时间:2024-01-02 14:50:38
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇二氧化碳的排放问题范例。如需获取更多原创内容,可随时联系我们的客服老师。
中图分类号 F205 文献标识码 A 文章编号 1002-2104(2015)09-0021-08 doi:10.3969/j.issn.1002-2104.2015.09.004
进入21世纪以来,温室效应逐渐凸显,能源流失问题也日益严重,二氧化碳排放的控制问题已上升到全球层面。在这种背景下,针对二氧化碳排放量的计算在当前的研究中显得尤为重要,其计算结果的准确性不仅直接决定了社会和政府对于碳排放状况的认识,更会对我国的高耗能产业结构调整、减排计划的执行以及国际碳排责任的判定产生影响。因此,不断分析、对比各种计算方法的影响因素、改进计算方法、修正计算结果并对计算进行深入分析,已经成为碳排放相关研究的重要基石。
1 文献综述
目前主要的二氧化碳计算方法有能源消耗法、生命周期评价法(LCA,Life Circle Assessment)和投入产出法(IO,InputOutput)。能源消耗法计算二氧化碳排放量是指以统计资料为依托,根据能源的消耗量以及二氧化碳的排放系数进行对二氧化碳排放量的估算。这一计算方法的数据选取较为灵活,可以针对具体的问题选取适合的数据进行分析,许多学者采用这一方法进行计算。但该方法也存在一定问题,比如数据来源不正统可能会导致计算结果较实际偏差过大。何建坤[1]根据Kaya公式及其变化率分析了中国及一些发达国家的二氧化碳排放峰值,并发现单位能耗的二氧化碳排放强度年下降率大于能源消费的年下降率。赵敏等[2]根据2006年IPCC二氧化碳排放计算指南中的公式及二氧化碳排放系数,计算了上海市1994-2006年间能源消费的二氧化碳排放量,并以此分析了二氧化碳排放强度下降的原因。曹孜等[3]根据化石能源的消耗量计算了2008年总体与各部门的二氧化碳排放量以及1990-2008年碳排放强度的发展趋势,从而进一步研究二氧化碳排放量与产业增长之间的关系。汪莉丽等[4]根据全球及各地区的能源消费历史数据分析了以往的二氧化碳排放总量、二氧化碳排放累积量和人均二氧化碳排放量,并以此预测了未来的能源消费二氧化碳排放情况。李宗逊等[5]根据昆明市的工业能耗统计数据对昆明市的工业二氧化碳排放、行业二氧化碳排放强度及行业分布做了探究。
生命周期评价法计算二氧化碳排放通常以活动环节为分类单位,要求详细研究测度对象生命周期内的能源需求、原材料利用和活动造成的废弃物排放。这一方法能够具体到产品原材料资源化、开采、运输、制造/加工、分配、利用/再利用/维护以及过后的废弃物处理等各个环节,多被用于建筑领域。但在计算生产工序复杂的产品时,存在计算工作量大等缺陷。刘强等[6]利用全生命周期评价的方法对中国出口的46种重点产品进行了碳排放测算,发现这些产品的二氧化碳排放量占全国二氧化碳排放量的比例非常高。张智慧等[7]基于可持续发展及生命周期评价理论界定了建筑物生命周期二氧化碳排放的核算范围并给出了评价框架和核算方法。张陶新等[8]利用生命周期法构建了测算建筑二氧化碳排放的计算模型,并通过构建的模型分析了中国城市建筑二氧化碳排放的现状。
投入产出法计算二氧化碳排放量主要以投入产出表为依据,可以根据产品的直接消耗系数及完全消耗系数分别估算二氧化碳的直接排放和间接排放。直接消耗系数是指某一产品部门在单位总产出下直接消耗各产品部门的产品或服务总额。完全消耗系数是指某一部门每提供一个单位的最终产品,需要直接和间接消耗(即完全消耗)各部门的产品或服务总额。这一计算方法的优势在于可以进行隐含二氧化碳排放(Embodied Carbon Emission)的估算,并且在对于多行业二氧化碳排放进行计算时通过直接消耗系数矩阵以及完全消耗系数矩阵进行一次性估算,减少行业分类的工作量。但是,投入产出法的缺点在于其在计算结果的准确度上不如前两种二氧化碳排放计算法,因而多被用于隐含二氧化碳排放的计算。Lenzen[9]利用投入产出模型研究了1992年和1993年澳大利亚居民最终需求的能源消费及温室气体排放情况,发现65%以上的温室气体来自能源的隐含消费。Ahmed和Wyckof[10]根据投入产出方法估算了全球24个国家的贸易隐含碳,证实了产业地理转移对全球二氧化碳排放的影响。刘红光等[11]、孙建卫等[12]均采用区域间的投入产出表对中国各区域各行业的二氧化碳排放量做了测算,并针对区域碳减排做了分析。何艳秋[13]利用投入产出法计算了各行业的二氧化碳排放系数,并进一步计算了行业最终产品的直接二氧化碳排放量以及消费中间产品的间接二氧化碳排放量。
二氧化碳排放量的计算方法种类繁多,各有利弊,而现有文献大多是选取其中一种方法对二氧化碳排放量进行估算,少有针对不同方法的比较研究和对不同影响因素的量化分析。本文梳理了当前主要的二氧化碳排放量计算方法,并基于投入产出法,对比计算了不同考虑因素对于二氧化碳排放量计算的影响,得到各种条件变动情况下所导致的测算偏差。基于投入产出法,对比分析了不同考虑因素对于二氧化碳排放量计算的影响,并计算了各种条件变动情况下的计算偏差。
2 计算方法及数据来源
二氧化碳排放主要包括能源燃烧的二氧化碳排放和水泥生产过程的二氧化碳排放两类。其中,能源燃烧的二氧化碳排放是指各行业燃烧各种能源所产生的二氧化碳排放,主要根据能源行业对各个行业的能源投入进行计算。水泥生产过程的二氧化碳排放是指在水泥生产过程中因化学反应而产生的二氧化碳排放,主要根据水泥的产量及相关的排放系数进行计算。两种来源涉及不同的行业,由于各行业在生产、加工过程中都需要能源提供热力、动力等,因此各行业均存在能源燃烧二氧化碳排放,而水泥生产的过程排放主要与水泥生产相关,属于非金属矿物制品业的二氧化碳排放。具体来说,这两类二氧化碳排放量的计算思路如下:
