时间:2023-12-24 16:38:33
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇高分子材料的性能范例。如需获取更多原创内容,可随时联系我们的客服老师。
关键词:高分子材料;降解;老化;进展
高分子材料在加工、贮存和使用过程中,由于内外因素的综合影响,逐步发生物理化学性质变化,物理机械性能变坏,以致最后丧失使用价值,这一过程称为“老化”。老化现象有如下几种:外观变化,材料发粘、变硬、变形、变色等;物理性质变化,溶解、溶胀和流变性能改变;机械性能变化和电性能变化等。引起高分子材料老化的内在因素有:材料本身化学结构、聚集态结构及配方条件等;外在因素有:物理因素,包括热、光、高能辐射和机械应力等;化学因素,包括氧、臭氧、水、酸、碱等的作用;生物因素,如微生物、昆虫的作用。老化往往是内外因素综合作用的极为复杂的过程。高分子材料的老化缩短了制品的使用寿命,并影响制品使用的经济性和环保性,限制了制品的应用范围。因此,研究引发高分子材料老化的原因及其微观机理具有非常重要的意义。近年来,高分子老化研究主要集中在探讨高分子材料老化的规律、机理,以及环境因素对材料老化的影响等方面,这些工作对于发展新的实验技术和测试方法,改善材料的生产技术、研制特种材料、逐步达到按指定性能设计新材料等具有重大的指导作用。
1 户外因素对高分子材料老化行为的影响为的影响
高分子材料在户外曝露于太阳光和含氧大气中,分子链发生种种物理和化学变化,导致链断裂或交联,且伴随着生成含氧基团如酮、羧酸、过氧化物和醇,导致材料韧性和强度急剧下降。关于光氧化降解过程和防止这种降解过程的发生,已有很多研究报导,这些研究工作的基础是光化学效应,即物质在吸收光后所发生的反应。紫外波长300n m~400nm,能被含有羰基及双键的聚合物吸收,而使大分子链断裂,化学结构改变,导致材料性能劣化,因此历来是研究热点。Ibnelwaleed A.等通过自然环境曝露和人工加速试验,研究了不同支链形式LLDPE、HDPE的耐紫外光老化性能。Ibnelwaleed A.等从流变学角度分析了PE紫外光老化历程,发现LLDPE在紫外光老化过程中同时发生交联和断链,短支链含量高低和老化时间长短直接影响材料性能。另外,(Z-N)催化合成的LLDPE和茂金属催化合成的LLDPE降解机理相似,但是,对于相同重均分子量和支化度的PE,茂金属催化合成的LLDPE比齐格勒-纳塔催化合成的LLDPE耐降解,而且发现单体的类型对紫外光老化降解影响不大。在80℃和300W紫外光辐照条件下对有机硅和聚氨酯两种建筑密封胶进行5000小时人工加速老化试验。发现密封胶老化机理是由于辐照产生的热作用引起的,在老化开始阶段,热作用使密封胶交联;而在老化后阶段,主要发生分子量下降;紫外线辐射往往破坏侧链基团。
2高分子材料的老化性能
表征技术及应用在高分子材料老化研究中,性能表征方法对正确反映老化现象、认识并探索老化机理、进而采取合理措施改性,有着非常重要的作用。目前,在高分子材料老化研究中多种表征手段联用,对高分子材料性能进行多角度考察,深入了解高分子材料老化机理。LEi Song利用TEM、FTIR、X射线光电子能谱、燃烧量热法等方法考察了PC/TPOSS 的混合物结构和热降解行为,发现TPOSS显著影响PC的热降解过程,因为添加TPOSS明显降低混合物的热峰值,并且当TPOSS的添加量在2%时达到最低值。 利用热重分析、红外光谱分析、热解-气相色谱-质谱联用技术,考察了聚碳酸酯与聚硅氧烷的共混材料在氮保护条件下的热降解行为。研究发现,共混物主要的分解温度在430~550℃左右。添加聚硅氧烷可以降低聚碳酸酯在主要降解段的质量下降速率,在800℃时,添加聚硅氧烷的共混物的残渣比纯净的聚碳酸酯高,随着添加量的增加,残渣从最初的21%增加到45%,研究还发现,聚硅氧烷能促进交联反应和炭化。随着老化程度提高,弹性模量增加,应力和伸长率下降;老化较少的样品显示韧性,老化时间长久的样品显示更多的脆性;另外,老化材料的断裂,是由于结晶导致的应力开裂。S.Etienne利用低频拉曼散射(LFRS)、小角X射线散射(SAXS)和DSC,对PMMA、PS、PC、PEN物理老化过程的次级松弛,β松弛及相关α松弛过程进行了研究。利用直接插入探针质谱裂解研究了PC/PMMA共混物的热氧老化行为。还利用热刺激去极化电流法(TSDC)、动态介电谱(DDS)联用方法,研究了聚碳酸酯在玻璃化转变温度前后松弛时间的变化,得到PC样品的τ(Tg)为110s,通过τ(T)和τ(Tg)可以确定玻璃态-熔融态脆化指数m。
Abstract: Function polymer materials are rapidly developing in recently years. But there are not any generalizations to the development of shape memory polymers. The defined, mechanism, characterization and the preparation of the most simulative shape memory polymer are briefly introduced in this paper. Then the developing prospects are also reviewed.
