时间:2024-01-02 10:36:16
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇水处理化学技术范例。如需获取更多原创内容,可随时联系我们的客服老师。
关键词:环保型 化学品 水处理技术 分析
中图分类号:X7 文献标识码:A 文章编号:1674-098X(2013)04(c)-0130-01
当前随着工业的不断发展,我国的水污染形势日益严峻。在淡水资源日益紧张的背景下,加强对于水污染的治理是缓解水资源紧张形势的重要措施,同时这也是可持续发展的必然要求。
我国早就开始对水污染进行治理,随着科学技术的进步,我国水污染治理形势有了明显好转。传统意义上对于污水的处理一般都是通过加入化学品,通过化学品与水产生化学反应,从而使污染的水能够持续利用,最终满足需求。
1 我国环保型水处理化学品
当前,我国常用的也是应用最广泛的水处理化学品,主要有高铁酸钾,高锰酸解,聚合氯化铝以及天然产物等化学品。下面就分别来予以详述。
1.1 高铁酸钾
高铁酸钾极具氧化性,它与水结合能产生大量的原子氧。原子氧的作用,我们都知道它可以高效地消除水中污染物和病菌。在高铁酸钾自身化学反应产生原子氧的同时,它自身都可以被还原成Fe(OH)3。Fe(OH)3是一种高品质的凝絮剂,凝絮剂主要是用来消除水中的悬浮颗粒的,对于Fe(OH)3这样的高品质凝聚剂而言,它更能有效地消除水中悬浮颗粒。通过以上分析,我们可以发现高铁酸钾同时具有消毒与排污两种功能。在这两种功能的共同作用下,水污染可以得到有效治理。它最大的优点还在于它对水没有任何副作用,不会对人体产生任何影响。
高铁酸钾的应用极为广泛,在一般饮用水中,在废水中,生物污泥中都能见到它的身影,在一般饮用水中,高铁酸解只需要5 mL就杀菌效果就可以达到90%多。饮用水的浓度也会有效降低。在二级废水处理中,仅每升八毫克就可以把废水中的各种细菌完全消灭。生物污泥会产生恶臭,人们在消除恶臭的时候,运用了各种手段,近些年来,高铁酸钾在生物污泥中的应用取得了非常好的效果。在生物污泥中,高铁酸钾可以有效驱除CH,SH和NH等物质,同时还可以将它们转化为Nor。生物污泥在处理后,不仅没有害处,而且会有更多的化学元素,可以当做化学肥料来使用。这样做有利于资源的高效利用。
1.2 高锰酸钾
高锰酸钾的运用,高锰酸钾遇水会产生二氧化锰。二氧化锰能够有效地去除水中的污染,一方面二氧化锰可以在水中与污染物质发生化学反应最终产生催化作用。另一方面它对水中有机污染物具有非常高效地处理结果。在二氧化锰的这两种反应共同努力下,会使得高锰酸钾对于水污染有效地处理效果。
近些年来,关于高锰酸钾的一系列化学复合物出现,这些复合物对于水污染的治理显得更有成效。其中最为典型的化学复合物就是我们常提到的高锰酸钾复合药剂。这种药剂是用高锰酸钾和各种无机盐有机联系在一起,生成的一种新型、高效地氧化剂。这种氧化剂具有非常强的混凝效果。当高锰酸钾复合药剂在硫酸亚铁混凝剂投下之后,在放入水中,会给水污染治理带来意想不到的结果。它会使得混凝曲线向下推移并且向两极张开,最终有效地拓宽混凝剂的使用范围。这种复合药物,可以有效提高系统的抗干扰能力。
高锰酸钾具有非常高效地去除臭味的功能。高锰酸钾能在水中氧化具有臭味的化合物,它可以有效地通过与水中的微臭物质发生氧化反应,从而最终消除臭味。高锰酸钾由于在水中可以对带臭物质进行氧化,因而它可以在加氯消毒后,有效地消除此前产生的臭味。此外高锰酸钾还具有另外一个非常显著的特点,它可以养护除藻。高锰酸钾是一种非常有效地除藻剂,仅需要一毫升就可以消除90%的藻类,它在带藻类水中应用广泛。
1.3 聚合氯化铝铁
聚合氯化铝铁的主要组成部分是铝盐和铁盐,铁盐的主要作用是在于使得矾花的沉淀速度加快并且适度参与混凝土。经过长期的观察研究发现,铁含量较低的聚合氯化铝铁要比含铁量较高的聚合氯化铝铁使得矾花的速度沉淀更快,而且在沉淀过程中含铁量过多还会腐蚀管线设备,缩短管线设备的使用寿命,因而对于聚合氯化铝铁中含铁量的规定一般都是限定在2/100。
冬季低温低浊水的防治是水污染防治的重要组成部分,在对其进行治理的过程中,人们首选复合铝铁来进行净化。之所以要选择复合铝铁进行净化主要是因为复合铝铁是有铝盐和铁盐构成的,在混凝过程中,铁盐可以使得矾花变重从而加剧它的沉淀速度,同时铝盐可以使矾花变大。两种物质共同作用,会使得混凝效果更好。
研究表明混凝土的沉底速度和反应速度与水温有很大联系,水温与这两个速度呈正比关系。也就是说,水温越高,反应速度和沉淀速度越快。在气温极低的情况下,水中混凝土的反应速度和沉淀速度将很慢。在这种前提下,就必然需要进行强烈且均匀的搅拌才能最终提高沉淀速度。复合铝铁剂这是冬季低温条件下的首选要选择。同时,我们还要注意到铝铁复合剂可以降低用药量,可以有效降低水中残余铝的比率。铝铁复合剂是一种最佳的净水药剂。
1.4 天然产物
天然产物是一种有效地治水药剂,它是一种非常环保的水处理化学品。天然产物利用方便,不需要人工开发,使用效果更好,因而被广泛应用在各个领域的水污染治理中。
早在古代,人们就懂得了利用天然高分子通过与金属表面的结合,可以产生大量的活性基因,这种基因可以在金属物中起到高效地缓蚀作用。人们开始从天然植物中提取缓蚀剂。天然植物中所包含的丰富的活性基因,可以在金属的轨道提供大量电子,另一方面又可以真正地减少金属表面的化学腐蚀,最终缓解缓蚀作用。
天然产物一般都是在天然植物中提取的混合物,它之所以具有如此高效地缓蚀作用,正是由于它结合了多种具有缓蚀效果的有效成分。目前人们提取缓蚀剂的渠道也越来越多样化,已经不仅仅限于海带等海生作物,现在已经扩展到各种天然植物上,包括像茶叶、蒲公英等。提取方法也日益多样化,主要方法是索氏提取法和浸取法。
2 我国的水处理技术
当前我国的水处理技术有了明显进步,随着经济发展和科学技术的进步,我国水资源处理技术发生了深刻变化。针对水源污染的生物预处理技术和臭氧活性炭深度处理技术都处于实用化过程中。在工业水处理上混凝沉淀和过滤方式应用的较多,因而进步不小。同时用离子交换、除铁等新技术也在不断发展中。
我国水污染处理技术,是在社会经济的不断发展得的,同时也是在技术进步的大力推动下进步的。在水污染形势日益严峻的情况下,加强对于水处理技术的研究显得非常重要。这将我们今后研究的重点内容。
参考文献
【关键词】传统化学法 分类处理 电镀废水 鳌合沉淀
中图分类号:TU8;TU758.7 文献标识码:A 文章编号:1009-914X(2013)35-177-01
1 概述
目前国内普遍存在电镀厂点多而分散、布局不合理、生产技术落后等现象,建设集中式电镀基地是解决当前电镀污染的发展趋势。由于电镀品种十分繁杂,加工工艺也在不断更新,电镀废水存在着污染因子种类多、浓度高、理化性质复杂等特点。综合污水处理厂必须同时具备处理多种污染物的功能。而在电镀废水产生、收集阶段将不同类型的废水分别进行收集,将对后续处理有很大的帮助。电镀废水根据其所含污染因子特性,大致可分为含氰废水、含铬废水、含金属离子废水。若企业具备较好的分流条件,还可根据重金属离子中和沉淀条件及水量比例大小将含金属离子废水细分为含Ni2+废水、含Cu2+废水、含Zn2+废水及含其它金属离子废水。
2 常用处理技术
(1)化学法。化学法从近几十年的国内外电镀废水处理技术发展趋势来看,电镀废水有80%采用化学法处理,化学法处理电镀废水,是目前国内外应用最广泛的电镀废水处理技术,技术上较为成熟。化学法包括沉淀法,金属质换法,铁氧体法、螯合沉淀法等,是一种传统和应用广泛的处理电镀废水方法,具有投资少,处理成本低,操作简单等特点,适用于各类电镀金属废水处理。
(2)蒸发浓缩法。蒸发浓缩法是对电镀废水进行蒸发。使重金属废水得以浓缩,并加以回收利用的一种处理方法,一般适用于处理含高浓度铬、铜、银、镍等重金属废水,但因能耗大,操作费用高,杂质干扰资源回收问题还待研究,使应用受到限制。