本文所介绍的二氧化碳排放量计算法适用于各类能源消耗量已知、各行业的能源使用量已知、水泥产量已知并且能源燃烧和水泥生产过程的二氧化碳排放系数均已知的情况,可以计算各年度国家或地区的总二氧化碳排放情况以及分行业二氧化碳排放情况。为方便介绍,本文以2007年中国的二氧化碳排放情况为例,给出其排放量的计算方法。选取的数据来源主要包括2007年的中国能源平衡表与投入产出表,各能源的平均低位发热量以及单位产热量下的二氧化碳排放系数,此外还需要水泥产量与水泥生产的二氧化碳排放系数等。其中,2007年的中国能源平衡表与各能源的平均低位发热量取自国家统计局出版的《2008年能源统计年鉴》,内容包括2007年中国的能源使用情况;各能源在单位产热量下的二氧化碳排放系数取自日本全球环境战略研究所出版的《2006年IPCC国家温室气体清单指南》,指的是各能源在燃烧后每产生单位热量所排放的二氧化碳量;水泥产量取自国家统计局公布的2007年全国30个省份水泥产量数据,全国的水泥产量本文认为是各省水泥产量的加总;而水泥生产的二氧化碳排放系数取自Greenhouse Gas Protocol网站关于波特兰水泥系数的计算。波特兰水泥是以水硬性硅酸钙类为主要成分之熟料研磨而得之水硬性水泥,通常并与一种或一种以上不同型态之硫酸钙为添加物共同研磨,其二氧化碳排放系数适用于对水泥生产过程中普遍的二氧化碳排放量计算。
3 二氧化碳排放量计算
3.1 能源燃烧的二氧化碳排放
全国的总二氧化碳排放量主要通过能源消耗量计算,而分行业的二氧化碳排放主要是将全国的二氧化碳排放总量按行业能耗的比例进行分解得出。在已知能源的燃烧量及二氧化碳排放系数时,二氧化碳排放量为能源的燃烧量与二氧化碳排放系数的乘积。
3.1.1 能源燃烧量
能源的燃烧量计算的关键问题在于将“没有用于燃烧”的能源消费量从总量中剔除。根据能源平衡表显示,各种能源用于燃烧的部分包括能源的终端消费量、用于火力发电的消费量以及用于供热的消费量,不包括在工业中被用作原料、材料的部分。
3.1.2 能源的二氧化碳排放系数
能源燃烧的二氧化碳排放系数通过平均低位发热量和单位热量的二氧化碳排放系数计算。已知各能源燃烧产生单位热量的二氧化碳排放系数和各能源的平均低位发热量(即单位质量的各类能源在燃烧过程中产生的热量),将各能源燃烧产生单位热量的二氧化碳排放系数与其平均低位发热量相乘,即可得出每单位质量的各类能源在燃烧过程中排放的二氧化碳总量,也即各能源的二氧化碳排放系数,计算过程如公式(4)所示,其计算结果见表2。
3.1.3 能源行业的二氧化碳排放系数
通过以上两部分计算,已经可以得到全国的二氧化碳排放量,接下来需要计算分行业的二氧化碳排放量。如图1的计算流程图所示,计算各行业的二氧化碳排放需要用到各能源行业的二氧排放系数以及各能源行业向所有行业的投入关系。
燃烧所产生的二氧化碳排放量,但由于本文使用的中国42部门投入产出表中提供的能源行业仅有煤炭开采和洗选业、石油和天然气开采业、石油加工炼焦及核燃料加工业、燃气生产和供应业4个,这些能源行业与各个化石能源之间存在的对应关系如下:煤炭开采和洗选业包括的能源有原煤、洗精煤和其他洗煤,石油和天然气开采业包括原油和天然气,石油加工、炼焦及核燃料加工业包括汽油、煤油、柴油、燃料油、液化石油气、炼厂干气、其他石油制品、焦炭和其他焦化产品,燃气生产和供应业包括焦炉煤气和其他煤气。各能源行业产生的二氧化碳排放量即为燃烧与其相关能源产品所产生的二氧化碳排放量之和。
这里需要说明的是,在使用投入产出法计算各行业的能源消耗量时,是否剔除能源的转化部分、是否减去固定资本形成及出口投入都会导致二氧化碳排放结果的不同。原因在于,虽然全国42部门所需的能源均是由四个能源行业提供,但这四个能源行业所投入的能源却并非全部用于国内产品生产的能耗,其中有三种用途需要在计算时单独处理:①作为原材料进行加工转换的部分,如煤炭炼焦、原油加工为成品油、天然气液化等的消耗;②作为存货及固定资本形成等的部分;③作为能源产品出口给国外或调出本地的部分。由于这些部分的燃烧过程不在本地,所排放的二氧化碳也不属于本地排放。因此,在计算能源行业的投入金额时,是否剔除这三部分,会对计算结果产生影响。
本文将分别计算是否剔除以上三部分能源消耗的情况。首先,在不剔除这三类能源消耗的情况下,各能源行业用于燃烧部分的总投入金额为:
3.1.4 各行业的能源燃烧排放
在以上计算的基础上,可以计算投入产出表中42行业各自的能源燃烧排放量。计算方法如公式(8)所示,将投入产出表中能源行业j对行业k的能源投入,乘以公式(7)中能源行业j的二氧化碳排放系数,可以计算得出能源行业j给行业k带来的二氧化碳排放量。而行业k的能源燃烧排放为各能源行业投入到行业k的能源燃烧排放量之和,即:
3.2 水泥生产过程的二氧化碳的排放
由于水泥在生产过程中会产生复杂的化学反应,产生二氧化碳,这部分二氧化碳排放被称之为水泥生产的过程排放,在我国二氧化碳排放总量中占到相当比例,因此,在计算中国的二氧化碳排放总量时,是否考虑水泥的过程排放也会影响最终的计算结果。
水泥的生产属于非金属矿物制品业,其二氧化碳排放的计算公式为:
EC=QC×v (9)
其中:EC为水泥生产中的二氧化碳排放量,QC为水泥的总产量,v为水泥生产的二氧化碳排放系数。
本文选取的水泥生产二氧化碳排放系数为波特兰水泥系数,根据Greenhouse Gas Protocol,取值为每t的水泥产量在生产过程中排放
0.502 101 6 t的二氧化碳。水泥产量方面,根据国家统计局统计数据,将中国各省在2007年的水泥产量加总后可得全国在2007年的水泥总产量,共计135 957.6万t。将这两个数据代入公式(9)中计算可得,2007年中国水泥生产过程中的二氧化碳排放总量为68 264.5万t。需要指出的是,在分行业统计的二氧化碳 排放中这一排放属于非金属矿物制品业。