关键词: 功能高分子材料;展望;形状记忆
Key words: functional polymer materials;outlook;shape memory polyer
中图分类号:TB324 文献标识码:A 文章编号:1006-4311(2012)31-0303-02
0 引言
随着社会的进步和科学技术的发展,一般的材料难以满足日益复杂的环境,因此需要具有自修复功能的智能材料——形状记忆材料。20世纪50年代以来,各国相继研究出在外加刺激的条件(如光、电、热、化学、机械等)经过形变可以回复到原始形状的具有形状记忆功能的材料,它可分为三大类,形状记忆合金、形状记忆陶瓷和形状记忆聚合物材料。高分子产业的迅速发展,推动了功能高分子材料得到了蓬勃发展。形状记忆聚合物材料的独特性,广泛应用于很多领域并发展潜力巨大,人们开始广泛关注[1]。
1 功能高分子材料研究概况
功能高分子材料是20世纪60年代的新兴学科,是渗透到电子、生物、能源等领域后开发涌现出的新材料。由于它的内容丰富、品种繁多、发展迅速,成为新技术革命不可或缺的关键材料,对社会的生活将产生巨大影响。
1.1 功能高分子材料的介绍 功能高分子材料是指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料,通常也可简称为功能高分子,也可称为精细高分子或特种高分子[2]。
1.2 功能高分子材料分类 可分为两类:第一类:以原高分子材料为基础上进行改性或其他方法,使其成为具有人们所需要的且各项性能更好的高分子材料;第二类:是具有新型特殊功能的高分子材料[3]。
1.3 形状记忆功能高分子材料 自19世纪80年现热致形状记忆高分子材料[4],人们开始广泛关注作为功能材料的一个分支——形状记忆功能高分子材料。和其它功能材料相比的特点:首先,原料充足,形变量大,质量轻,易包装和运输,价格便宜,仅是金属形状记忆合金的1%;第二,制作工艺方简便;形状记忆回复温度范围宽,而且容易加工,易制成结构复杂的异型品,能耗低;第三,耐候性,介电性能和保温效果良好。
形状记忆聚合物(SMP)代表一项技术上的重要的类别刺激响应的材料,在于形状变动的反应。更确切地说,传统意义上的SMP是聚合物变形,随后能固定在一个临时的形状,这将保持稳定,除非它暴露在一个适当的外部刺激激活了聚合物恢复到它原来的(或永久的形状)。因此,相关的反应被称为聚合物内的形状记忆效应(SME)。虽然各种形式的外部刺激可以被用来作为恢复触发,最典型的一种是直接加热,通向温度增加[4]。
2 部分形状记忆高分子材料的制备方法
2.1 接枝聚乙烯共聚物 在形状记忆聚乙烯中,交联(辐射或化学)是必须的,但是交联程度过高会导致聚合物的加工性能不好,因此最好是将交联放在产品制造的最后一步:Feng Kui Li等采用尼龙接枝HDPE获得了形状记忆聚合物。他们采用马来酸酐和DC处理熔融HDPE在180℃反应5分钟,然后在230℃下和尼龙-6反应5分钟得到产物。SEM照片显示尼龙微粒小于0.3μm,在HDPE中分散良好,两者界面模糊,显示两者形成化学粘合;而尼龙和HDPE简单混合的SEM照片中两者界面明显试验同时表明,随着DCP含量和尼龙含量的提高,共聚物中形成了更多的共聚物具有和射线交联聚乙烯(XPE)SMP相似的形状记忆效应,形变大于95%,恢复速度好于射线交联的聚乙烯SMP,该聚合物在120℃左右形状恢复达到最大。对其机理研究表明,接枝在PE上的尼龙形成的物理交联对形状记忆效应有重要作用。值得注意的是该共混物是仅仅通过熔融混合得到的,工艺非常简单,而且采用的是通用聚合物,因此该方法值得推广[5]。
2.2 聚氨酯及其共混物 聚氨酯是含有部分结晶相的线性聚合物,该聚合物可以是热塑性的,也可是热固性的。聚氨酯类形状记忆材料,软段的结构组成和相对分子质量是影响其临界记忆温度的主要因素,硬段结构对记忆温度影响不大。
采用聚氨酯和其它聚合物共混,可以改善性能,得到所需要的产物。有报道采用聚己内酰胺(PCL)、热塑性聚氨酯(TPU)和苯氧基树脂制得的形状记忆材料。发现该产物随着组成的变化而玻璃化转化温度不同;同时发现PCL部分在混合物中结晶相消失,说明结晶过程被阻碍。改混合物具有形状记忆效应的原因在PCL/苯氧树脂作为了可逆相。该混合物的玻璃化温度可以通过TPU/苯氧基树脂的混合比例和种类决定,增加混合物中固定相和减少TPU链长度可以减少滞后效应。报道采用PVC和PU共混也能得到SMP。该混合物中存在PVC/PCL形成的无定形相,混合物的玻璃化的温度也随着PVC/PCL的组成变化而平稳的发生变化,固定相记忆着最初形状[6-8]。
3 国内外形状记忆高分子材料研究现状
3.1 国内研究现状 国内研究的形状记忆高分子材料多以聚氨酯和环氧树脂基为主,加入添加剂或固化剂进行改性,可以得到满足基本要求的SMPs,但是由于其自身缺点的约束,所以限制了其使用范围。最近几年来,形状记忆合金以利用聚合物为基体添加其他成分,突出各个优点进行对比,得到一些性能良好的形状记忆材料因此我们列举国内最新的SMPs研究。
魏堃等人将新型聚合物固化剂与环氧树脂(EP)进行机械共混,进行适度交联固化后,制出具有较低玻璃化转变温度(Tg)的无定型EP体系,得出结果显示适度交联固化的EP体系具有良好的形状记忆特性。
高淑春等人利用活化溅射方法制备TiO2薄膜,以Ni-Ti形状记忆合金生物材料为基体,附着在形状记忆和金材料的表面,其跟血液相容性比较好,因此具有较高的临床使用价值。
3.2 国外研究现状 对比国内,国外的SMPs发展比较早,例如:美国、日本、德国等由于具有先进的设备和理论基础,因此在各个方面相对国内都比较成熟,所以本人参考最近国外SMPs相关研究在此论述。
Y.C.Lu等人利用环氧基的形状记忆材料设计模拟服务环境所能反映出的预期性能要求即
①暴露在紫外线辐射下循环为125分钟;②在室温下沉浸油内;③浸泡在热水中49℃。一种新颖的高温压痕法评估适应条件的SMPs的形状和力学性能。结果表明对于有条件的比较一般环境条件SMPs的玻璃化转变温度降低与较高模和敏感应变速率。如果温度设定低环境条件影响的SMPs形状恢复能力。特别是紫外线暴露和浸入水中的SMPs回复率明显低与无条件的材料。当回复温度高于Tg,材料的回复能力相对保持不变。
R.Biju等人用双酚A(BADC)与缩水甘油醚或者双酚A(DGEBA)与苯酚螯合物(PTOH)通过一系列聚反应合成热固性聚合物表现出具有形状记忆性能。利用差示扫描量热分析、红外光谱及流变仪来表征其固化特征。以不同比例DGEBA/PTOH/BADC混合,研究了它们的弯曲、动态力学性能以及热性能;对于一个给定的成分,弯曲强度和热稳定性随着氰酸酯浓度增加而增加,而这些特性随着PTOH浓度的增加而降低,储存模量表现出相似的趋势。这个转变温度(Tt)随着整体氰酸酯含量的增加而增加。这些聚合物在形状记忆性能显示出良好的恢复形状,并且形状恢复时间减少。而显示恢复时间与形状恢复模量增加(Eg/Er)刚好相反。这个转变温度可调谐反应物组成及变形恢复速度随驱动的温度增加而增加。这些环氧基氰酸盐系统具有良好的热、力学和形状记忆特征很有希望用在智能电气领域。
4 展望
由于SMP有着丰富的后备资源,而且形状记忆的方式灵活,具有广阔应用和发展前景。因此本文认为,有很多重要因素影响将SMPs技术成功转化成生产应用,例如:标准化的不同方法描述为量化形状记忆材料的性能。应该进一步完善形状记忆原理,在分子结构理论和弹性形变理论基础之上,建立形状记忆的数学理论模型,为开发新材料奠定了理论基础;运用分子结构理论、实验设计原理和改性技术知识,提高形状记忆各项性能、丰富品种、满足不同的应用需要,增强应用和开发研究,拓宽应用领域,尽快转化为生产力。
形状记忆高分子与形状记忆合金相比具有感应温度低,且形状记忆高分子因其独特的优点而具有广泛的应用前景,但是我们也应该看到在开发应用上仍存有一些不足[22]:形变回复力小;只有单程形状记忆功能,没有双程性记忆和全程记忆等性能;优化制作设计与工艺,开发更多优秀的品种,在研究聚合物基的SMP中有许多重要工作需要我们一步步努力去做,在完善SMP过程中,同时要研究复合社会不同需求的产品。
参考文献:
[1]陈义镛.功能高分子[M].上海:上海科学技术出版社,1998:1-5.