(3)电解法:电解法是利用金属的电化学性质,在直流电作用下而除去废水中的金属离子,是处理含有高浓度电沉积金属废水的一种有效方法,处理效率高,便于回收利用。但该法缺点是不适用于处理含较低浓度的金属废水,并且电耗大,成本高,一般经浓缩后再电解经济效益较好。
(4)离子交换法:离子交换法是利用离子交换剂分离废水中有害物质的方法,含重金属废水通过交换剂时,交换器上的离子同水中的金属离子进行交换,达到去除水中金属离子的目的。此法操作简单,便捷,残渣稳定,无二次污染,但由于离子交换剂选择性强,制造复杂,成本高,再生剂耗量大,因此在应用上受到很大限制。
(5)吸附法:吸附法是利用吸附剂的独特结构去除重金属离子的一种方法。传统吸附剂有活性炭、聚糖树脂、硅藻精土等。实践证明,使用不同吸附剂的吸附法,不同程度地存在投资大,运行费用高,污泥产生量大等问题,处理后的水难于达标排放。
(6)膜分离法。膜分离法是利用高分子所具有的选择性进行物质分离的技术,包括电渗析、反渗透、膜萃取等。利用膜分离技术一方面可以回收利用电镀原料,大大降低成本,另一方面可以实现电镀废水零排放或微排放。缺点是膜需经常更换,运行成本较高。
(7)生物处理技术。生物处理技术是通过生物有机物或其代谢产物与重金属离子的相互作用达到净化废水的目的。随着重金属毒性微生物的研究进展,生物处理技术日益受到人们的重视,采用生物技术处理电镀金属废水呈发展势头。目前该技术更多的还处于研究和试用阶段,应有还不是很广泛。
3 工艺流程
电镀废水传统化学法处理由调节池、加药箱、氧化池、还原池、中和反应池、pH调节池、絮凝池、斜管沉淀池、厢式压滤机、过滤器等组成。流程图如下:
含氰废水在调节池①汇集,均化水量和水质后,由泵提升至氧化反应器,自动投加氧化剂和碱(NaClO和NaOH),把CN?氧化为CNO-,然后再投加强酸,再次投加NaClO,在不同的PH条件下实行二次破氰。反应后废水自动溢流到中间池。反应条件:一次破氰PH:10.5—11.5,ORP为300 mV,二次破氰PH:8—9,ORP为650 mV左右。
含铬废水在调节池②汇集,均化水质和水量后,由泵提升到还原反应器,废水在OPR仪表控制下自动投加还原剂,把Cr6+还原为Cr3+,然后投加碱,使Cr3+形成Cr(OH)3,反应后废水自动溢流到中间池。反应条件:PH3.0—3.5,ORP电位300mv。
中间池废水在PH仪表控制下,自动投加石灰乳及絮凝剂,将PH调节至适当的范围,使各种重金属离子形成碱盐沉淀。反应条件:PH10.0—11.0左右。
经充分混凝反应形成大量矾花的废水汇集于中间水池,再由泵提升至斜管沉淀池进行固液分离,根据“浅层沉降原理”,在沉淀池中加设蜂窝斜管,增大沉降面积,并改善沉降过程中的水力条件,使污泥颗粒在稳定的层流状态下沉降,从而达到沉降效率高和容积利用率高的特点。
由斜管沉淀池泥斗收集的污泥定期排放至污泥干化池,再由浓浆泵泵入板框压滤机进行干化处理。
斜管沉淀池上清液自流入PH回调池,采用自动控制技术对PH进行调节,保证PH值控制在国家允许的排放范围内。
4 反应机理
(1)含氰废水处理。破氰过程为两级碱性氯化法,破氰剂选用NaClO,相对其它药剂而言,其投药方便安全、投药量易于控制、污泥量少。采用次氯酸钠氧化法处理废水中的氰化物,其反应式如下:
CN-+ClO-+H2O=CNCl-+2OH- CNCl-+2OH-=CNO-+Cl-+H2O
进一步氧化,反应式如下:
2CNO-+3ClO-+H2O=N2+CO2+3Cl-+2OH-
(2)含铬废水的治理。电镀废水中的六价铬离子,用还原剂还原为Cr3+,再与氢氧根产生沉淀除去。一般使用焦亚硫酸钠作还原剂,其反应式如下:2Cr????2O72- +3S2O52- +10H+ 4Cr3++6SO42-+5H2O
Cr3++3OH-Cr(OH)3
(3)重金属离子的处理。重金属离子只要调节适当的PH值,即会生成相当的氢氧化物沉淀。反应式如:Men++nOH-=Me(OH)n
反应后出水,自流或泵入斜管沉淀池,使各种氢氧化物在斜管区很快沉降, 上部溢出水再经碳滤(或砂滤)后达标排放,下部污泥经板框压滤机压滤后外运作无害化处理。
(4)螯合沉淀。上述传统化学沉淀法在当前使用比较广泛。但由于不同的重金属离子生成氢氧化物沉淀时的最佳pH值不同,其去除往往不能兼顾。同时,目前电镀过程中光亮剂等使用量有所增加,重金属离子容易与其形成络合物而难以沉淀。而采用添加DTCR重金属离子捕集剂的螯合沉淀法则很好地解决了这个问题。DTCR 为长链高分子物质,含有大量的极性基,它能捕捉阳离子并趋向成键而生成难溶的氨基二硫代甲酸( TDC)盐。生成的TDC 盐有部分是离子键或强极性键(如TDC—Ag ) , 多数是配价键( 如TDC—Cu、TDC—Zn、TDC—Fe) 。同一金属离子螯合的配价基极来自不同的DTCR分子,这样生成的TDC盐的分子是高交联的、立体结构的,原DTCR的相对分子质量为(10~15)万,而生成的难溶螯合盐的分子质量可达数百万甚至上千万,故这种金属盐一旦在水中生成,便有很好的絮凝沉析效果,且进入污泥后难以返溶。
5 结果与讨论
(1)采用分类预处理、再合并处理的综合性电镀废水的处理方法,出水效果稳定、操作简单、占地面积小、污泥生成量少、造价及运行成本低,对处理电镀废水是一个经济、可行的技术。
(2)目前国内对氰化物的去除也有采用一级破氰的办法,可简化操作流程和节约成本,在理化因子控制好的情况下通常也能达标,但稳定性与可靠性不如二级破氰。
(3)重金属离子的去除,利用了螯合沉淀机理,解决了传统化学法由于各种重金属中和沉淀条件不一及存在络合物而造成的部分重金属指标超标问题。
(4)上述方案未考虑电镀废水中水回用问题。在电镀生产流程中,前段清洗用水完全可以利用经上述处理后的废水。但要把废水用于调配电镀槽液等,还必须经过离子交换或反渗透等深度处理。
(5)传统化学法可以与其它办法配合使用,达到经济上更加可行,环境效益更加明显的处理目标。
参考文献:
[1]魏先勋.环境工程设计手册[M].长沙:湖南科学技术出版社.1992.83~85.
[2]张建梅,韩志萍,王亚军.重金属废水的生物处理技术[J].环境污染治理技术与设备,2003,4(4):75~78.
[3]侯爱东,王飞,徐畅.综合一体化处理电镀废水技术及应用[J].电镀与环保,2003,23(4):33~35.
关键词:UV/H2O2;化学镀镍废水;COD去除率;Ni2+
Abstract: It elaborates effectors of electricless nickel waste rinse water treatment and performance of nickel elimination and wastewater reclamation based on experiment of UV/H2O2 technical treatment. The experiment shows content of COD can be reduced by efficiency of 93.8% with conditions of UV light (Power 500W, Wavelength 185nm) and all settings as follows: adjustment wastewater pH 5, H2O2 dosing quantity double than COD content, stirring speed 10000r/min and 2-hours reaction time. With NaOH further added, not only Ni2+ can be discharged within spec, but also Ni(OH)2 precipitate with purity 99.2% and concentration 5.2068mg/L is available by reclamation.