4 不同考虑因素对计算结果的影响
根据本文第二部分对计算方法的介绍可以发现,从“是否剔除能源的转化部分”、“是否减去固定资本形成总额与出口、调出的能源投入”以及“是否考虑水泥生产的过程排放”这3个角度出发,我们可以用23=8种方式对二氧化碳的排放量进行计算,如表3所示。理论上“剔除能源的转化部分,减去固定资本形成总额与出口、调出的能源投入并且加上水泥生产过程排放”的情况下所得计算结果是最为准确的。因此,为了保证计算结果的准确性,在条件允许的情况下,上述三个角度的问题均需要考虑在内。当数据缺失的时候,就需要进行折衷,采取其他几种“不完美的”方法进行计算:比如当能源转化情况不明,即
能源转化率或能源转化量未知的情况下,应选取不剔除能源的转化部分的方法计算;当缺乏固定资本形成总额与出口、调出能源投入的信息,也即投入产出表最终使用部分情况不明时,应选取不减固定资本形成总额与出口、调出的能源投入的方法计算;而在水泥产量或水泥生产的二氧化碳排放系数未知时,计算中不考虑水泥生产的过程排放。相应地,如果这三个角度的问题没有被完全考虑,计算结果也会存在一定程度的偏差。只有在偏差度允许的情况下,该计算方法才是有意义的。因此在采取这些方法计算时,应首先确定各个方法计算结果的准确性。
为了分析各种方法计算得到的二氧化碳排放量的准确性,本文分别利用以上8种“不完美的”计算方法计算了中国2007年的二氧化碳排放量。表3中以“是否剔除能源的转化部分”、“是否减去固定资本形成总额与出口、调出的能源投入”以及“是否考虑水泥生产的过程排放”作为计算变量,展示了各种计算方法得到的结果。当变量取1时为考虑该角度的计算方法,变量取0时为不考虑该角度的计算方法,一共列出8种二氧化碳排放量的计算方法。其中,由于三个变量均取1时,(即“剔除能源的转化部分,减去固定资本形成总额与出口、调出的能源投入并且加上水泥生产的过程排放时”)所得到的计算结果最为准确,因此表3中以三个变量均取1的情况为基准情况,并将其余方法的计算结果与基准情况进行比较,得出各方法下计算结果的准确性偏差。
总排放量方面,计算结果显示,总排放量仅受“是否考虑水泥的过程排放”影响。如表3所示,总排放量的取值仅有两种情况,考虑水泥的过程排放时总排放量为695 167.1万t,不考虑水泥的过程排放时总排放量为626 902.6万t。原因在于本文中二氧化碳排放量的计算包括能源燃烧二氧化碳排放量的计算和水泥生产二氧化碳排放量的计算两类,其中燃烧排放的总量是根据能源平衡表中能源燃烧量计算得出,如前文中的公式(3)所示,与公式(5)、(6)中“是否剔除能源的转化部分”、“是否减去资本形成总额及出口和调出”无关(只影响结构不影响总量),因此总排放量仅受“是否考虑水泥的过程排放”影响。
不考虑能源的转化部分会使中间使用二氧化碳排放量被高估,最终使用二氧化碳排放量被低估。如表3所示,在不剔除能源的转化部分,减去资本形成总额及出口、调出的能源投入,并考虑水泥的过程排放时,中间使用的二氧化碳排放量较基准情况高出0.3%,最终使用的二氧化碳排放量较基准情况低11.7%。原因在于不剔除能源的转化部分即认为所有的能源投入均被用于燃烧,这其中包括真正用于燃烧的部分和实际用于转化的部分,而用于转化的部分在转化成新的能源后也会再次作为燃烧部分计算,也即这部分能源燃烧会被计算两次。这意味着在计算各行业的二氧化碳排放量时,存在转化工序的行业,其能源燃烧量被高估,总燃烧量一定的情况下,其他没有转化工序的行业和最终使用中的能源燃烧量会被低估,导致最终使用二氧化碳排放量的低估及中间使用二氧化碳排放量的高估。不考虑资本形成总额及出口、调出的能源投入会使中间使用二氧化碳排放量被低估,最终使用二氧化碳排放量被高估。表3显示,在不减资本形成总额及出口、调出的能源投入,剔除能源的转化部分,并考虑水泥的过程排放时,中间使用二氧化碳排放量较基准情况低3.0%,最终使用二氧化碳排放量较基准情况高103.5%。原因在于能源行业对资本形成总额(包括固定资本形成总额和存货增加)的投入是将该部分能源以固定资本的形式保留到库存中,并未用于燃烧,而能源行业的出口与调出是将能源以商品的形式转移出本地,其之后无论是否用于燃烧,产生的二氧化碳均不属于本地排放。如果不考虑公式(6)中能源行业j对资本形成总额及出口、调出的能源投入,会使得该能源行业j的总投入金额Dj被高估,从而导致公式(7)中二氧化碳排放系数ej被低估,那么所有通过ej计算的行业二氧化碳排放量均会被低估,使得计算所得各行业的二氧化碳排放量下降,中间使用的二氧化碳排放量减少,而最终使用的二氧化碳排放量增加。
不考虑水泥的过程排放会使中间使用中非金属矿物制品业的二氧化碳排放量被低估。水泥的二氧化碳排放是指在水泥生产过程中,由于化学反应产生的二氧化碳排放,它属于非能源燃烧的二氧化碳排放。根据前文的计算,2007年全国水泥生产的过程二氧化碳排放量为68 344.7万t,因此表3所示“是否考虑水泥的过程排放”,也即是否在非金属矿物制品业的二氧化碳排放中加上水泥生产的过程排放量,可以看到在不考虑水泥的过程排放,剔除能源的转化部分,并减去资本形成总额及出口、调出的能源投入时,中间使用部分的二氧化碳排放量较基准情况减少10.1%。实际上,非能源排放,也即过程排放还包括其他化学反应排放、碳水饮料的排放等,本文仅考虑水泥生产这一项过程排放的做法也有待在后续研究中进行进一步的完善。