[2]江波等.功能高分子材料的发展现状与展望[J].石油化工动态,1998,6(2):23-27.
[3]古川淳二.对21世纪功能高分子的期待[J].聚合物文摘,1994,(6):17.
[4]Tao xie. Recent advances in polymer shape memory[J].Polymer, 2011,(52):4985-5000.
[5]Han Mo Jeong Europen polymer ourn [M].2001,(37):2245~2252.
[6]饶舟等.形状记忆聚氨酯高分子材料的研究进展[J].聚氨酯,2011,110(7):1-7.
摘要:以聚四氟乙烯,即“PTFE”-聚对羟基苯甲酸酯(Ekonol)-石墨(C)复合材料作为研究对象,系统论证这类材料磨损率、抗拉强度及抗冲击强度的变化规律,并使用偏光显微镜、差热分析研究它的聚态构成。结论证明,推广之后的关系式同样适用于互相之间不相溶的三元高分子复合材料,它的基体表现为结晶性高聚物。
关键词:三元高分子;复合材料;结构性能
关于复合材料的相关论证和说明有很多,在《三元高分子复合材料结构与性能关系》一文中,对二元复合材料的结构和性能关系,进行了详细的论证,并提出了相应的计算公式,但它是否可以适应多元复合材料互不相溶的高分子结晶性复合结晶性体系当中,以及它的具体的式子等情况,还无从考证。所以,本文对三元复合材料结构与性能的关系,进行详细的分析和研究,并得出相应的论证结构,已验证这一关系式。所谓的三元即PTFE-Ekonol-(C)。
1相关原理
在对复合材料的性能和结构关系的研究当中,我们应该对二元复合材料内部的结构和性能之间的关系,进行深入的研究,并指出复合材料的内部关联,复合材料是由不同结晶物质所组成。根据这一情况,我们又提出了两组不相溶结晶性高分子复合材料的关系式,用来表明复合材料结构与性能所发生的一系列变化。
2实验情况
2.1式样的具体制备
(1)原料。PTFE:上海电化厂生产的超细度粉末;Ekono:过180目的合成粉末;C:过180目的化学纯粉末。
(2)制备的流程:混料—干燥—成型—烧结—试样。
2.2测定结构和性能
(1)差热分析,使用烧结之后的锯末进行分析,并采用CDR-1分析仪,进行测定。
(2)抗冲击强度,使用小型摆锤式冲击机在常温下进行测定。(3)磨损率,使用自制的简易仪器进行测定,滑动速度在45.3cm/s,负荷为16.358kg,常温下干磨80min左右。
3结论
3.1关于聚态结构的结论
由差热分析得出PTFE与各式样分析的结果。我们可以将DTA熔融谱线底部所对应的温度,当做是材料的熔点。通过对比分析发现,纯粹的PTFE的熔点与各试样相同,这也表明多元复合材料大多是多项体系,而且各组之间互相不溶合。
3.2耐磨性与其他性能
(1)磨损情况。根据各类数据的比对发现。填料的总含量已经高达36%左右,磨损的情况已经出现了最低值。
(2)抗冲击强度。通过对各类材料的抗冲击强度,进行研究发现,它是四组试样的强度和组成的关系,也具体表现为随填料总数的增加,而急速下降,并且在34%的地方,出现了一定的转折,然后缓慢的降低。
综上所述,三元复合材料力学性能变化的转折点,与构成的实验数值有着一致性,而且与基体树脂微晶体骨架发生变化时的构成一致。该类现象在二元当中得到证实,同样它也适用于三元体系。
参考文献
[1]何东旭,邱瑶,李林玲,等.大片层石墨烯/四氧化三铁/有机高分子三元复合吸波材料的溶剂热法制备(英文)[J].中国科学:材料科学(英文),2015,(7):566-573.