Keywords: UV/H2O2; electroless nickel plating wastewater; removal efficiency of COD; Ni2+
前言
化学镀镍是当前国内外广泛应用的一种工业表面处理工艺。然而,由于化学镀镍废水的化学成分复杂,废液中含有大量的有机酸和添加剂,导致镍主要以络合物[Ni3(C6H5O7)2]的形式存在,不利于COD的降解和Ni2+的沉淀,因此只有破坏了这些具有络合作用的介质之后,才能取得良好的化学沉淀效果[1]。
UV/H2O2技术是一种高效的高级氧化工艺,其作用原理主要是: H2O2在紫外光的照射下会被光解为高反应性的羟基自由基(OH・),如(1)式方程:
H2O22 OH・ (1)
在OH・的强氧化作用下发生氧化分解反应,有机化合物中的分子键吸收紫外光的能量而断裂,降解为易于生物降解的小分子、H2O2和CO2[2],该应用过程具有清洁绿色、不会引入二次污染、不影响水质等特点[3]。本文应用UV/H2O2技术处理化学镀镍清洗废水,研究其影响因素以及镍的沉淀与回收效果。
1 材料与方法
1.1 实验水样
本实验所用化学镀镍废水取自某表面处理公司,原水pH=2.1, COD=1576mg/L,Ni2+=3270mg/L。
1.2 实验试剂及仪器
采用的主要试剂有NaOH(分析纯),H2O2(质量分数为30%)。采用的仪器主要有DR3900可见分光光度计,DR200消解仪,Mettler Toledo pH计,IKA磁力搅拌器,YZ-PPAB子干燥箱等。本课题使用自制的反应器示意图如图1所示。
1.3 实验方法
通过进水口加入水样,通过加药口加入一定量的H2O2,将带有套管的紫外灯(功率500W,波长185纳米)置于水中,通过调速开关调节搅拌速度至10000转/分钟,通过出水口取样,用快速消解分光光度法测定COD值。2小时后,取500mL的烧杯装满水样,加入一定量的NaOH调节pH至12,沉淀0.5后过滤沉淀物,用PAN光度法测定滤液中的Ni2+的含量。同时将滤饼置于干燥箱中,调节至120℃,干燥2小时后称重,计算Ni(OH)2的回收纯度。
2 结果与讨论
2.1 对COD去除率的影响
2.1.1 紫外灯对COD去除率的影响
保持pH=5,H2O2:92.7mmol,使用3款紫外灯反应30分钟,测定COD去除率如图2所示:
由图2可知,波长相同时,紫外灯功率越高COD去除率越高;功率相同时,波长越短,COD去除率越高。这是因为光化学反应进行的程度(即所得到的产量)与被吸收的光能的数量成正比,亦即与被吸收光的强度成正比[4]。因此,通常情况下,提高紫外光照射强度有利于光化学反应的进行。同时,波长较短的185nm紫外光具有更强的激发能,能够更加有效地激发分子键解离释放出自由基[5]。
2.1.2 pH值对COD去除率的影响
取7个1000mL烧杯,分别装满原水,调节pH值为2~7和10,依次加入反应器,投加92.7mmol的H2O2反应30分钟后测得COD去除率如图3。
由图3可知,pH值对COD降解效率影响总体较小,相比而言,pH处于弱酸性时COD降解效果较好,当pH=5时COD降解效率达到最大值。
2.1.3 H2O2投加量对COD去除率的影响
H2O2浓度是影响UV/H2O2工艺氧化效率的关键因素,在UV照射下产生OH・,本实验取5个1000mL的烧杯,分别装满原水,调节pH值为5后依次加入反应器,H2O2的投加量分别为COD值的0.5、1、2、3、4倍,反应30分钟后测得COD去除率如图4。
由图4可知,COD的去除率随着H2O2投加量的增加而上升,当H2O2的投加量为COD值的2倍时处理效率最高,当H2O2质量浓度超过这个数值时COD去除率反而下降,这是因为:
(1)H2O2作为OH・的释放剂,一定范围内增加H2O2浓度有利于产生更多的羟自由基,从而提高COD降解效率。
(2)应用UV/H2O2系统处理废水时,H2O2的投量存在一个临界值,当H2O2浓度超过这一极大值后,系统的氧化能力变化不大甚至降低,原因是溶液中开始发生如下副反应[6,7]:
H2O2+OH・ HO2・+H2O (2)
HO2・+OH・ H2O+O2(3)
OH・+OH・ H2O2(4)
由(2)(3)(4)可知, H2O2在作为自由基释放剂的同时还是一种自由基捕捉剂, HO2・的氧化性能远远小于OH・从而抑制了反应过程。另一方面,H2O2在溶液中浓度大,其吸光度也大,影响其紫外光在溶液中的穿透距离,从而影响反应效率,所以连续投加方式效率最高[7]。
2.1.4 反应器和反应时间对COD去除率的影响
本实验取2个1000mL的烧杯装满原水,调节pH值为5后依次加入反应器,H2O2的投加量都为92.7mmol,并采用连续投加的方式,分别测试反应器处于工作状态和非工作状态下的处理效果;每15分钟取样,测得去除率如图5。
由图5可知, 反应器处于工作状态下的COD去除率高于非工作状态下的去除率,而且,随着反应时间的延长差异逐步扩大;原因是反应器处于工作状态时,反应器中的废液以紫外灯为轴进行高速地旋转运动,有利于紫外光的能量和羟自由基的均匀分布和充分反应;同时,摩擦作用使反应器内部无法产生废物堆积,因此,延长反应时间,仍然能够继续深度降解COD,经过120分钟处理COD降解到97.5mg/L,符合该企业环评中规定的排放要求。
2.2 镍的处理与回收
经过UV/H202技术120分钟处理,COD降解到97.5mg/L络合平衡已经被破坏,取1个1000ml的烧杯,装满经处理后的水样,调节pH至12,沉淀30分钟后,过滤测得滤液中Ni2+含量为0.43mg/L,达到GB21900-2008电镀行业污染物排放标准中新建企业水污染排放限值要求[8]。
滤饼烘干后测得质量为5.2068g,而根据废水处理前后的Ni2+含量,可以测算出沉淀物中纯Ni(OH)2的质量为5.1652g,二者相除得到沉淀物中Ni(OH)2的含量为99.2%。由此可见,UV/H2O2技术不仅能够解决含镍废水的污染问题,同时还可以回收高纯度的Ni(OH)2,变废为宝,为企业创造经济效益。
3 结论
(1)提高紫外光照射强度有利于光化学反应的进行。同时,波长较短的紫外光具有更强的激发能。
(2)pH处于弱酸性时COD降解效果较好,当pH=5时COD降解效果到最佳。
(3)H2O2的投量存在一个临界值,临界值根据反应条件的不同而存在较大的差异,在本实验中临界值为COD值的2倍。同时,连续投加H2O2的方式可以减少H2O2的副反应,提高处理效率。
(4)当废液以紫外灯为轴进行高速地旋转运动时,有利于提升UV/H2O2系统的处理效率。
(5)用NaOH的调节pH至12,沉淀30分钟不仅能使Ni2+达标排放,而且还能回收5.2068g/L纯度为99.2%的Ni(OH)2。
参考文献
[1]江霜英,高廷耀,胡惠康.化学镀镍废液的预处理[J].同济大学学报,2004,32(2):226-228.
[2]方景礼.废水处理的实用高级氧化技术[J].电镀与涂饰,
2014,33(8):352.
[3]刘鹏.紫外催化氧化处理高浓度难降解化学镀废液研究[D].哈尔滨:哈尔滨工业大学,2014:1.
[4]HUA Q, ZHANG C, WANG Z, et al. PHoto degradation of methyl tert-butyl ether(MTBE) by UV/H2O2 and UV/ TiO2[J]. Journal of Hazardous Materials, 2008,154:795-803.
[5]刘杨先,张军.UV/H202高级氧化工艺反应机理与影响因素最新研究进展[J].化学工业与工程技术,2011,32(3):19-20.
[6]BEHNAJADY M A, MODIRSH AH L N, FATH I H ,et al. Kinetics of decolorization of an azo dye in UV alone and UV/H(2)O(2) processes[J]. Journal of Hazardous Materials, 2008,B136: 816-821.
[7]梁新刚.化学镀镍废水中磷的去除和有机物降解的研究[D].哈尔滨:哈尔滨工业大学,2011:18-19.