综上所述,在剔除能源的转化部分、减去资本形成总额及出口调出的能源投入并考虑水泥的过程排放时计算方法最为准确,与之相反,忽略所有以上因素的计算方法偏差最大。此外,不剔除能源的转化部分、不减资本形成总额及出口调出的能源投入、不考虑水泥的过程排放均会导致计算结果被高估或低估。根据中间使用排放量比较,这三个变量的计算优先度为水泥的过程排放最重要(缺失导致结果偏低10.1%),资本形成总额及出口、调出的能源投入次之(缺失导致结果偏低3.0%),能源的转化部分最末(缺失导致结果偏高0.3%)。根据最终使用排放量比较,这三个变量的计算优先度为资本形成总额及出口、调出的能源投入最重要(缺失导致结果偏高103.5%),能源的转化部分次之(缺失导致结果偏低11.7%),水泥的过程排放不产生影响。根据总排放量比较,这三个变量的计算优先度为水泥的过程排放最重要(缺失导致结果偏低9.8%),能源的转化部分与资本形成总额及出口、调出的能源投入不产生影响。不仅如此,当这三个变量中有两个或三个取0时,计算结果同时受这两三个变量缺失的影响,二氧化碳排放量的变化幅度叠加。表3显示,仅考虑剔除能源的转化部分时,中间使用排放量被低估13.2%,最终使用排放量被高估103.5%;仅考虑资本形成总额及出口、调出的能源投入时,中间使用排放量被低估9.8%,最终使用排放量被低估11.7%;仅考虑水泥的过程排放时,中间使用排放量被低估2.1%,最终使用排放量被高估71.0%;三个变量均不考虑时,中间使用排放量被低估12.2%,最终使用排放量被高估71.0%。
5 结论及建议
本文梳理了当前主要的二氧化碳排放量计算方法,并基于投入产出法,对比计算了不同考虑因素对于二氧化碳排放量计算的影响,研究发现:计算方法方面,本文认为二氧化碳排放的主要来源可以分为能源燃烧排放和水泥生产过程排放两大类,在进行行业二氧化碳排放量的计算时应将这两部分都考虑在内。其中,能源燃烧的二氧化碳排放量可根据分行业的能源消耗量计算,水泥生产的二氧化碳排放量可根据全国水泥产量计算。该方法不仅可以避免能源消耗法数据选取不统一、生命周期评价法多行业计算工作量大,投入产出法计算结果较粗糙等缺陷,得出较为准确的计算结果,还可以同时进行多省份、多行业二氧化碳排放量的计算,简化计算步骤,提升计算效率。计算准确性方面,“是否剔除能源的转化部分”、“是否减去固定资本形成总额与出口、调出的能源投入”以及“是否考虑水泥生产的过程排放”3个因素将对我国二氧化碳排放量的计算结果产生影响。其中,“是否考虑水泥生产的过程排放”影响碳排总量的计算,而其他2个因素主要影响碳排放量的结构。本文认为,在“剔除能源的转化部分、减去资本形成总额及出口调出的能源投入、考虑水泥的过程排放”情况下得到的二氧化碳排放量计算结果最为准确。在此基础上,若不剔除能源的转化部分,会使中间使用排放量被高估0.3%,最终使用排放量被低估11.7%;若不减去资本形成总额及出口调出的能源投入,会使中间使用排放量被低估3.0%,最终使用排放量被高估103.5%;若不考虑水泥的过程排放,会使中间使用排放量被低估10.1%,总排放量被低估9.8%。
基于以上结论,本文提出以下建议:
(1)不断推进二氧化碳计算方法的相关研究,提高对计算结果准确性的关注和重视。二氧化碳排放量作为衡量多种能源和环境问题的主要指标,其计算结果的准确性具有非常重要的意义。从总量上看,我国二氧化碳排放量的大小直接决定了社会各界对于我国碳排放现状的认识,然而,忽视水泥生产过程排放等因素将会使我国碳排总量被低估接近10%,这将直接影响我国社会各界对自身排放现状的正确认识,难以引起人们对能源和环境问题的重视,拖缓减排政策的推广力度和执行程度,甚至影响我国减排目标的达成。排放结构上看,能源转化、资本形成以及出口和调出等因素将会影响我国碳排结构的准确性,影响高耗能产业的确定和低碳产业结构调整。此外,在国际社会方面,各国减排责任的划分越来越多受到关注,我国作为快速崛起的重要经济体,其减排责任的确认更是备受瞩目。因此,我国碳排量计算的准确性决定着我国在国际社会是否承担了合理的减排责任,这一点不仅关乎我国和其他发展中国家的国际责任,更是世界环境问题的主要议题。
(2)关注二氧化碳排放量计算方式的选择,在误差允许的范围内选择准确度更高的方式进行计算。本文从3个角度出发,提供了计算二氧化碳排放量的8种不同方式,确定了最为准确的计算方式并对其他方式的偏差进行了计算和分析。各种方式对不同的影响因素各有取舍,侧重点各不相同,准确度也有所偏差。因此,在数据可及性满足且工作量大小适当的前提下,建议学者采用本文确定的准确方法进行二氧化碳排放量的计算,然而,如果数据不够充分或受工作量大小限制,则应根据本文得到的各种方法的偏差原因和偏差幅度,在误差允许的范围内,针对不同的研究目的选取各自重点关注的主要问题,进而选取在重要环节上准确度更高的方法进行计算,以在最大程度上保证计算结果的准确性。
参考文献(References)
汽车:一辆每年在城市中行程达到2万千米的大排量汽车释放的二氧化碳为2吨。发动机每燃烧1升燃料向大气层释放的二氧化碳为2.5千克。
人体:每人每天通过呼吸大约释放1140克的二氧化碳。
植物:植物在白天吸收二氧化碳,夜晚释放,因此植物的二氧化碳净排放量为零。一棵中等大小的植物每年能吸收大约6千克的二氧化碳。
电脑:使用一年平均间接排放10.5千克二氧化碳。
卤素灯泡:间接二氧化碳排放量年均10.8千克。
暖气:使用煤油作为燃料的暖气一年向大气层排放的二氧化碳量为2400千克。使用天然气的二氧化碳排放量为1900千克,电暖气则只有600千克。
洗衣机:间接二氧化碳排放量年均7.75千克。
冰箱:间接二氧化碳排放量年均6.3千克。
电视:间接二氧化碳排放量年均1.7千克。
鸡蛋:尽管鸡蛋是天然食品,但为了使它能摆上餐桌,需要经过饲养、包装和运输等过程,均会排放出二氧化碳。
鸡肉:生产鸡肉过程中排放的温室气体是生产牛肉过程的4倍。