关键词:功能高分子材料;研究现状;发展前景
一、功能高分子材料的概念及开发意义
功能高分子材料,是指具有一定传递或存储物质、信息及能量作用的高分子和高分子复合材料。这使得功能高分子材料不仅具有原来的力学性能,同时还兼具如光敏性、导电性、化学反应活性、生物相容性、选择分离性、能量转换性等一系列其他特定性能。按照其功能划分,功能高分子材料主要可分为4类:①物理功能:具体包括超导、导电、磁化等功能;②化学功能:具体包括光的聚合、降解、分解等;③生物功能:具体来说包括生理组织及血液的适应性等;④介于化学、物理之间的功能:主要是指高吸水、吸附等功能方面。
功能高分子材料由于具备特殊的功能,受到了各个领域的广泛重视,特别是其不可替代的诸多特性都为很多领域的技术进步提供了基础和前提,甚至已经因此而诞生出了一批先进的、符合社会发展潮流的新产品。因此,当前各国都加大了对功能高分子材料的人力物力财力投入,面对时间各国的竞争,我国也需要尽快加大对功能高分子材料的研发力度,从而摆脱我国国防、电子、医药和其他尖端领域严重依赖国外功能高分子材料市场的困境。
二、功能高分子材料的研究现状分析
目前针对功能高分子材料的研究和应用现状,主要集中于功能高分子材料的光功能、电功能、生物功能以及反应型功能应用这几个方面:
1.光功能高分子材料
目前的光功能功能高分子材料的研究和应用主要体现在光固化材料、光合作用材料、光显示用材料以及太阳能光板这几个方面,这些具体的应用能通过对光的吸收、储存、传输、以及转换功能,实现对光能的有效利用。例如,目前已经能够通过光功能高分子材料的运用实现光传导来帮助植物的光合作用。此外,运用光功能高分子材料实现手机的太阳能充电也已经成为现实。
2.电功能高分子材料
电功能高分子材料,除了具备良好的导电性能外,其电导率还能根据应用状况的不同,在半导体、金属态和绝缘体的范围进行变化。此外,由于电功能高分子材料一般密度较小、易于加工,同时具备良好的耐腐蚀性,在当前的工业领域中也被广泛的应用。
3.生物功能高分子材料
生物功能高分子材料在生物领域被广泛的应用。如常见的有,由生物功能高分子材料所制成的人体植入物(视网膜植入物、脑积水引流装置等)以及人体义肢等。
4.反应型功能高分子材料
这种高分子材料是一种具备很强化学活性的高分子材料,能够有效的促进化学反应。它是通过对构建高分子骨架,并将小分子反应活性物质通过离子键、共价键、配位键或物理吸附作用进行骨架填充,以实现高分子功能才能的强化化学合成与化学反应的效果。
三、功能高分子材料的发展前景及趋势分析
功能高分子材料具备很多优势特征,这些都使得其更加符合经济发展和社会发展的需求,这也使得功能高分子材料的研究工作在各国的竞争中日益白热化。而去随着投入的不断深化,和技术的不断完善。新型功能高分子材料必然在我们的尖端科学及日常生产生活中扮演越来越重要的角色。功能高分子材料的几种发展趋势。
1.复合高分子材料
目前,功能高分子材料正逐步由均质材料向着复合高分子材料的方向发展,同时其材料的功能也向着多功能材料的方面发展。复合高分子材料往往是在一种基体材料(如金属、陶瓷、树脂等)上,加入增强或增韧作用的高聚物,再通过将多相物复合成一体,就形成了新的复合高分子材料,这种高分子材料能够充分发挥各相的性能优势,因此具有广泛的发展应用前景。在今后的发展中,航天科技、医疗卫生、生活家居、甚至汽车制造等领域,都需要各种高性能的复合高分子材料。
2.环境友好型高分子材料
经济的粗放发展,给整个地球h境都带来了深重的灾难,而随着人们对环保问题的日益重视,各国对各种材料的生态可降解性要求也日益突出。因此,环境友好型高分子材料的开发和深入研究工作,也引起了各国的重视。当前,生物降解技术和环境友好型高分子材料技术大多掌握在发到国家,我国目前还处于追赶阶段。随着世贸组织对环保观念的更加重视,环境友好型高分子材料在产品中的应用优势也将日益显著,为了把握这一趋势,我国要积极开发研究出有自主知识产权的生物降解技术和环境友好高分子材料。
环境友好型高分子材料,通过易水解的高分子的作用在各种生物酶的作用下,能够加速材料的水解反应,帮助材料进行生物降解。这种高分子材料目前研究的重点方向在理化性能、生物相容性、降解速率的控制以及缓释性等方向。
3.隐身性能高分子材料
隐身性能高分子材料的研究应用主要在军事领域,其也是当前各国的尖端军事技术的研究方向之一。以往的隐身材料多采用超微粒子和细微粉,实践证实,通过吸收衰减层、激发变换层以及反射层等多层材料的微波吸收,能够取得一定的吸波效果,达到隐身的目的。但是,由于材料制备复杂,且雷达技术的日益发展,给隐身技术提出了更高的挑战。此后,隐身性能高分子材料必然是向着厚度更小、质量更轻、功能更多以及频带更宽的方向发展。
关键词:高分子材料;老化;老化原因;防老化措施
1高分子材料及老化现象
1.1高分子材料简述
高分子材料是指与人们生活息息相关的各种常见的材料,如塑料,橡胶,涂料,薄膜,纤维等。高分子材料被广泛应用于汽车工业,航空,建筑,军事建设等多种行业,为我国国民经济的发展做出了很大的贡献,同时也提高了人们的生活水平。但是高分子材料经常容易在强光,热辐射,水浸泡等因素作用下发生降解,失去其利用价值。
1.2高分子材料老化
高分子材料的老化由于其特性,使用条件的不同,发生老化的现象和表现出的现象也有很大不同。有的会变脆,变色,透明度下降等,也有的会出现弹性下降,变软,变粘等。归纳为如下几个方面:①外观变化:高分子材料在外观上的老化现象主要有:出现污渍,裂缝,斑点,银纹,粉化,发粘,收缩,或光学颜色改变;②物理性能改变:高分子性能在物理性能上老化的现象为:流变形能,溶胀性,溶解性变差,同时耐热性,透水性,透气性,耐寒性等也发生变化;③力学性能改变:力学性能的改变主要包括弯曲强度,剪切强度,拉伸强度,冲击强度等力学性能下降。同时,材料的应力松弛,相对伸长率等性能也会发生相应改变;④电性能改变:电性能的改变包括介电常数,表面电阻,体积电阻,电击穿强度等电化学性能的改变。
2引发高分子材料老化的原因
2.1内在因素
2.1.1材料的立体归整性
分子键排列规整的区域成为结晶区,不规整的区域成为非结晶区。这两种区域的分子排布差异很大,一般材料的老化发生在非结晶区,并逐步往结晶区蔓延。因此高分子材料的立体规整性对材料的老化会产生一定的影响。
2.1.2材料的分子量及其分布
材料的分子量和其分布直接影响了材料的老化性能。分子量分布的宽度影响了端基的数量,而端基的数量有决定了材料老化的难易程度。
2.1.3材料的化学结构
材料的链结构和聚集态结构直接影响了材料的性能。维持高分子材料聚集态的各分子间力中存在着很多弱键力,弱键很容易断裂产生自由基,这种自由基反应产生的物质会使高分子材料极速的发生老化。
2.1.4材料中的杂质
高分子材料的加工合成过程有时会引入一些杂质,或者残留一些化学助剂,这些都能引发高分子材料的老化。