关键词:电厂;化学水处理;全膜分离技术;应用
引言
随着工业化和城镇化步伐的加快,水污染现象也越来越突显,而大量水域的污染不仅给人民日常生活带来了巨大影响,同时也给电厂生产带来了严重损害。地表水与地下水是电厂化学水处理主要来源,受污染的地表水、地下水含有各种杂志、有害物质,对设备腐蚀严重,为电厂化学水处理中全膜分离技术应用打下了基础。
1 全膜分离技术概述
1.1 全膜分离技术的定义
全膜分离技术,是指利用膜的选择透过性特点,以薄膜作为媒介,以一定压力作为推动力,将液体中不同粒径、不同成分粒子分离开来的一种方法。膜孔径大小的不同决定了可以通过和不能通过的粒子,只有满足孔径要求的粒子才能通过薄膜,进而实现对于液体分离及其净化。因此,在电厂化学水处理中全膜分离技术是其一,得到了多数电厂化学水处理的应用。电厂化学水处理中全膜分离技术的应用,整个过程不需要辅助使用任何化学药剂,而是以三膜过滤工艺通过层层膜的分离,来实现对水的净化处理,实现将原水转变为水质符合国家某相关水质标准要求的水。根据膜孔径大小,全膜分离技术膜分为反渗透膜、微滤膜及其超滤膜,膜孔径及其分子截留量决定分离性与截留性,可以将每一种成分全部分离出来,充分利用了膜的选择透过性特点,大大提升了水处理效果。
1.2 全膜分离技术的特点
传统水处理技术使用化学药剂,虽能在一定程度上除去水中杂质,但也会造成化学污染,增大设备疲劳度,导致生产无法继续。而无须使用任何化学药剂的、全膜分离技术采用物理手段,在电厂化学水处理中得到应用,则很好的弥补了传统水处理技术存在的化学污染缺陷,且操作简单,便于控制,具有明显的技术优势与特点。采用全膜分离技术进行水处理,更容易得到纯净的水,设备结构简单,且使用数量少,易于维护和控制,在一定程度上降低了成本费用;全膜分离技术具有良好的稳定性能,不需要依靠化学药剂,不需要使用浓酸强碱,因而不会产生任何化学污染,是一种节能环保的水处理技术;全膜分离技术使用设备少、占用空间少,利于节约土地空间,可以显著提高电厂化学水处理效率,减少了设备的能耗,并减少了生产成本,并且使劳动强度得到了很大的降低;应用全膜分离技术实施水处理,对环境无特殊要求,既不要特意营造高温环境,也不需要进行特殊的冷却处理,而只需在常温环境下即可进行膜分离,可以较好的保证处理过程的安全性,降低工艺复杂度。
1.3 全膜分x技术的优势
(1)在整个膜分离技术的应用过程中用到的设备是比较少的,
而且设备结构也相对来说是比较简单的。与传统的化学水处理设备相比来说,它有着操作简便、维护方便等特点,因此,对电厂化学水处理自动化的实现更加有利。(2)在发电厂的化学水处理中使用全膜分离技术可以获得更纯的水和具有更稳定的性能。在生产中如果不用浓碱或者浓酸,就不会出现污染,使得化学水处理便可出现了零排放。(3)在电厂进行化学水处理中,通过全膜分离技术的使用可以大大提高水处理效率,它不需要占太大面积,还使得土地成本取得了节约,并降低设备的能耗。
2 全膜分离技术在电厂化学水处理中的应用
在电厂化学水处理中,全膜分离技术共包含3道工序,依次为超滤技术、反渗透技术和电除盐技术。这三种技术均以压力作为推动力,采用不同的膜,不同的孔径,利用膜的选择透过性、反渗透性和超滤性,通过三种膜的层层分离来达到除去液体中不同成分物质目的,最终使原水水质达到电厂生产运行要求。
2.1 电除盐技术
电除盐技术以电为源动力,以离子交换膜为载体,通过形成电场来达到分解水的目的。离子交换膜的离子选择透过功能可以有效促进阴阳树脂结合,使得原水中离子迁移力得到很大的提升,并实现了可以将离子去除,使水质满足电厂生产要求。电除盐技术的产生可以说是传统电渗析技术与离子交换技术两种技术的一种有效结合,它既继承了传统电渗析技术的优势,也充分利用了离子交换技术的选择透过,使其在电厂化学水处理中得到应用,并作为全膜分离技术最后工序,有效弥补了传统电渗析技术深度除盐不足问题和离子交换酸碱再生、难连续的技术缺陷。
2.2 反渗透技术
反渗透技术指的是反渗透膜是由高分子材料制成的,通过其反渗透性能,将水中的其他物质截留,而只让水分子通过,是一种有效的水处理技术。该技术的推动力主要来源于两侧膜的静压力,工作压差一般为1.5MPa,能够截留大分子、离子、颗粒、盐类等多种物质,清除率通常可以达到95%,甚至更高。在电厂化学水处理应用中,反渗透技术是全膜分离工艺的第二道工序,起着承上启下的重要作用,既是对第一道工序超滤技术的进一步处理,也是为最后一道工序的深度脱盐奠定基础。
2.3 超滤技术
超滤技术使用的是大孔径超滤膜,并通过压力为动力,其压力值在0.2MPa至0.3MPa之间,主要除去的是水中的大分子物质,如胶状物、颗粒等,而不能使小分子物质,如盐类等透过。作为全膜分离技术在电厂化学水处理应用中的第一道工序,超滤膜技术首先将原水中的大分子物质清除,留下一些小分子物质用于第二道工序作进一步处理。当液体经由水泵进入到超滤器中时,因遇到超滤膜而发生分离,大分子物质、胶体等透过较大孔径的超滤膜被分离出去,与原水中的小分子物质相分离,实现了水的分离、浓缩和净化等一系列处理效果。
3 全膜分离技术应用实例分析
随着各行业对工艺要求的提高,在电厂化学的水处理当中,全膜分离技术得到广泛应用,并逐渐发展成小有规划的体系。此项技术在某个小型电厂中应用起来,这个小型电厂主要是对日常生活中的垃圾进行焚烧处理。该厂总共有两套废物焚烧的设备,每台锅炉焚烧能力大约是500t/d,锅炉补水量是24t/h,补给水是当地的水源,并对原水再过滤,它们都是运用的全膜分离技术,是基于DOS设计系统。该发电厂在工作时,先是通过蓄水池中的水经原水泵,输送到多介质的过滤器,通过活性炭过滤器,使原水中大颗粒被过滤到滤层的外面,使得出现清澈状态,然后继续通过超滤,再进入到反渗透的装置当中,去除其二氧化碳,并进入到淡水槽;在二级反渗透作用下,进入到下级水箱,并通过除盐的装置,实现了锅炉补水。整个过程都是采用的物理手段,没有使用到任何化学试剂,保证了过滤水质量,并且实现自动化控制,从而减少了人工操作错误率,进而降低了成本。
4 结束语
全膜分离技术通过利用膜的透过性等特点,依次使用超滤膜、反渗透膜和离子交换膜形成三膜分离工艺,在电厂化学水处理中的应用能够很好的将原水中的各种杂质除去,使水质满足国家有关标准要求,满足电厂生产要求。随着电厂的不断生产发展,全膜分离技术应予以推广应用,促进其优势效用在电厂化学水处理中充分发挥,推动电厂快速发展。
参考文献
[1]张海林,任红.浅谈电厂化学水处理中膜技术的应用[J].科技创新与应用,2014(11):81-82.