奶制品:奶制品的生产需要经过巴氏灭菌法消毒,这就需要在15秒内把牛奶加热到72摄氏度。如果选择高温灭菌,则需要加热到140摄氏度,耗时也更长。
进口水果:用飞机运输1吨水果,飞行里程为1万千米,排放的二氧化碳量为3.2吨。
冷冻食品:尽管生产粮食、蔬菜和水果的过程比生产肉类排放的二氧化碳少,但冷冻食品需要经过清洁、加热、包装和冷冻的过程,这都会造成二氧化碳的排放。
尽管二氧化碳市场是商品投资的新领域,但自2005年以来,它便显示出强劲的增长势头,流动性不断增加。2005年,二氧化碳市场交易额仅为94亿欧元,到2007年,全球二氧化碳交易增至404亿欧元。2008年的交易有望达到大约630亿欧元。这意味着从2005年到2008年,该市场的复合年增长率达到88%。鉴于大多数监管问题已经理清,今后几年二氧化碳排放权交易有望形成更大的流动性。
一些地区性的交易计划也在酝酿或实施。如美国东北部的地区温室气体协议(RGGI),澳大利亚新南威尔士州温室气体减排证,等等。排放权交易机制将很快被引入美国、日本、新西兰和加拿大。
通过联结其他计划及纳入新的产业,欧盟排放配额交易制度可发展成为全球性制度。随着交易量的不断增加,二氧化碳正在成为能使投资者以较低的流动风险进行较大规模运作的市场。现在,欧洲气候交易所(ECX)的日均成交额为2.5亿欧元。
前景广阔的投资产品
长远来看,气体排放与经济活动息息相关,排放量会逐年增加,而减排第二阶段(2008年-2012年)内的配额量相对平稳。因此,减排配额的短缺情况就会加重,而对减排的需求则会增加。预计在第三阶段(2013年-2020年),二氧化碳价格水平将继续上涨,因为这一阶段排放配额将会收紧,并逐年减少,以便达到欧盟委员会在2020年实现在1990年基础上减排20%的目标(也可能是30%,这取决于在《京都议定书》后签订的国际协议)。
另外,最廉价的减排已经率先实现:用于减少每吨二氧化碳排放的成本将逐年增加。综合这两种影响,我们预计到2010年,甚至更早,二氧化碳排放配额价格可望超过30欧元/吨。
现在看来,有足够的理由促使投资者对二氧化碳进行投资,使其投资组合多样化。例如,二氧化碳资产与所有其他资产类别都具有低相关性,并且它能防御通货膨胀的冲击。分析显示,二氧化碳回报率与其他主要资产类别回报率的相关性是负相关或是相关性低于10%。
不过,市场上的二氧化碳相关金融产品,尚处于发展阶段。
首先,中国国内的大部分投资,均局限在几家主要银行金融机构提供的人民币结构性存款。一小部分是投资以美元计价的产品。另一方面,二氧化碳相关投资,则是通过中期票据形式在零售/高净值市场进行的,而机构投资者更偏爱掉期和期权。
其次,尽管国际市场可投资标的甚多,但在中国发售最多的还是那些保本型、短期产品(一年至两年),视期限内二氧化碳配额价格表现获得回报。各类指数型产品也已发行,同属保本型,年化收益率为10%左右。在下一个阶段,正如在其他领域所看到的,我们希望极为关注二氧化碳市场的风险偏好型投资者,投资于具有更高收益预期的非保本型结构产品。
最后,投资者已经能够运用各种参考价格来评估二氧化碳市场。与传统的商品相关结构性产品一样,欧洲气候交易所的二氧化碳排放配额期货合约是主要的参考价格。而许多产品也可以与法兴创设的指数――SGI-ORBEO二氧化碳配额指数挂钩。该指数覆盖整个二氧化碳市场,包括二氧化碳排放配额(EUA)和核证减排量(CER)。
SGI-ORBEO二氧化碳配额指数旨在对《京都议定书》下发出的二氧化碳排放权的市场表现发挥杠杆作用,其目标是超越单纯追踪二氧化碳排放配额EUA的各类指数。
在实践中,该指数复制了一个欧洲气候交易所排放配额期货合约(ECX EUA)和一个核证减排量期货合约(ECX CER)。该指数的初设权重(随时间调整)为50%EUA和50%CER,显示其目前倾重于核证减排量,旨在抓住核证减排量与排放配额相比估值偏低的获利机会。
核证减排量对排放配额的折价短期内将继续缩小,因为对于通用型买家来说,核证减排量与排放配额具有同等的经济价值,且目前处于短缺状态。再者,核证减排量将在不同的新兴交易计划中,越来越多地被作为主要的二氧化碳通货使用。最后,核证减排量已被一再证明,它比排放配额更抗跌。因此,投资与SGI-ORBEO二氧化碳配额指数挂钩的结构性产品,比投资单纯挂钩二氧化碳排放配额的产品收益更大。
迈向无二氧化碳型经济
二氧化碳也在吸引重视社会责任投资(SRI)的基金经理的兴趣,他们试图使投资的社会效益和经济回报都达到最大化。社会责任投资的资产额已增长至约3万亿美元。
资产管理者可以将二氧化碳产品引入许多投资组合,以抵消其中的含二氧化碳部分。二氧化碳也可以引入一些现行的主流商品指数,使持有这类资产达到“二氧化碳中性”,并反映二氧化碳商品的日益重要性。今后,绝大多数上市公司都将完成其二氧化碳排放的计量,它们现在已经开始进行一些诸如“二氧化碳披露项目”这样的工作。届时,有可能将基于二氧化碳排放配额的产品加入任一股本投资组合之中,以确保其二氧化碳中性。
这种资产添加配置将首先受到SRI分析师的推动,并会因越来越多的股东和消费者在向企业管理者提出的要求中包含了二氧化碳中性原则而发扬光大。如果其全部潜力得以实现,则正如有人曾预测的一样,二氧化碳市场将不再是一个被动符合性驱动的市场,而开始成为最大的商品市场之一。
作者为法国兴业银行大宗商品结构性产品主管
二氧化碳减排机制
《京都议定书》于1997年在京都签署, 签署的国家,其温室气体的排放量会受到限制(至2008月5月,全球签署的国家为181个)。受管制的国家分为欧盟国家和非欧盟国家, 它们的目标是要于2008年至2012年期间, 把全球二氧化碳的排放量减少至1990年水平的95%。
