保的。

你如何看待全球气候变暖和极端天气变化与二氧化碳排放的关系?

A. 有关系。我们目前的生活很大程度上受到气候和环境的影响。

B. 有关系但影响不大,我们现在环保是在为子孙后代解决问题。

C. 有关系,但对生活没有影响。

D. 很多科学家还在就二氧化碳排放和温度变化之间的关系进行研究。

您认为所谓的“低碳”是指?

A. 降低碳的使用和排放。

B. 降低二氧化碳的排放。

C. 降低所有含碳物质的使用、排放。

D. 降低以二氧化碳为代表有害的含碳物质的使用、排放。

您认为减少碳排放与个人的关系是?

A. 减少二氧化碳排放量与我个人关系不大。

B. 我觉得有必要为减少碳排放贡献力量。

C. 碳排放关系到地球气候恶化影响,我正在减排中。

D. 对碳排放很关注,不仅自己努力而且还向他人做宣传。

E. 没有做法杜绝碳排放,我们更应该注意与自然和社会建立和谐关系。

下列描述正确的是:

A. 任何一件商品的制造,从原料采集到最终被废弃,都要排放二氧化碳,并对环境造成影响。

B. 棉、麻等天然织物比化纤衣服排碳量少;白色、浅色、无印花的服装更环保,因为较少使用各种化学添加剂处理。

C. 飞机排出二氧化碳是交通工具中最高的,短途(往返3千公里以内)和长途飞行的排碳量是:0.1753公斤 和0.1106公斤(二氧化碳/乘客/公里)。

D. 减少对物质的追求就能大大降低物质的消耗和闲置,进而减少二氧化碳的排放。

你是否会尝试下列做法:

A. 使用高效节能产品,如精密荧光灯,隔热层来降低家用能源的消耗量。

B. 减少空调或其他自动温控设施,花费高价购买空心墙和屋顶保温材料。

C. 安装防风条、安装双层玻璃窗、调低室内供暖温度……

D. 以上都不会,新材料和新产品对未来环境的破坏可能更大。应该通过降低对舒适生活的依赖来保护环境。

在实施“低碳经济”方面,最应该行动且有实际作用的是?

A. 学者和科学家

B. 政府部门

C. 环保组织、NGO

D. 企业、生产制造商

E. 个人

F. 联合国、政府间组织

节约用水用电、不用一次性产品、减少使用动物制品、不燃放烟花爆竹、不浪费粮食……即便不考虑二氧化碳的排放,这些也有利于健康。二氧化碳的排放无法消除,但可以做到有原则的降低和避免非必要的增加,并坚持如此。

相关文章
相关期刊