关键词:电厂;化学;水处理技术;应用
前言
目前电厂机组生产规模不断扩大,而且随着机组运行各项参数的改变,电厂的化学水处理工艺也日趋复杂化。由于面对较多的化学水处理系统,需要许多重复的运行管理机构,这就需要对化学水处理系统进行集中化的综合控制,这种控制模式也必将成为化学处理技术的发展趋势。而且利用集中的综合化控制模式不仅可以有效的降低工作强度,而且可以在利用较少的人员的基础上,确保工作效率的提高,可以有效降低生产成本,提高生产的安全性和自动化水平。
1 电厂化学水处理技术的特点
由于在当前科学水平不断提高的情况下,各项新技术也在电厂中进行广泛的应用,这就使水处理设备、方式、工艺和监测方法等多个方面都发生了较大的变化,给电厂化学水处理技术带来了新的特点。
1.1 设备集中化布置
传统的电厂化学水处理系统中,通常会按照设备功能的不同进行布置,由于化学水处理系统种类较多,所以在布置上需要占有较多的面积,而且各设备都处于分散的状态下,不仅不利于生产,也不利于管理的需要。而集中化的化学水处理系统其整个流程都得以不断的优化,设备布置上不仅立体、紧凑、而且较为集中,有效的节约厂房的面积和空间,使设备之间能够实现良好的配合,对提高设备的综合利用率及运行管理水平起到了非常重要的作用。
1.2 生产集中化控制
集中化的电厂化学水处理系统其可以将各个子系统的控制统合为一套综合化的控制系统,其控制系统利用可编程逻辑控制器(plc)和上位机的2级控制结构,利用plc来实现各设备上的数据采集和控制,而且在上位机和pcl之间利用数据通信接口实现通信的需要,设置化学总控制室,而总控制室的上位机利用局域网的总线形式将各子系统进行集中联接,从而使整个化学水处理系统可能实现集中监测、操作和控制。
1.3 方式以环保和节能为导向
近年来,随着对环境保护的重视度不断提高,为了尽可能的减少水处理过程中所产生的各种污染,随着环境保护意识的提高,水处理也开始朝着绿色概念方向发展,实现零排污和零清洗。电厂作为水资源消耗的大户,在当前水资源可持续发展战略下,需要合理的利用水资源,提高水的重复利用率。所以在电厂中,需要依靠先进的技术和管理制度,从而实现水资源的循环利用,目前部分电厂中已实现了废水的零排放,对于水资源只进行取水,而不再向水体及环境中排放任何废水,这样不仅实现了水资源的节约,而且也避免了对环境所带来的污染。
1.4 工艺多元化
在以前电厂水处理工艺中,其工艺较为单一,而目前电厂水处理技术则向多元化方向发展。而且在化工材料技术的快速发展下,各种新型的处理技术开始在水质处理中进行应用,不仅使水处理工艺更加多样化,而且也有效的达到水处理的效果。
1.5 检测方法方式日趋科学化
目前在对化学水进行检测时其检测和诊断技术都不断的发展和进步,检测方法和方式更加科学化,利用化学诊断方式,不仅做到了事前防范的作用,而且可以实现在线诊断,分析方式上也实现了痕量分析,检测和诊断技术的成熟,有效的保证了机组运行的安全性和稳定性,减少甚至时避免了事故的发生。
2 电厂锅炉补给水的处理
电厂锅炉在运行过程中,需要加入补给水,而这补给水不能利用不加处理的水,因为自然水资源中含有的物质极易与锅炉内的部分物质发生反应,从而导致锅炉受到腐蚀,影响锅炉运行的安全性,而且锅炉的运行成本和作业效率也会不同程度的降低。所以需要对自然水资源进行处理后才能作为补给水。而一旦补给水工艺环节处理不好,则会导致锅炉内体产生腐蚀性化学物质,在管壁和受热面上进行沉积,而形成铁垢,使其阻碍热传导的进行,同时由于炉体内壁会有坑点出现,从而增加阻力系数,而当管道受到一定程度的腐蚀时,则会导致管道发生爆炸,发生安全事故,给企业带来巨大的财产损失。
2.1 除氧防腐
目前,除氧防腐的途径主要有三种,一是通过物理的方法将水中的氧气排出;二是通过化学反应来排除水中的氧气,使含有溶解氧的水在进入锅炉前就转变成稳定的金属物质或者除氧药剂的化合物,从而将其消除,常用的有药剂除氧法和钢屑除氧法等;三是通过应用电化学保护的原理,使某易氧化的金属发生电化学腐蚀,让水中的氧被消耗掉,达到除氧的目的。目前很多电厂都是采用的热力除氧防腐技术,其是通过给锅炉内加水,再将水加热到沸点,从而使氧的溶解度降低,而水中的氧气不断的排出,这种方法易于操作,较为简单和方便,所以得到广泛的应用。而真空除氧技术则更适宜对热力锅炉、负荷波动大而除氧效果不佳的锅炉上使用,利用此种方法只需在水面30℃~60℃情况下即可达到除氧的目的。而化学除氧防腐技术的方法则较多,但其除氧防腐的效果都很好。
2.2 加氧除铁防腐
目前在电厂锅炉补给水系统中,当铁含量的较高时,则由于内体受到较严重的腐蚀作用,极有可能造成氧化铁污堵和结垢等腐蚀现象的发生,所以在这种情况下,电厂都会采取给水加氧技术来进行解决。目前电厂给水加氧处理通常包括给水加氧和加氨处理,通过给水加氧技术的应用,可以有效的改变补给水的处理方式,使锅炉给水的含铁量降低,抑制省煤器入口管和高压加热管等部位的腐蚀速度,从而可以起到有效的降低锅炉水冷壁管氧化铁的沉积速率,同时也可以使锅炉化学清洗周期得到延长。
补给水加氧技术是充分利用了氧在水质纯度很高条件下对金属的钝化作用,其是在进行给水加氧的方式下,通过不断向金属表面均匀的供氧,从而使金属表面能够形成一层致密稳定的双层保护膜。这是因为在流动的高纯水中添加适量氧,可提高碳钢的自然腐蚀电位数百毫伏,使金属表面发生极化或使金属的电位达到钝化电位,在金属表面生成致密而稳定的保护性氧化膜。直流炉应用给水加氧处理技术,在金属表面形成了致密光滑的氧化膜,不但很好地解决了炉前系统存在的水流加速腐蚀问题,还消除了水冷壁管内表面波纹状氧化膜造成的锅炉压差上升的缺陷。为了更好的提高给水加氧处理技术的效果,则需要配备全流量凝结水精处理设备,因为这样可以有效的保证水质的纯度,是给水加氧处理技术能够实施的前提,而且更易于对给水的各项参数进行控制。
在进行给水加氧处理前则需要对锅炉进行化学清洗,使其在运行过程中所产生腐蚀产物都得到清除,从而使炉前系统获得最薄的保护性氧化膜。但利用给水加氧技术时有一点需要明确,其先决条件有两种,其一是水质的高纯度,其二是须有水流动。即需要在流动的高纯水中加入氧气才能使金属表面产生保护性氧化膜,从而达到良好的防腐效果。
参考文献
[1]王晶.反渗透在电厂水处理中的应用[j].中国高新技术企业,2011(25).
关键词:电站锅炉; 水处理; 水垢; 除氧; 防腐
中图分类号:TK22 文献标识码:A 文章编号:1006-3315(2013)09-179-001
一、前言
目前在锅炉的运行中,由于锅炉用水水质不良,受热面结垢的现象比较普遍,从而造成锅炉热效率降低,锅炉、管道的壁面受到腐蚀,锅炉结垢严重时可能会造成熔孔或爆管,直接影响锅炉的运行。水质对锅炉运行的影响。
水垢导热性能很差,必将影响锅炉安全、经济运行,对锅炉进行能效测试[1]后发现,水侧污垢热阻过大是导致锅炉热效率低的主要原因。锅炉传热性能下降,大量热量随烟气排到环境;另外,结垢导致钢管过热造成其强度下降,运行偏离设计工况,容易发生过烧、爆管等情况。
1.水质对锅炉运行热效率的影响
水垢导热系数仅为钢铁的七分之一到千分之一,锅炉结有水垢时,锅炉受热面的传热性能恶化,燃料燃烧放出的热量不能有效传递到锅炉介质中去,大量的热量被烟气带走,造成排烟热损失增加,通常使锅炉出力和蒸汽品质同时降低,锅炉的热效率降低。经过测定,锅炉受热面结1mm水垢,燃料消耗要增加8%~10%[2]。
2.结垢对锅炉安全性的影响
由于水垢导致锅炉运行热效率、出力降低,为了维持锅炉出力,司炉工通常会增加锅炉鼓引风风量和燃料量,来提高炉膛温度增强换热。文献[3]表明,运行压力1MPa的锅炉水冷壁结垢3mm时,壁温将由280℃上升到580℃,导致钢材抗拉强度相应由400MPa降低至100MPa,而一般锅炉管使用温度为350℃以下,因一般低碳钢350℃以上就达到屈服点,450℃以上发生蠕变,这说明锅炉频繁爆管的内因正是锅炉水垢超标。
二、锅炉水处理技术