欧盟国家所采用的是European Union Emission Trading System (EU ETS)。在这个制度下,每个国家的政府会给予当地的工厂特定数量的European Union Allowances(EUAs),任何工厂每排放1吨二氧化碳便要提供1吨EUA。
艾雅法拉火山的喷发不仅将火山灰与熔岩抛入空中,还就此激发了人们关于一些有趣话题的思考。我们已经意识到了全球化系统对空间旅行的依赖程度,也提醒了我们关于自然的强大破坏力与原始美丽。
但尤为重要的是火山爆发赐予我们一个难得的机会来一劳永逸地解决气候怀疑论者长期以来的谎言,即火山喷发所产生的二氧化碳远比人类活动产生的二氧化碳要多。这个谎言一直以来深受气候怀疑论者的喜爱,近几个月来因为矿产地质学家伊恩・普利摩尔的言论而尤为普遍,他曾在2009年写了一本被怀疑论者奉为圣经的《天堂与地狱》。
以下就是普利摩尔2009年8月在澳大利亚ABC网站上发表的文字:
大气层中所含二氧化碳只占地球表层二氧化碳储量的0.001%,地壳底层与地幔中的含量要远比大气层中的含量多得多。人类排放到大气中的二氧化碳含量也不容忽视,尽管在过去的250年中,人类排放到大气层中的二氧化碳只是大气层二氧化碳吧含量来源火山某一天的一次“咳嗽”就可以做到。日渐受到追捧的怀疑科学网站的约翰・库克在网站上将“火山排放的二氧化碳比人类排放的多”的言论列为第54个被戳穿的科学谎言(该日益增加的名单榜上有名者迄今总数为107个)。
这也是我同事詹姆斯・兰德森于2009年12月采访普利摩尔时候持有的观点。在《天堂与地狱》一书中,普利摩尔说道:“火山喷发所释放的二氧化碳含量比全世界所有车辆与工厂的二氧化碳排放总和还要大。”兰德森引用美“人类排放到大气层中的二氧化碳含量是火山喷发释放的含量的130倍之多。”
普利摩尔随即反驳说这个数量并不包括海底火山喷发所释放的二氧化碳。但是,当兰德森向美国地质调查局核查该说法时却得到了如下的回复:
我可以向你保证,国家地质调查局网页上的“130倍”这个数字是将所有火山喷发――海底火山以及陆上火山――计算在内的约数……地质学家有两种方法来计算海洋中脊火山喷发二氧化碳的释放量。在全球陆上火山喷发二氧化碳释放量总数计算出来之前,我们就已经有了对于海洋中脊火山喷发二氧化碳释放量的统计数字。
对该问题的争论早已沸沸扬扬了,而人们对艾雅法拉火山的关注使得这一问题重新升温,并再一次备受关注。
专家说道,冰岛艾雅法拉火山每天的二氧化碳排放量为15 000吨~300000吨,这个数字与一家中小型欧洲企业排放量相当。
假设艾雅法拉火山排放的二氧化碳气体成分与先前附近火山所释放的气体成分相当,英国杜伦大学地球学家在一封邮件中说道“艾雅法拉火山每天的二氧化碳释放量为15 000吨”。
巴黎全球物理研究所的帕特里克・阿拉德给出的“最高数字”为每天300000吨。但二者都坚持说这些数字都只是粗略估计而已。
世界资源研究所的数据库显示(该机构致力于全球环境与可持续发展的跟踪),如果火山排放物在大气中飘浮超过一年,艾雅法拉火山在全球二氧化碳气体排放名单上的位置将位于第47位~75位,该名单是根据各国二氧化碳气体排放量而制定的。
碳捕捉,就是捕捉释放到大气中的二氧化碳,压缩之后,压回到枯竭的油田和天然气领域或者其他安全的地下场所。
如今,全世界各个国家研究二氧化碳捕集和封存的技术方兴未艾、如火如荼。但6月19日,美国国家研究委员会的一项独立研究发出警告,二氧化碳的排放导致温室效应,被认为是引发全球变暖的一大重要原因,(CCS)有可能诱发更大的地震。
碳捕集与封存
(CCS)是指将大型发电厂、钢铁厂、化工厂等排放源产生的二氧化碳收集起来,并用各种方法储存以避免其排放到大气中的一种技术。 CCS技术包括二氧化碳捕集、运输以及封存三个环节,它可以使单位发电碳排放减少85%-90%。
这项技术的研究可以追溯至1975年,当时的美国将二氧化碳注入地下以提高石油开采率,但将它作为一项存储二氧化碳以减少温室气体排放的环保工程,则开始于1989年的麻省理工大学,直至近年来,这项技术得到更多的重视和研究,它被认为是一种可以减少空气中二氧化碳浓度的方法。目前,据专家介绍,从技术层面来说,应用于碳的捕集、运输以及封存的各项技术其实都是已有的、成熟的,只不过在此前并未应用于CCS方向,问题主要存在于现有发电厂的改造以及新建发电厂的技术和资金投入。
二氧化碳的捕集方式主要有三种:燃烧前捕集(Pre-combustion)、富氧燃烧(Oxy-fuel combustion)和燃烧后捕集(Post-combustion)。无论哪种捕集方法,简而言之是将燃煤发电厂产生的气体收集起来,经过脱硫、氮氧化物等等制备后,将二氧化碳分离并收集起来。
二氧化碳运输,捕集到的二氧化碳必须运输到合适的地点进行封存,可以使用汽车、火车、轮船以及管道来进行运输。一般说来,管道是最经济的运输方式。 2008年,美国约有 5800千米的二氧化碳管道,这些管道大都用以将二氧化碳运输到油田,注入地下油层以提高石油采收率(Enhanced Oil Recovery,EOR)。
“捉拿”技术各显千秋
2010年7月,由我国安徽理工大学张明旭教授带领的科研团队在实验室小试装置成功的基础上,自行设计和建造的利用稀氨水捕集二氧化碳中试装置在安徽淮化集团实现连续运转,并顺利生产出了首批合格的碳酸氢铵产品。该装置具有常温、常压、一次吸收和反应、能耗低、工艺简单、安全稳定等显著特点。该装置通过氨法对烟道气中的二氧化碳进行捕集和吸收,每小时可处理烟道气1000立方米左右,烟道气中的二氧化碳脱除效率达80%以上,减排二氧化碳超过110立方米(烟道气中二氧化碳浓度按13%计算)以上,每小时可生产碳酸氢铵肥料270公斤左右。该技术的研究开发既可以减少二氧化碳排放,保护环境,又可使污染物变废为宝。