2.2外在因素
①氧气:由于氧气的渗透作用,会与高分子聚合物上的弱键发生反应,引起主链结构的变化,从而引发材料的老化;②温度:温度的高低直接影响了高分子的性能和分子的断链速率。材料的温度越高,链运动速率越快,吸收的能量越多。当吸收的能量高于化学键的解离能时,链就会发生降解导致集团的脱落,使材料老化加剧。而当温度降低到一定程度,会阻碍链的运动速率,使高分子材料变得更硬,更脆;③湿度:水分子对材料的老化也有一定的影响。由于水分子的渗透性极强,会逐渐的渗透入分子间使材料发生溶胀,从而改变了分子间作用力。因此破坏了材料的聚集态,发生了老化现象;④光照:当高分子材料吸收的光能高于分子链断键的解离能时,会使分子链发生破坏,同时材料的结构也被迫发生改变,从而使材料的性能发生了改变,引起老化反应;⑤生物老化:在高分子材料的加工合成过程中,会使用一些助剂,助剂的使用同时也会引发霉菌的产生。霉菌微生物的生长代谢产生的分解霉和毒素不仅促使材料的被迫降解和老化,还会使接触者接触后感染到一系列疾病。
3高分子材料的放老化措施
3.1高分子材料的热老化预防措施
热老化预防措施主要通过改变材料的物理性质如温度。增塑剂是一种应用范围广泛的降低玻璃化温度的措施,可以使高分子材料在低温下保持原状态不发生老化。它包括分子增塑和结构增塑两种形式。分子增塑是指增塑剂在分子水平上与高分子混溶,从而降低了高分子链间的相互作用力,增强了材料的柔顺性。
3.2高分子材料的氧老化预防措施
在高分子材料的加工过程中,加入抗氧化物及含硫,磷有机化合物等,能够与过氧自由基发生反应,从而降低或终止老化反应进程。抗氧化剂包括两种类型,即自由基分解型和自由基受体型。这两种自由基抗氧剂协同作用,共同降低材料的老化速度。
3.3高分子材料的生物老化预防措施
霉菌是加快高分子材料老化的主要威胁。它能够在极短的时间内使高分子材料发生老化。
4结语
高分子材料的结构是及其复杂的,其功能众多。但其存在的老化问题也是亟待人们去解决的。上文已分析,引起高分子材料老化的因素有很多,其内部因素和外部因素共同作用引起高分子材料的结构改变,从而发生一系列的老化问题。在今后的研究中,必须要加大防老化的措施研究,才能从根本上解决高分子的缺陷。
参考文献:
1.何为高分子化学
顾名思义,高分子就是相对分子质量很高的分子,它是高分子化合物的简称。高分子化合物,又称聚合物或高聚物,是结构上由重复单元(低分子化合物—单体)连接而成的高相对分子质量化合物。高分子的相对分子质量非常的大,小到几千,大到几百万、上千万的都有。我们有时将相对分子质量较低的高分子化合物叫低聚物。高分子化学作为化学的一个分支,同样也是从事制造和研究分子的科学,但其制造和研究的对象都是大分子,即由若干个原子按一定规律重复地连接成具有成千上万甚至上百万质量的、最大伸直长度可达毫米量级的长链分子,称为高分子、大分子或聚合物。
2.高相对分子质量与高强度
相对分子质量和物质的性质是密切相关的,是决定物质性质的一个重要因素。只有相对分子质量高的化合物才有一定的机械力学性能,才能作为材料使用。例如乙烷、辛烷、廿烷、聚乙烯、超高分子量聚乙烯,都是直链的烷烃化合物,但是分子量变化很大,其机械力学性能因而也有极大的区别。
3.高分子科学的主要内容
既然高分子化学是制造和研究大分子的科学,对大分子的反应和方法的研究,显然是高分子化学最基本的研究内容。高分子科学不仅是研究化学问题,也是一门系统的科学。高分子科学的主要内容有:如何将低分子化合物连
接成高分子化合物,即聚合反应的研究。高分子化合物的结构与性质关系。不同性质的高分子,其结构必然是不同的。为了得到不同性质的高分子,就要去合成具有特殊结构的高分子。
二、高分子材料化学的应用
材料是人类社会文明发展阶段的标志,是人类赖以生存和发展的物质基础。它是指经过某种加工,具有一定结构、组分和性能,并可应用于一定用途的物质。上世纪半导体硅、高集成芯片、高分子材料的出现和广泛应用,把人类由工业社会推向信息和知识经济社会。可以说某一种新材料的问世及其应用,往往会引起人类社会的重大变革,材料是人类文明的重要标志。如果说现在人人离不开高分子材料,家家离不开高分子材料,处处离不开高分子材料,是一点也不过分的。高分子化合物的最主要的应用是以高分子材料的形式出现的,高分子材料包括了塑料、纤维、橡胶三大传统合成材料,另外许多精细化工材料也都是高分子材料。
第一,塑料:一类是通用塑料,如容器、管道、家具、薄膜、鞋底与泡沫塑料等等;另一类叫工程塑料,其强度大,如汽车零部件、保险杠、洗衣机内的滚筒、电器的外壳等。
第二,纤维:人们开发出聚酯、尼龙、腈纶、维尼纶等高分子化合物,通过不同的加工,生产出了各种纤维制品,极大地满足着人类的需要。
第三,橡胶:天然橡胶的种类和品质都受到很大的限制,于是科学家们不断开发出了各种人造橡胶,如丁苯橡胶、丁腈橡胶、乙丙橡胶、氟橡胶、硅橡胶等。
第四,精细化工:比如使得我们的世界变得丰富多彩的各种涂料产品,如家具漆、内外墙乳胶漆、汽车漆、飞机漆等。女孩子用的指甲油,使牙齿变白的增白剂也都是涂料。还有万能胶、建筑用胶、医用胶、结构胶等黏合剂,以及各种吸水树脂等都是高分子产品。三、高分子化学与高科技的结合
当今社会,人们将能源、信息和材料并列为新科技革命的三大支柱,而材料又是能源和信息发展的物质基础。自从合成有机高分子材料的那一天起,人们始终在不断地研究、开发性能更优异、应用更广泛的新型材料,来满足计算机、光导纤维、激光、生物工程、海洋工程、空间工程和机械工业等尖端技术发展的需要。高分子材料向高性能化、功能化和生物化方向发展,出现了许多产量低、价格高、性能优异的新型高分子材料。
随着生产和科学技术的发展,许多具有特殊功能的高分子材料也不断涌现出来,如分离材料、光电材料、磁性材料、生物医用材料、光敏材料、非线性光学材料等等。功能高分子材料是高分子材料中最活跃的领域,下面简单介绍特种高分子材料:功能高分子是指当有外部刺激时,能通过化学或物理的方法做出相应反应的高分子材料;高性能高分子则是对外力有特别强的抵抗能力的高分子材料。它们都属于特种高分子材料的范畴;特种高分子材料是指带有特殊物理、力学、化学性质和功能的高分子材料,其性能和特征都大大超出了原有通用高分子材料(化学纤维、塑料、橡胶、油漆涂料、粘合剂)的范畴。
第一,力学功能材料:强化功能材料,如超高强材料、高结晶材料等;)弹材料,如热塑性弹性体等。
第二,化学功能材料:分离功能材料,如分离膜、离子交换树脂、高分子络合物等;反应功能材料,如高分子催化剂、高分子试剂;生物功能材料,如固定化酶、生物反应器等。
第三,生物化学功能材料:人工脏器用材料,如人工肾、人工心肺等;高分子药物,如药物活性高分子、缓释性高分子药物、高分子农药等;生物分解材料,如可降解性高分子材料等。
可以预计,在今后很长的历史时期中,特种与功能高分子材料研究将代表了高分子材料发展的主要方向。
四、高分子化学的可持续发展