1.氧气隔离防腐
当下有三种主流的除氧防腐办法:一是利用物理方法去除水中存在的氧气;二是采取化学原理来除氧,普遍使用药剂除氧与钢屑除氧等,主要是通过添加化学物质到补给水中,与水中氧气反应生产固定金属物质或别的化合物,使水中氧气消除后再进入锅炉;三是电化学保护原理的应用,就是通过加入某种易氧化的金属到水中,和水中氧气发生电化学腐蚀反应实现消除氧气。
2.加氧除铁防腐
锅炉内部氧化铁造成的结垢、堵塞等腐蚀情况,主要是由于补给水中含铁太多,快速有效的办法就是往补给水里加入氧气。这种方法和除氧技术互相对立两种除腐技术,需要根据锅炉的不同工作状况来选择。加氧除铁技术是要变更给水处理办法,减少补给水中铁含量,适当阻止锅炉节煤器人口管及高压加热器管等处的流动加快腐蚀现象,延缓锅炉内氧化铁在水冷壁管中的沉淀速度,使锅炉的化学清洗周期变长。
3.全膜法水处理技术
近年来,以超滤、反渗透(RO)、电解除盐(EDI)为代表的膜分离技术作为新型的水处理应用技术取得了跨越式的发展。膜分离技术用于电厂水处理系统,工艺简单、运行维护方便、环境友好、产品水质量稳定可靠,受到普遍欢迎,在电力系统中得到了广泛应用,该工艺主要采用膜分离技术制取脱盐水。
三、结论
文章通过理论分析了结垢对锅炉传热效率和安全运行的影响,锅炉受热面结水垢1mm时,燃料消耗要增加8%~10%。针对锅炉水质问题,提出了多种除水垢的方法,包括氧气隔离防腐、加氧除铁防腐和全膜法水处理等技术,提高锅炉水质,保证锅炉经济安全运行。
参考文献:
[1]邝平健,等.工业锅炉节能方法及应用[J]黑龙江电力,2007(6):464—467
[2]张炳雷,等.基于水处理的工业锅炉节能研究[J]节能技术,2009(6):555—566
[3]马庆谦,等.DZIA—13型锅炉水冷壁管裂原因分析[J]工业锅炉,2004(6):55—58
关键词:水利工程;坝体;化学灌浆;加固
中图分类号:TV 文献标识码:A
节约和环保的概念深入了水利工程建筑之中。现在我国水利建设的步伐在加快,一些较有成效的工作已经出现,例如三峡大坝。但是随着时间的推移,也对施工的方式方法以及带来的效果有了更新的要求,现在的大坝的弱点在于,因为材料上是混凝土,因此在一段时间之后,由于混凝土的性质,带来必然出现裂纹。这不利于大坝的安全使用,为问题的出现埋下了隐患,在这种情况之下。对于裂缝问题的处理成为水利工程的难点。也是应当努力的一方面问题,面对裂纹问题,化学灌浆的方法被提了出来,为坝体的安全带来新的思路,极大促进了水利工程的前进步伐,也为可持续发展带来契机。
1 砼体坝裂缝对水利工程的影响
大坝的原则性用料是没有说明的,因此采用本身的土壤以及石头可以成为坝体的组成部分,但是,为了保持坝体的稳定性和坚固程度,用混凝土材料可以最大限度保持不变形,不过混凝土工艺也有自己的特征,例如退化,侵蚀,裂纹等,裂纹产生的直接原因是由于侵蚀,带来完整性的破坏,到一定极限后稳定性受到影响,受力不均匀,加速了进一步伤害的速度,一段时间过后坝体损害坍塌,已经无法作为稳固内层土壤,作为承重材料的目的。所以裂纹治理的重要性被反复强调,也是新技术应当发展的一个方向。
2 水利工程砼体坝的化学灌浆加固
化学灌浆(Chemical Grouting)是将一定的化学材料(无机或有机材料)配制成真溶液,用化学灌浆泵等压送设备将其灌入地层或缝隙内,使其渗透、扩散、胶凝或固化,以增加地层强度、降低地层渗透性、防止地层变形和进行混凝土建筑物裂缝修补的一项加固基础,防水堵漏和混凝土缺陷补强技术。
2.1 水利工程砼体坝的化学灌浆加固处理技术概述
砼体坝裂缝修复的化学灌浆加固处理法适用于深层裂缝和贯穿裂缝的修补与加固。对于灌浆死缝可选用水泥浆材、环氧浆材、高强水溶性聚氨酯浆材等;活缝可选用弹性聚氨酯浆材等。其施工首先要根据原有设计要求对裂缝进行勘察和分析,确定灌浆孔。然后钻孔、洗孔、埋设灌浆管。沿裂缝凿宽、深5~6cm的V形槽,并清洗干净,在槽内涂刷基波,用砂浆嵌填封堵;进行灌浆前要进行压水检查。灌浆结束封孔时的吸浆量应小于0.02l/5min。在进行灌装时要根据裂缝类型的不同使用不同的灌浆方法,垂直裂缝和倾斜裂缝灌浆应从深到浅、自下而上进行;接近水平状裂缝灌浆可从低端或吸浆量大的孔开始。
2.2 化学灌浆材料与使用注意事项
目前常用的化学灌浆浆液主要有环氧浆液及丙凝浆液两种。环氧浆液的主要成份是环氧树脂,丙凝浆液的主要成份是丙烯酰胺。环氧浆液的特点是能灌注0.1~0.2的裂缝,可灌性强,收缩性小,强度高,抗渗性能好;丙凝浆液的特点是可灌注细微裂缝,可灌性好,浓度为12~15的浆液与水相似,聚合时间可以控制;该浆液稳定性好,不析水,有一定膨胀性,抗挤力好,是良好的防渗材料。其具体使用需根据坝体裂缝情况选用适宜的材料进行,对于宽度较小,无渗水或有微渗水的裂缝用环氧浆液进行灌注。对于宽度较大,有渗水或渗水量较大的裂缝先用丙凝浆液进行灌注再用环氧浆液灌注。无论是环氧浆液还是丙烯浆液其关注施工必须在12℃~16℃温度环境下进行。
2.3 水利工程砼体坝化学灌浆加固处理技术的具体施工
第一,砼体坝进行化学灌浆工艺的时候要把等待修补的裂纹内部清理干净,保证没有杂物,和脱落物。具体清理物品包括钢刷和水枪等,能够冲走内部不易清理的杂物。清理工作完成后,将水分晾干,使接触面之间不掺杂水分,是化学灌浆有效的铺垫工作,应当注意。
第二,为了保证裂缝与成分之间的完整贴合,并且再后来的工作中不发生断裂的不良情况,可能需要对于裂缝不规则,内部结构复杂者进行凿槽,凿槽工艺之前将内部所具有的碎石利用清理工具进行清理以及干燥。将管道埋进地下。距离应当在20cm与50cm左右。这个数字应当根据裂缝的尺寸来决定,为了减少漏浆问题的发生。采用能够防止浆液流出的材料,选用正确的材料以及采用正确的施工方法是完成封堵工作的关键问题,在材料的选择上应当参考力学原理以及说明书等,找到材料后,以上工序能够带来质量的良好保证。
保证了内部的完整统一性。完成工作之后把表面磨平整,明白灌浆管所在的位置,在其位置应当适当加厚涂料达到保护的目的,同时还需要在坝体裂缝的顶端两侧打孔,使用环氧灌浆材料和钢箭进行锚固,将裂缝两侧的坝体拉紧。
2.4 砼体坝化学灌浆质量控制
砼体坝化学灌浆过程的控制是保障灌浆质量、保障坝体加固的关键。在施工过程中要通过材料控制、操作方法控制、工艺技术控制等方式保障砼体坝化学灌浆质量。首先,要通过对裂缝的勘察与分析,选用适宜的灌浆材料,并在灌浆材料配置过程中严格控制配比,保障灌浆材料质量,为砼体坝化学灌浆施工质量打下基础。在施工过程中,还要根据裂缝的情况,单孔一次灌浆或停灌结合等工艺方式,满足裂缝灌浆要求,保障灌浆质量。例如:在进行环氧材料灌浆时,由于环氧材料需一定时间才能固化,因此在灌浆达到一定量后,需停止灌浆,待环氧浆液达到一定固化后再继续进行灌浆。
3 坝体化学灌浆施工质量管理
砼体坝的损伤和裂纹使其整个结构受到影响,物理承受能力也开始变化,所以问题一旦发生如果不马上解决就会影响整个坝体的继续使用,这时应当马上进行化学灌注工艺。这也是保证砼体坝安全的重要方面,在平常的检查中就应当认真负责,明确坝体当前的状况,发现为题及时报告,而专业保养维护部门也应当具备优良的检测能力,以及检测的体系,分析坝体之前所具备的文件和材料,找到最为合适的灌浆技术与材料。通过质量与管理的双重把关来完成坝体灌注,得到最好效果。
结论
砼体坝对于化学灌浆的应用较多,也能展现出较强的利用程度,通过两点因素能够达到正确合理使用灌浆工艺,并带来良好效果。第一点就是材料上的把握,第二点是操作上的完整,但是工艺完成不代表日后不会老化和变化,通过周期保养预防问题,对于小的问题及时解决,预防扩大,将问题在萌芽状态解决。及时进行工艺的加强处理,保证坝体的安全进而就保证了施工人员的通行安全,充分的调动检查,保养和修理工作对于保证坝体工作安全进行,促进水利事业发展有着促进性意义。
参考文献
[1]钱晓强.水利工程砼体坝裂缝的化学灌浆加固[J].水工建设与养护,2007,8.