今年2月,美国一个研究团队发现一种具有八角形孔窗的天然沸石尤其擅长捕捉二氧化碳的行踪,在效率和经济上远胜于目前的工业洗涤器。沸石是一种矿石,其晶格中存在很多大小均一的通道和空腔,一克沸石孔穴和通道的内表面积可达500平方米到1000平方米,这种沸石每立方厘米的小孔足可吸附0.31克的二氧化碳。由此可以吸取或过滤大小不同的分子,并可重复使用几百次,是过滤、擦洗含许多杂质气体的混合气体中有害分子的理想选择,也在化学工业中被广泛应用于催化剂和过滤器。
挪威在5月份,启用了世界上规模最大的碳捕获和储存(CCS)技术发展设施。由挪威政府投资10亿美元(约为63亿元人民币)资助的蒙斯塔德技术中心将测试两种燃烧后碳捕获技术,一种以胺为基础,另外一种以冷冻的氨溶剂为基础。该设施的独特之处在于,它可以测试来自附近两个地点的废气——一个280兆瓦的热电联产工厂和每年产生1000万吨排放的蒙斯塔德炼油厂。它们制造的烟气里二氧化碳的含量各不同,分别约为3.5%和13%。
6月份,英国研究人员研发出一种新型多孔材料,这种材料中的孔洞就像一个个“笼子”。诺丁汉大学等机构研究人员在英国《自然?材料》杂志上报告说,这是一种名为NOTT-202a的新材料。如果把空气压入这种多孔材料之中,大部分气体如氮气、氧气、氢气和甲烷等随后可以从“笼子”中出来,唯独二氧化碳会被留下,锁在“笼子”中。
碳捕的争议
二氧化碳的排放导致温室效应,被认为是引发全球变暖的一大重要原因。6月19日,美国国家研究委员会的一项独立研究发出警告,二氧化碳捕获与封存(CCS)风险太大,地下封存有可能诱发更大的地震。该研究已发表在最新一期美国《国家科学院院刊》上。
地球物理和环境地球系统科学部门教授马克和史蒂文?戈雷利克发表文章说:“将大量的二氧化碳注入大陆内部常见的脆性岩石当中会高概率地触发地震。而且即使是小到中等规模的地震都会威胁到二氧化碳库密封的完整性,在此背景下,大规模的实施CCS可能是一个具有高风险且不会显著减少温室气体排放的战略。”
美国国家研究委员会指出,CCS将涉及长时间注入地下最大量的流体,可能会导致更大的地震。CCS需要地下泄漏率每千年小于1%,以达到可再生能源相同的气候效益。而近年来在美国注入到地下的污水已经与发生小到中级的地震有所关联。理由之一是,早在1960年,科罗拉多州就有明显例证;另外的例子出现在去年阿肯色州和俄亥俄州。如果试图将二氧化碳封存地层数百年到数千万年,引发类似规模的地震可能性将相当大。
环保组织地球之友的一份报告指出:以英国为中心的碳抵消行业有着数十亿美元的交易量,但这个行业并没有起到降低全球温室气体排放的作用。碳抵消计划的问题在于,它减少的温室气体比科学家所说的避免灾难性气候变化所需的量要小的多。如果是这样的话,抵消计划就不可能够推行,也不能够计算清楚一项计划究竟能够减少多少碳排放。
关键词:投入产出分析;二氧化碳排放;进出口贸易;
1引言
2009年底召开的哥本哈根会议吸引了全世界的目光,“碳排放”问题也随之成为了最引人注目的焦点。我国在会议上宣布,到2020年实现单位GDP二氧化碳排放比2005年下降40%-45%的行动目标。据海外研究机构估计,中国目前二氧化碳的排放量2007年已经超过美国,成为世界第一大温室气体排放国。而且中国温室气体排放可能在二十年内翻番甚至更多,因此中国在兑现二氧化碳减排诺言的实践中将面临巨大的挑战。
国际贸易是影响一国温室气体排放量的重要因素。在国际贸易过程中,由于各国国际分工、产业结构、能源利用效率、技术条件以及贸易结构等方面的差异,必然会出现碳排放转移问题。随着经济全球化速度的不断加快,我国对外贸易高速增长。在拉动经济发展的同时,也造成了我国的贸易碳污染。因此从外贸结构角度来探讨我国节能减排的新途径,具有很强的现实意义。本文将利用投入产出方法客观评估和定量分析进出口贸易对我国二氧化碳排放的影响。
本文在目前国内外关于能源消耗问题已有的研究结果上,将通过分析外贸商品在本国经济运行中所起的作用,定量测算外贸商品的二氧化碳排放量,进而分析外贸商品结构对二氧化碳排放量的影响,找到对外贸易中减少二氧化碳排放的途径。
2模型及评价指标体系的构建
由于投入产出表明确直观的从产业角度反映了国民经济各部门的各种分配和消耗关系,因此要全面评价一个部门基于国际贸易的完全碳排放量,本文采用了投入产出方法。
根据国家统计局已经公布的《2007年中国投入产出表》,本文将采用2007年42×42部门的全国投入产出表。从总体上来看,我国能源消耗重点集中在第二产业的工业部门,而第三产业各产品部门能源消费量少,污染排放小。因此为了便于计算和讨论,本文把投入产出表中第三产业的16个部门合并成能源平衡表中第三产业的3个行业部门。合并后的投入产出表是29×29个部门。[1]
我国贸易出口中的内涵二氧化碳量是别国综合评估在享用我国出口商品时而避免在本国排放的二氧化碳量。由于在一般的经济活动中,各产业产品的生产不仅会直接导致最终生产部门的能源消耗,还会通过消费各种原材料及辅助材料进而间接引起其他部门的生产与能源消耗,而能源的消耗量通过某些技术参数换算即得到二氧化碳排放量。因此严格意义上讲,我国贸易出口中内涵的二氧化碳量是不同的贸易商品从生产到出口形成最终产品等环节累计二氧化碳量直接排放和间接排放之和。即完全排放。同样,进口产品隐含别国为了出口而在其国内排放的二氧化碳量,进口产品也包含能源消耗和二氧化碳排放。但值得注意的是,进口产品是在国外生产,由于国内外在生产技术、能源利用效率等方面存在差异,其产品生产所消耗能源量也会出现不同。因此不能把在国外生产的进口产品所产生的二氧化碳排放量作为国内的二氧化碳减排量,必须从进口产品在本国经济运行过程中所起作用的角度来考虑,即假定在本国生产条件下,这些进口产品作为国内最终产品生产而产生的二氧化碳完全排放量。
3对外贸易的二氧化碳排放实证