研究高分子合成材料的环境同化,增加循环使用和再生使用,减少对环境的污染乃至用高分子合成材料治理环境污染,也是21世纪中高分子材料能否得到长足发展的关键问题之一。比如利用植物或微生物进行有实用价值的高分子的合成,在环境友好的水或二氧化碳等化学介质中进行化学合成,探索用前面提到的化学或物理合成的方法合成新概念上的可生物降解高分子,以及用合成高分子来处理污水和毒物,研究合成高分子与生态的相互作用,达到高分子材料与生态环境的和谐等。显然这些都是属于21世纪应当开展的绿色化学过程和材料的研究范畴。
参考文献:
[1]冯新德.展望21世纪的高分子化学与工业[J].科学中国人,1997,(11)
关键词:高分子材料;功能;研究现状;发展前景
前言
在我们的日常生活中,材料随处可见,材料的发展水平直接影响我们的生活质量。高分子材料在我们日常生活的应用中拥有很多的优势,与现代化生产非常吻合,同时它也产生了很高的经济效益等,因此它在工业上发展的十分迅速。在过去,20世纪60年展起来的功能高分子材料是属于那时的一个新兴领域,这个新兴领域同时渗透到能源和电子以及生物三大领等。而如今,21世纪的科技不断创新,也有了新型有机功能高分子材料,它们在人们的生产和生活中扮演着一个越来越重要的角色。
1 功能高分子材料的定义
功能高分子材料是指同时兼顾有两种性能的复合高分子材料,性能一:传统高分子材料的所体现出来的性能,性能二:某些特殊功能的基团所体现出来的性能。一般说来,具有传递信息、转化能量和贮存物质作用的高分子及其复合材料为功能高分子材料,或者还可以理解为具有能量转换的特性、催化特性、化学反应活性、磁性、光敏特性、药理性、导电特性、生物相容性、选择分离性等功能的高分子及其复合材料,同时还具有原有力学性能的基础。
2 功能高分子材料的工程实际应用
目前,在工程上应用较广泛而且具有重要应用价值的一些功能高分子材料主要分为以下几种:光功能高分子、液晶高分子、电功能高分子、吸附分离功能高分子、反应型功能高分子、医用功能高分子、环境降解功能高分子、高分子功能膜材料等。下文中具体从这几方面阐述:
(1)光功能高分子材料。指在光的作用下能够产生物理变化,如光导电、光致变色或者化学变化,如光交联、光分解的高分子材料,或者在物理或化学作用下表现出光特性的高分子材料。光功能高分子材料主要应用在电子工业和太阳能的开发利用等方面。
(2)液晶高分子材料。液晶高分子是一种新型的功能高分子材料,它是分子水平的微观复合,由纤维与树脂基体在宏观上的复合衍生而来,也可以理解为在柔性高分子基体中以接近分子水平的分散程度分散增强剂(刚性高分子链或微纤维)的复合材料。强度高、模量大是液晶高分子材料的主要特点,它在复合材料、纤维和液晶显示技术等方面的应用非常广泛。
(3)电功能高分子材料。电功能高分子材料主要表现为在特定条件下表现出各种电学性质,如热电、压电、铁电、光电、介电和导电等性质。根据其功能划分,主要包括导电高分子材料、电绝缘性高分子材料、高分子介电材料、高分子驻极体、高分子光导材料、高分子电活性材料等。同时根据其组成情况可以分成结构型电功能材料和复合电功能材料两类。电功能高分子材料在电子器件、敏感器件、静电复印和特殊用途电池生产方面有广泛应用。
(4)吸附分离高分子材料。吸附分离功能高分子按吸附机理分为化学吸附剂、物理吸附剂、亲和吸附剂,按树脂形态分为无定形、球形、纤维状,按孔结构分为微孔、中孔、大孔、特大孔、均孔等,吸附分离功能高分子主要包括离子交换树脂和吸附树脂。
(5)反应型功能高分子材料。反应功能高分子是有化学活性、能够参与或促进化学反应进行的一种高分子材料。它是将小分子反应活性物质通过共价键、离子键、配位键或物理吸附作用结合于高分子骨架,主要用于化学合成和化学反应。
(6)医用功能高分子材料。在生物体产生生理系统疾病时,一些特殊的功能高分子材料有对疾病的诊断、治疗、修复或替换生物体组织或器官,增进或恢复其功能的作用,此类特殊的功能高分子材料称为医用功能高分子材料。一般来说,医用功能高分子材料多用于对生物体进行疾病的诊断和疾病的治疗以及修复或替换生物体组织或器官和合成或再生损伤组织或器官,具有延长病人生命、提高病人生存质量等作用,在医疗方面被广泛应用。
(7)环境降解高分子材料。高分子材料在发生降解反应的条件有许多,如机械力的作用下发生的降解称为机械降解,此外在化学试剂的作用下可发生化学降解,在氧的作用下可发生氧化降解,在热的作用下可发生热降解,在光的作用下可发生光降解,在生物的作用下可发生生物降解等。具有此类功能的高分子称为环境降解高分子材料。
(8)高分子功能膜材料。高分子功能膜是一种具有选择性透过能力的膜型材料,同时也是具有特殊功能的高分子材料,一般称为分离膜或功能膜。使用功能膜分离物质具有以下突出的优点:具有较好的选择性透过性,透过产物和原产物位于膜的两侧,便于产物的收集;分离时不发生相变,同时也不耗费相变能。从功能的角度,高分子分离膜具有识别物质和分离物质的功能,此外,它还有转化物质和转化能量的其它功能。利用其在不同条件下显出的特殊性质,已经在许多领域获得应用。
3 功能高分子材料的发展前景
人类赖以生存和发展的物质基础离不开材料,材料的发展关系到社会发展和国民经济以及国家的安全,同时也是体现国家综合实力的重要标志。高新技术和现代工业发展的基石离不开高分子材料,国民经济基础产业以及国家安全不可或缺的重要保证同样也离不开高分子材料。而功能高分子材料由于其优越性,使得其在材料行业中发展迅速。
未来材料科学与工程技术领域研究的重要发展方向离不开功能高分子材料,材料、信息和能源理所当然的被评为新科技革命时代的三大根基,信息和能源发展离不开材料领域中功能高分子材料作为它们物质基础所起到的重要作用,新型功能高分子材料的研究与发展主要取决于现代学科交叉程度高这一特点。在传统的三大合成材料以外,陆陆续续又出现了具有光、电、磁等特殊功能的高分子材料以及功能高分子膜,同时也出现了生物高分子材料,隐身高分子材料等许多具有特殊功能的高分子材料,与此同时功能高分子材料的发展速度依然保持着加快的状态,显然它们对新技术革命影响非常之大。这些新型的功能高分子材料在我们的尖端科学技术领域和工农业生产以及日常生活中扮演着越来越重要的角色,21世纪人类社会生活必将与功能高分子材料密切相关。
4 结束语
功能高分子材料是一门研究高分子材料变化规律以及实际应用技术的一门学科,在高分子材料科学领域中的发展速度是最快的,同时也是与其它科学领域交叉最为密切的一个研究领域。它是以高分子物理、高分子化学等相关学科为基础,同时与物理学和生物学以及医学密切联系的一门学科。因此学习这门学科能让我们很好的将高分子学科的知识综合运用起来,进而使我们对高分子学科有更深刻的认识,让我们受益匪浅。
参考文献
[1]张青,陈昌伦,吴狄.功能高分子材料发展与应用[J].广东化工,2015,42(06):119-120.