关键词:循环冷却水 化学药剂 化学处理
1 冷却水处理技术
循环水系统中所遇到的腐蚀、结垢、生物污垢这几个问题,采用水处理技术是能够解决的。也只有采用冷却水处理技术,冷却水循环后的技术经济效益才能充分发挥。所谓冷却水处理技术,是指针对循环水系统的水质、设备材质、工况条件选择缓蚀剂、阻垢剂、分散剂、杀生剂正确匹配组成水处理配方。提出工艺控制条件、提供相应的清洗、预膜方案等。把这一全过程称为冷却水处理技术。其中将缓蚀剂、阻垢剂、分散剂等组成配方,确定适宜的工艺控制条件,进行循环冷却水的基础处理和正常运行处理,这是冷却水处理技术的主要内容。
冷却水处理中所用的缓蚀剂、阻垢剂、分散剂、杀生剂等化学品可统称之为水质稳定剂。这些化学品的研究开发、生产是循环水处理的基础。没有先进的、性能优良、价位适中的水质稳定剂就根本谈不上现代的循环水处理。因此,这些水质稳定剂的研究和生产一直是水处理界关注的热点。
2 中国冷却水处理技术及水质稳定剂的发展
中国冷却水处理技术的发展,是随着大型化肥石油、化工、冶金装置的引进而发展起来的,起步较晚,比发达国家晚30~40年,但坚持自己的发展 道路,瞄准国外的发展趋势,结合国情进行研究和应用,因此起点高、发展快,到目前为止,中国已经开发成功:①传统磷酸盐配方;② 磷系复合配方;③ 磷系碱性水处理配方;④ 全有机配方;⑤ 钼酸盐水处理配方;⑥硅酸盐水处理配方。其中磷系碱性水处理配方和全有机配方是当前国内处理技术的主体。这些水处理技术在实际工业应用中达到较高的水平。设备的腐蚀率、污垢热阻这两个主要技术指标均可达到国际先进水平,已在许多大型引进装置中实现水处理技术和药剂国产化。
水质稳定剂的发展是随着现代冷却水处理技术的发展而发展的。发展历程,大体上讲是70年代打基础,80年代大发展,90年代上水平这样一个发展趋势。目前国内有水质稳定剂生产厂家不低于200家,主要技术依托于天津化工研究院和南京化工大学。但具有一定规模和自身开发实力的厂家也只有几家。从技术上讲少数产品的生产技术已处于国际领先水平或国际先进水平;部分产品处于80年代国际水平;相当一部分产品特别是大宗产品的生产技术仍处于国外60、70年代的水平。
循环冷却水处理用阻垢缓蚀剂一般由分散剂、有机膦、缓蚀剂等组成。下面就几种单体的发展和趋势作一简述。
2.1 分散剂
阻垢缓蚀剂配方中分散剂的选择和比例,对其阻垢和各组份之间配伍、协同性能具有至关重要的影响。
2.1.1 起步阶段
60年代,开始使用的阻垢分散剂主要是木质磺酸钠等,它们有一定阻垢作用,能部分解决水垢沉积和锌盐稳定问题,但远远满足不了生产厂家对阻垢性能的要求。
2.1.2 聚羧配使用阶段
70年代,开始使用聚丙烯酸类聚合物,同时将具有优良缓蚀性能的有机膦如HEDP、ATMP等复合使用。70年代后期,多元羧酸共物阻垢分散剂开始大量出现,使阻垢分散剂上了一个新的台阶。图1和图2表明了一些共聚物阻CaCO3和Ca3(PO4)2结果,显示了这类共聚物的优良的阻垢分散性能。
2.1.3 多官能团共聚物使用阶段
80年代,随着环保对排污的限制和循环水浓缩倍数的提高,各种高性能的共聚物阻垢分散剂不断出现,尤其是含磺酸、膦酸和其它官能团的共聚物,因其性能优良已引起普遍关注和应用。美国的Calg on、Nalco、Betz、Rohm&Hass,日本的栗田,德国的Hass Geffers Colgue等公司,在开发有机磺酸、不饱和羧酸二元共聚物的基础上,已向磺酸、羧酸和膦酸基官能团的三元或多元共聚物的发展 ,其性能比二元共聚物大大提高。国内目前也有厂家开发出三元和四元共聚物,应用表明,其完全可代替T-225等产品。
2.2 缓蚀阻垢剂
2.2.1 有机膦酸盐
有机膦酸盐由于结构稳定的磷酸根含量低,减少了形成磷酸钙垢的危险,也减轻了环境富营养化污染的压力,在70年代得到迅速发展 。目前大多数阻垢缓蚀剂配方中含有HEDPATMP等有机膦酸。
南京化大工学沈鸿礼教授于1999年开发出了二乙烯三胺五甲叉磷酸(DTPMP),试验表明,DTPMP对钙的容忍度大幅度提高,在几个厂的应用表明,它完全可以替代HEDP、ATMP、EDTMP等常见有机膦酸,它的应用可以解决高浓缩倍率的循环水冷却水处理的阻垢问题,具有良好的应用前景。
2.2.2 低磷使用阶段
80年代,由于环境保护要求限制磷的排放,开始注意低磷、非重金属缓蚀剂的发展。一方面加强含磷量更低的阻垢缓蚀剂的开发和应用,如2-膦酸丁烷-1,2.4三羧酸(PBTCA)和羧基膦基乙酸(HPAA),PBTCA的含磷量只是HEDP的38.2%。另一方面有机膦酸盐与其它非磷药剂的复合也得到了新的发展,使配方中的磷含量有较大幅度降低。如钼系、硅系、钨系水处理配方。
2.3 杀生剂
2.3.1 氧化性杀生剂
这是最早使用的一类杀生剂,其中使用最为广泛的氯气和次氯酸盐,它们对水中的微生物有优良的杀灭作用和抑制作用。但是它们的杀生作用受水的pH值影响较大,pH值越高,杀生作用越差,同时ClO-会与B30铜管中的镍反应,使B30铜管产生腐蚀,故高浓缩倍率循环水高pH值情况下,一般不使用Cl2及次氯酸盐。取而代之的是二氧化氯,ClO2不但具有适宜pH范围广,抑制微生物的能力比Cl2强,同时还具有剥离性能。近几年,ClO2在循环冷却水处理中的应用越来越多,其生产和应用技术发展很快。
2.2.3 非氧化性杀生剂
循环冷却水处理中氧化性杀生剂和非氧化性杀生剂必须交替使用,以防止循环水中微生物对其产生抗药性。非氧化性杀生剂所用的主要有季胺盐、异噻唑啉酮、戊二醛等。季胺盐由于使用时产生泡沫多,容易形成假水位,且与阻垢缓蚀剂相容性差,近来在电力系统中已基本不单独使用。在高浓缩倍率循环冷却水中,戊二醛复合杀生剂和异噻啉酮具有较好的性价比。目前已在多个厂应用中得到证实。
3 提高循环冷却水浓缩倍率的方法
四川省火电厂循环水的补充水质较为接近,其水质大体为:
Ca2+:2.0~4.0碱度:2.0~4.0 mmlo/L
Cl-:<50 mg /LSO42-<100 mg /L
pH:7.0~8.0
试验表明,如不加酸调pH,只进行投加阻垢缓蚀剂和杀生剂进行水质稳定处理,极限浓缩倍率一般不会超过3.8,经济浓缩倍率一般为2.5~3.4,如需要提高浓缩倍率达到节水的目的,同时又保证循环水系统良好的阻垢、缓蚀、杀生性能,可以从以下几个方面进行选择。
3.1 加酸处理
循环水投加硫酸,降低碱度,同时投加阻垢缓蚀剂进行循环冷却水的阻垢缓蚀处理,这是高浓缩倍率循环水处理较为成熟的方法。但有许多厂虽然有加酸设备,但使用的不多,究其原因,运行的浓缩倍率不高,只投加阻垢缓蚀剂可以达到良好的阻垢缓蚀效果;同时投加硫酸时,由于浓硫酸具有强腐蚀性,操作不当易引起灼伤;对加酸管道腐蚀性强,易引起管道腐蚀穿孔。
但是,如四川几个敞开式循环水系统的浓缩倍率大于3.5,目前情况必须投加硫酸进行辅助处理,否则提高浓缩倍率运行的经济性和可靠性将很难得到保证。
3.2 低磷阻垢缓蚀剂配方
在进行阻垢缓蚀剂配方的筛选时,必须考虑其组份间的配伍、相容、增容性能。同时在高浓缩倍率运行条件下,还应使用低磷配方,低磷配方一个方面要求开发的阻垢缓蚀剂本身含磷量低,另一方 面要求循环水中含磷量低,使其排污水符合环保要求。从目前国内现有水稳剂单体看,含AMPS基团的三元、四元共聚物、PBTCA、HPAA、DTPMP等应在配方中得到应用。而T225、聚丙烯酸、HEDP、ATMP、EDTMP等应被取代。
3.3 补充水软化处理
对补充水部分或全部进行软化处理,降低循环水成垢离子浓度(Ca2+),对提高循环冷却水浓缩倍率是有好处的。从可行上讲,部分补充水进行软化处理是可行的。一方面软化处理设备投资和运行成本可以降低。另一方面对循环水防腐有利,具体处理多大比例,需要通过试验确定。
3.4 循环水旁流处理
对部分循环水进行旁流处理有两种方法:一是对部分循环水进行软化处理。二是对部分循环水进行自动过滤处理。第二种方法在高浓缩倍率运行电厂中已有应用。特别近年来自动反洗过滤的出现,使其应用得到了较快的推广。
4 循环水监测技术
4.1 循环水自动加药
高浓缩倍率循环水由于其缓冲性小,保证循环水的正常、稳定加药至关重要。循环水自动加药就其原理主要有两种:一是利用荧光系统技术的自动监测加药系统。二是利用循环水电导变化控制水中药剂浓度的自动加药系统。通过自动加药系统能控制循环水系统中的药剂浓度的目标管理在很小范围内,从而达到平衡操作,使药剂发挥最大的作用和节约用药的目的。
4.2 凝汽器腐蚀、结垢检测
循环水系统现场检测主要是通过安装旁路挂片、小型换热器以及腐蚀、结垢检测仪等,直接观察冷却水系统的腐蚀和结垢情况、生物粘泥形成情况,从而判断已采用的循环水处理方案是否正确。
河北电力试验研究院化学室研制的CDH循环水在线检测仪在江油发电厂330 M机组上已经成功应用。它对冷却水系统结垢、腐蚀、粘泥滋生等可进行直接观察,同时通过连续测定污垢热阻可定量反映凝汽器铜管热交换情况,对保证循环水系统有效处理,保障机组安全、稳定、经济运行具有重要的意义。
4.3 浓缩倍率的测定
关键词:膜分离技术 半透性 反渗透膜
目前,膜技术作为一项极具发展潜力且拥有良好的实用性能的技术[1]。美国在某官方文件中这样说到:“现今世界上,还没有一种技术可以比膜技术得到如此更为广范围的被应用”。
膜技术在全球范围内已得到广泛应用。在电厂水处理过程中,膜技术主要分为几下几类:(1)反渗透(Reverse Osmosis);(2)超滤(Ultrafiltlation);(3)纳滤(Nanofiltration);(4)微滤(Microfilt ration);(5)电除盐(Electrode ionization,EDI);(6)渗析(D);(7)电渗析(ED)。在上世纪70年代到80年代这10时间里,我国的膜技术被逐渐应用到电厂化学水处理过程中。膜技术在电厂化学水处理过程中,其良好的半透性,以及实用性等优势得到人们的普遍认识。该技术摒弃了传统的酸、碱化学试剂的使用,操作起来及其便利,且水处理的效果良好,水质质量稳定。到今天,反渗透技术在我国沿海,特别是东南地区的电厂中得到广范围内的应用,同时还可以解决当地缺水地区的水资源问题。总而言之,反渗透膜作为反渗透技术中的核心组成部分,在外部作用下,对待处理溶液中的离子、有机物等选择性的通过,进而实现待处理容易的纯化、浓缩、分离等目标。目前,膜分离技术已在水处理领域得到广范关注,其必将发展成为一种高效的废水处理技术,具有良好的发展空间。
1、膜分离技术
现今阶段,膜分离技术的快速发展已为污水处理、海水淡化等问题给出了有效的解决方法。膜分离技术可分为多种实用的技术,其中与水处理相关的主要有一下五种[2]:(1)反渗透(Reverse Osmosis);(2)超滤(Ultrafiltlation);(3)纳滤(Nanofiltration);(4)微滤(Microfiltration);(5)电除盐(Electrode ionization,EDI);(6)电渗析(Eleetrodialysis);(7)渗析(Dialysis)。膜分离技术的处理过程一般为无相分离,同时可以在常温的条件下实现。较传统的分离技术:蒸发、沉淀等技术相比,膜分离技术具有耗能少、高效率、环保、操作简单、可靠性高等优势。其工作原理都是利用某种高分子材料制成半透膜,根据功能需要选择材料,从而完成水的分离与水中杂质去除的过程。例如,在锅炉的补给水生产过程中,利用反渗透技术取代经典的阳阴床一级除盐工序,也可以利用电除盐(Electrode ionization,EDI)来取代混床离子间的交换。其工序流程使:原水原水预处理反渗透(RO)电除盐(Electrode ionization EDI)给锅炉补给水。
反渗透技术[3],也被看作为横流过滤技术。反渗透技术是将待过滤液体以横向的方式通过反渗透膜,在一定压力作用下,流过反渗透膜的待处理液体可被直接淡化成了成品水。
电除盐(Electrode ionization,EDI)技术[4],其利用电场的作用将待处理液体中的无机离子去除。电除盐(Electrode ionization,EDI)技术有效地结合了经典的电渗析技术以及离子交换技术。电除盐(Electrode ionization,EDI)技术的出水质量同时可以满足常规的工业用水对其电导率、硅含量以及水质硬度的要求。
微滤(MiCrofiltration),采用对称细孔的结构,每个孔的直径约为0.04~11nm,可以过滤到直径大于51nm的颗粒。
超滤(Ultrafiltlation),采用细孔为非对称的结构;每个孔的直径约为2~21nm,可以过滤掉大于110nm的颗粒。
纳滤(Nanofiltration),采用微孔结构,每个孔的直径约为1nm,可以将相对分子质量在21~201之间的物质滤除。
电渗析(Eleetrodialysis),利用阴阳离子交换膜,将待处理溶液中的酸、无机盐等去除,以离子的不同电位差作为分离动力,可以使离子通过,将无机、有机粒子截留。
渗析(Dialysis),以膜两端的离子浓度差为基础原理,从而实现待处理溶液的无机盐、低分子物质的分离。
2、膜技术的应用实例
西南某电厂以当地的河水作为原水,其原水水质如表1所示。该电厂采用了膜分离设备,其具体的工艺流程为:“原水->原水预处理->多级反渗透->电除盐(Electrode ionization,EDI)”。其具体的水处理的通道为:原水水箱清水离心泵多种介质的过滤器活性炭过滤器钠离子的交换器安保过滤器一级的反渗透装置中间水箱中间离心水泵电除盐(Electrode ionization,EDI)设备除盐水装置除盐离心水泵凝汽设备。(如表1)
原水的预处理过程的主要目标是将原水中的颗粒杂质,例如植物、泥沙等去除;多介质过滤设备的目的是确保进水的浊度不高于2mg/L;活性炭过滤设备的目的是确保有机物COD 的含量不高于2mg/L;而钠离子交换设备的目的是有效控制水质硬度,从而确保反渗透以及电除盐(Electrode ionization,EDI)设备的进水硬度,从而保证整个工序的运行可靠性。反渗透设备可以有效除去待处理溶液中的大量无机盐、微生物以及有机物等,从而达到电除盐(Electr ode ionization,EDI)设备对进水水质要求,但不同的电除盐(Electrode ionization,EDI)装置对水质要求有一定的差异,以某电厂的电除盐(Electrode ionization,EDI)设备为例,其具体参数如表2所示:
电除盐(Electrode ionization,EDI)结合了电渗析与离子交换两种技术,因而不需使用酸碱等试剂来去除离子。
3、膜技术的未来发展
一直以来,膜技术在世界范围内得到广泛关注,其采用“原水->水预处理反渗透装置电除盐(Electrode ionization,EDI)”工序。伴随着膜技术的高速发展,超滤(UF)技术与微滤(MF)技术在待处理溶液的预处理过程中逐渐取代了传统的前三个步骤。超滤(UF)技术与微滤(MF)技术常采用压力型驱动膜,但其具体的分离原理较反渗透膜有所不同,这两种技术基本上都是采用机械截留方式,用以有效返利溶液中的大分子物质,颗粒等。通过试验表明,微滤(MF)作为一种原水预处理装置,其反渗透的水质以及产生量都有较大幅度的提高,从而有效的降低了对反渗透膜的污染,进而可以有效减少对反渗透膜的化学清洗次数。
4、结语
目前,我国反渗透膜的性能还有待提高,其投资费用金额较大,从而制约了膜技术在我国电厂化学水处理的应用。伴随着反渗透膜的技术研究与生产成本的降低,反渗透技术的投资性价比将不断提高。因而,随着化工企业等的环保要求逐步提高,膜技术在我国电厂化学水处理过程中将会得到更大范围的应用。
参考文献
[1]卞卫华.膜技术在电厂水处理中的应用[J].能源工程,2005,03:56-58.
[2]马福刚.全膜分离技术及其在电厂化学水处理中的应用[J].价值工程,2011,09:69-71.