[2]武帅,鲁云华.功能高分子材料发展现状及展望[J].化工设计通讯,2016,42(04):82.
[3]赖承钺,郑宽,赫丽萍.高分子材料生物降解性能的分析研究进展[J].化学研究与应用,2010,03(01):1-7.
关键词:高分子材料;加工;形态控制
一、引言
高分子材料的性能与大分子的化学与链结构有着密切的关联,且材料形态也是重要影响因素之一。聚合物氛围结晶、取向等几种形态,多相聚合物择优扩相形态。聚合物制品形态的形成源自于加工中复杂的温度场与外力场作用。由此可见,关于加工过程中高分子材料形态控制具有重要的研究意义。
二、我国高分子材料加工中形态控制研究现状
高分子材料形态与物理力学性能之间的关联十分紧密,这也是高分子材料的重点研究课题。相较于其他材料,高分子材料具有非常复杂的形态,具体表现为高分子链的拓扑结构、共聚构型以及刚柔性非常复杂,在分子设计与结构调整中,可以对一些合成方法加以运用;其次,在高分子长链结构的影响下,其熔体的粘弹性非常突出;此外,高分子具有非常宽的弛豫时间,就是受到很小的应变作用,其产生的非线也会非常强烈。
对于聚合物的成型过程而言,在非等温场、不同强度的剪切与拉伸场的影响之下,就分子尺度而言,其大分子链会发生一系列化学反应;就纳米与亚微米尺度而言,大分子会有结晶与取向现象发生,如此一来就会有超分子结构的形成;而根据亚微米与微米尺度,多相聚合物会有不同相形态的形成,甚至会出现一些缺陷。而这些形态的影响因素非常广泛,例如加工中的外场强弱、作用频率、作用方式以及时间等。然而,现阶段关于这些问题的研究虽然有所深入,但相应的理论体系尚未成熟。此外,随着新聚合物的开发不断深入,在高分子材料加工中涌现出越来越多的成型加工方法,显然这使聚合物加工中的形态控制成为了一个长期的研究课题,对于高分子物理领域的发展无疑有着重要的影响。
在我国,关于新材料的研究起步以跟踪模仿为主,在知识产权与创新理论方面有所欠缺,并且基础研究与技术推广的通畅性也有待提升。其次,相关人员并不重视传统材料的升级与优化,很多高性能材料品种对进口的依赖性依然较强。再者,材料成型与加工设备也没有得到应有的关注,与一些发达国家相比,我国材料研究与整体发展依然存在诸多不足,显然这与国民经济与设备的发展需求不相适应。
聚合物的性能取决于形态,因此,在高分子材料领域中,聚合物形态与性能关系的研究一直以来都受到高度重视,然而在实践中,我们在二者之间的结合方面的研究上依然有所欠缺,具体可以从以下几个方面得到体现:
第一,在剪切速率与剪切应力非常低的情况下,聚合物共混物相形态的演化研究不断深入,然而在实践中,一些主要聚合物成型加工的剪切速率主要在10?~104s-1范围内,显而易见,相关研究成果对实际生产的指导作用依然有所欠缺。
第二,基于不同条件的不同特性聚合物,其共混物形态发展与演化研究依然是主要研究内容,而形态与性能关系的研究依然有所欠缺。
第三,在加工过程中,受到部分特殊外场的作用,聚合物凝聚态结构与相形态结构的研究有待深入。
截至今日,在聚合物及其复合物的成型加工中,就算成型设备与工艺条件属于常规,在外场作用下,人们依然没有彻底了解结构形态受到的影响,仅仅对一些粗略的定性关系有所认识,甚至有的推断还是错误的。以双螺杆挤出过程为例,人们仅对不同螺杆原件组合下外力场作用的不同会改变温度场,进而对产品产量、外观与内在性能产生影响这一规律有所了解。然而这一影响的具体方式却没有清楚的认识,业界研究人员也无法制定出定量的指导方案。在管材生产中,不管是落锤冲击不达标,还是纵向收缩产生波动,都没有搞清楚原因,也无法拿出改进方案,大部分情况下都是凭借经验进行处理。因此,现阶段很多成型设备与工艺控制的效果是否取得理想效果,我们依然难以准确判定。
一直以来,关于生产实践中的问题研究一直没有得到基础工作研究人员的关注。在成型设备与工艺技术的研究与开发中,相关规划也缺乏系统性。现阶段,我国塑料制品年产量超过了2200万吨,塑料机械工业取得了迅猛发展。然而在很多企业生产实践中,整个效率与质量依然有待提升,产生的能耗也没有得到有效控制。鉴于此,高分子材料成型加工将会成为未来高分子材料领域的研究重点,必须将侧重点放在高分子材料制品的研究上来,而不是过分的关注材料这一因素,只有如此,才能够提高高分子材料志制品质量。
三、高分子材料加工中形态控制的研究趋势
第一,基于常规的成型设备条件,聚合物及其复合物典型制品成型或型材生产在成型加工时,在设备与工艺条件改变的情况下,其形成的外场会有所差异,进而发生相应变化,例如塑化、结晶、赋型以及流动等,这些变化会改变制品形态、结构以及性能。
第二,极端的加工条件极端会改变聚合物及其复合物的形态结构变化规律,例如结晶结构、晶体大小等,在这类条件下,还需要尽可能对大尺寸高分子晶体的制备进行探究。
第三,在对新外场条件的分析、推断以及设定之下,通过对聚合物及其复合物结构形态与性能受到的影响研究,才能够围绕新的成型方法或具有特殊性能的高分子材料的制备进行探索,进而实现高分子材料性能的改善,并将节能性、经济性等方面的优势充分发挥出来。
四、结束语
总而言之,在未来工业领域的发展中,高分子材料的应用具有重要意义,而高分子材料加工中的形态控制则成为发展高分子技术的关键。作为相关研究人员,必须结合高分子材料加工中的形态控制研究与实践中存在的问题,采取相应的改进与优化对策,提高高分子加工整体水平,如此才能够从真正意义上推动我国高分子材料加工领域的进步。
参考文献:
[1]李忠明,马劲.加工过程中高分子材料形态控制的研究进展[J].中国科学基金,2004,18(3):154-157.
[2]李又兵,申开智.形态控制技术获取自增强制件研究[J].高分子材料科学与工程,2007,23(1):24-27.
【关键词】高分子材料;功能助剂;现在发展趋势
1 高分子材料功能助剂行业现状
(1)高分子材料的发展对于化学助剂行业有高度的关联性。高分子材料化学助剂已经成为现代化学工业体系和材料科学体系的重要交叉领域之一,在高分子材料生产、储运、加工、使用过程中的作用愈加突出,几乎每一种高分子材料的每一种性能都依赖相对应的化学助剂实现。
(2)化学助剂行业发展的专业性越来越强。随着经济水平对于高分子材料要求的提高,新材料技术和化工产业的不断进步,高分子材料化学助剂产业整体呈现快速发展的态势,表现为化学助剂新品种的不断出现,需求数量的较快增长,以及化学助剂性能的不断改进。国际同行业巨头往往根据自身技术优势和经营特点选择几大类别的化学助剂进行生产经营,呈现出化学助剂行业发展的较强专业性。
(3)中国化学助剂行业发展市场潜力巨大。中国在高分子材料领域的高速发展,使我国已成为全球高分子材料化学助剂需求的增长重心。
(4)中国高分子材料化学助剂行业处于加速发展阶段。由于我国高分子材料化学助剂行业起步晚,行业的整体发展水平与国际水平还存有差距,一方面单一企业经营规模较小、新结构物产品匮乏、化学助剂应用技术服务能力较差、行业集约化程度不够、产品未形成集约化规模经营、高端产品少、许多产品品种形成系列化。另一方面,中国化学助剂行业呈现快速发展的态势,专业化、规模化、技术型企业不断出现和发展,部分企业已经在全球具有很好的知名度。
2 高分子材料功能助剂的发展分析
2.1 分离纯化技术
分离纯化技术是指将特定化学物质与周边干扰物质彼此分离,获得单一高纯度化学物质的技术。分离提纯的方法主要包含两大内容:一是研究获得高纯度物质的分离提纯方法,二是研究如何将这种分离提纯方法,实现大规模的工业生产。分离提纯的方法不拘泥于物理变化还是化学变化,在可能的条件下使样品中的杂质或使样品中各种成分分离开来的变化都可使用。化学助剂生产就是利用前述一种或几种技术的组合对产品原料、中间体、产成品进行纯化,使其满足工艺过程和质量指标的各项要求。
2.2 化学合成技术
化学合成技术是指利用现有化学物质创造出具备特定结构和性能的化学物质技术,主要包括:卤化技术、磺化技术、硝化技术、酯化技术、氧化技术、还原技术、烷基化技术、酰化技术、氨解技术、羟基化技术、缩合技术、聚合技术、官能团的引入和选择性转换技术等单元反应技术。化学助剂生产就是利用前述一种或几种技术的组合对产品原料、半成品进行化学合成,进而得到成品或中间体的过程。
2.3 检测分析技术
检测分析技术是指针对特定目标物质,获得其成分、结构、性能、纯度等具体参数的技术手段,主要包括:高效液相色谱分离检测技术、气相色谱分离检测技术、原子吸收光谱检测技术、气-质联机差热分析技术、热失重检测分析技术、激光粒度检测技术、X 衍射分析检测技术、红外和紫外光谱分析检测技术及其他一系列化学或物理分析技术等。化学助剂的生产需要选用适当的检测技术或几种技术的联合,对原料、中间体、产成品和生产过程控制的各项指标进行分析检验以确保符合客户和生产的需要。
2.4 化学助剂应用技术
高分子材料化学助剂应用技术是在化学助剂复合技术基础之上发展而来,其主要内容包括:一是指化学助剂在完成化学合成之后的剂型选择和确定,比如造粒、乳化、微粒化等,以使化学助剂适宜于在高分子材料中更好发挥作用;二是指为确保不同的高分子材料获得特定的功能和用途,需要添加不同品种、不同功能、不同剂量的各种化学助剂来实现高分子材料的性能改善目标,
3 高分材料功能助剂的发展趋势
(1)高效化。高效化是指在确定助剂用量的情况下实现效果最大化。主要途径为助剂的高分子量化,普通的助剂分子量较低,容易挥发迁移、渗出,降低了助剂的效能,而高分子量化可减少挥发性、迁移性,提高热稳定性、耐水解能力、与材料的相容性,而使助剂的效能得以充分发挥。
(2)多样化。高分子材料化学助剂的多样化不仅在于新品种的出现和应用高分子材料范围的扩大,更在于其作用途径的多样化。高分子材料化学助剂的功能是由其相应的官能团结构决定的,一方面,传统的官能团结构不断得到改进和完善,使产品序列不断丰富,另一方面,新的官能团结构不断被发现,使助剂发挥作用的途径呈现多样化。
(3)复合化。复合化的是各种高分子材料化学助剂的共混物,目的是令高分子材料化学助剂具有多功能性和增强协同效应,使应用简单方便。现代的复合技术已非初期的几种助剂简单混合,已发展成为多组份协效性能的研发,各组分之间协同机理的研究和协同组分的开发将是高分子材料化学助剂复合应用技术研发的关键。
(4)系列化。系列化指通过对同一类助剂产品的结构和其应用性能发展规律的分析研究,将系列化的新助剂产品的主要参数、类型、性能、基本结构等作出合理的安排与计划,以协调同类产品、配套产品和目标高分子材料之间更加合理的协同关系,从而充分发挥助剂产品的协同效应和协配性,获得更好的市场通用性。
(5)环保化。随着环保法规日益严格和可持续发展需要,环保化将成为化学助剂发展的重点。一方面是化学助剂制造过程的清洁生产工艺的开发,节能减排;另一方面主要为发展环境友好助剂,限制或禁止使用对人体和自然环境有毒有害的助剂。
4 结束语
随着高分子材料化学助剂高效化、多样化、复合化、环保化、系列化的趋势不断发展,高分子材料化学助剂的各类相关技术也沿着上述趋势不断演变进步。高分子材料化学助剂企业只有在掌握化学助剂主体技术的基础之上,沿着发展趋势不断研发新技术,才能在未来的竞争中获得优势地位。
参考文献:
[1]白凡飞,贺平,贾志杰,黄新堂,何云.原位生成法制备单分散的纳米氧化锌分散液[J].材料科学与工程学报,2005(05).