分析根据2007年的投入产出表和各部门2CO排放数据,计算得出各部门产品的2CO直接和完全排放系数,如表1所示。可以看出,直接排放系数大的部门其完全排放系数也相对较大,如部门2“煤炭开采和细选业”、部门12“化学工业”、部门13“非金属矿物制品业”以及部门14“金属冶炼及压延加工业”等等,其2CO直接排放和完全排放系数都位于29部门的前列,值得重点关注。由于它们的进出口比重也比较大,会对出口排放强度和进口减排强度产生较大影响。此外有些直接排放系数和完全排放系数呈现出明显的差异,较小的部门,其完全排放系数可以扩大很多。如第18个部门“电气机械及器材制造业”,直接排放系数仅为0.14,完全排放系数则扩大了近17倍,达到2.37,充分说明了产品生产过程中2CO间接排放的重要影响。
各部门产品2CO直接排放系数和完全排放系数(吨/万元)部门编号部门直接排放系数完全排放系数kf出口比重进口比重列出了根据2007年投入产出表以及进出口额计算所得结果。由表可见,2CO出口排放强度小于2CO进口减排强度,这就意味着,单位出口产品内含的能源消耗低于单位进口产品带来的能源节省,也即对外贸易有助于节约能源消费,有助于降低单位产值能耗。但是从我国对外贸易的二氧化碳转移总量上看,由于进出口贸易量之间的差异,出口规模的迅速增长导致我国2007年对外贸易2CO排放量大于2CO减排量,分别为192401.01万吨和149177.35万吨。处于2CO净进口状态,为贸易碳污染转入国。
4结论和政策
建议总体上看,由于在国际产业分工中,我国处于产业链的低端,生产和出口了大量的高耗能和高排放产品,承担了大量本应在进口国排放的二氧化碳。导致对外进出口贸易中出口二氧化碳耗能高于进口二氧化碳省能。由于国家贸易碳排放的变化,不仅受进出口规模、进出口结构的影响,更受部门能源利用结构和能源强度等生产技术因素的影响,考虑到国家现阶段经济发展及能源结构特点,中国在未来的对外贸易中,不仅适当控制高能耗、高碳排的部门出口规模,鼓励低耗能产品的出口;更要降低高耗能产品进口门槛。同时应积极引进先进生产技术,提高能源利用效率,降低部门能耗强度。优化我国进出口贸易的产业结构,在促进经济发展的基础上实现节能减排的目标。新晨
[参考文献]
[1]国家统计局国民经济核算司.中国投入产出表(2007年)[M].北京:中国统计出版社,2009.
[2]魏本勇,方修琦,王媛,杨会民,张迪.基于投入产出分析的中国国际贸易碳排放研究[J].北京师范大学学报(自然科学版),2009,(8):413-419.
[3]国家统计局.中国统计年鉴2008[M].北京:中国统计出版社,2008.
[4]沈利生.我国对外贸易结构变化不利于节能降耗[J].管理世界,2007,(10):43-50.
除了二氧化碳外,目前发现的人类活动排放的温室气体还有甲烷、氧化亚氮、氢氟碳化物、全氟化碳、六氟化硫。对气候变化影响最大的是二氧化碳。二氧化碳的生命期很长,一旦排放到大气中,最长可生存200年,因而最受关注。排放温室气体的人类活动包括所有的化石能源燃烧后排放的二氧化碳。在化石能源中,煤含碳量最高,石油次之,天然气较低。1860年以来,全球平均温度升高了0?郾6℃±0?郾2℃。近百年来最暖的年份均出现在1983年以后,20世纪北半球温度的增幅是过去1000年中最高的。
据资料显示,近百年来大气中温室气体浓度明显增加,大气中二氧化碳的浓度已达到过去42万年中的最高值。近百年里降水分布也发生了变化,大陆地区尤其是中高纬度地区降水增加,非洲等一些地区降水减少。有些地区极端天气气候事件(厄尔尼诺、干旱、洪涝、雷暴、冰雹、风暴、高温天气和沙尘暴等)的出现频率与强度增加。
阅读上文后请同学们回答下列问题:
(1)什么是温室效应?其主要影响因素是什么?
(2)文中提到“我国是世界上气候变化的敏感区和脆弱区之一”,面对温室效应的影响你有什么想法?我们应该怎么做?
答案:(1)大气中的二氧化碳等气体透过太阳短波辐射,使地球表面升温,但阻挡地球表面向宇宙空间发射长波辐射,从而使大气增温。由于二氧化碳等气体的这一作用与“温室”的作用类似,故称之为“温室效应”,二氧化碳等气体则被称为“温室气体”。
【关键词】二氧化碳;科学视野;学习兴趣
初中化学新课标指出:在化学教学中,通过帮助学生了解化学制品对人类健康的影响,懂得运用化学知识和方法治理环境,合理地开发和利用化学资源,逐步学会从化学的角度认识自然与环境的关系,分析有关的社会现象。
本文以二氧化碳一节内容的学习为例,在讲授完毕本节内容后,教师可以设置问题或布置任务:如果二氧化碳过度排放,将对人类产生什么危害呢?人类又将如何应对呢?由此引导学生深入思考。然后老师可以依据调研情况向学生说明:空气中大量排放的二氧化碳导致地表温度上升、冰川溶化、海平面上升、给人类带来灾难。尽管目前还无法科学计量,但确有迹象表明CO2所引起的气候变化是很显著的。控制减少大气中二氧化碳的含量已引起全世界科学家的重视,在努力寻找转化的方法,以保护环境。那么如何做到CO2的减排、封存和利用呢。在此可以向学生讲授当今二氧化碳处理利用的现状,以达到拓展学生科学视野、激发学习兴趣、提高环保意识的目的。
1.生物技术
利用光合作用吸收储存二氧化碳,是控制二氧化碳最直接、副作用最小的方法。减少大气中二氧化碳含量最简单的办法就是植树造林,也是最廉价的解决方案。树木在生长的过程中从空气吸收二氧化碳,放出氧气,以木材的形式存储碳。据估计,全世界森林中总共存储着近1万亿吨碳。然而,利用植物光合作用降低二氧化碳的效率很低,因为需要大量的土地来植树或农作物。据计算,要平衡目前全球二氧化碳排放值,人们必须每年种植相当于整个印度国土那么大面积的森林,显然这是不可能的。但生物吸收二氧化碳的方法并非穷途末路,研究发现海洋生物吸收二氧化碳的潜力巨大。日本科学家已经筛选出几种能在高浓度二氧化碳下繁殖的海藻并计划在太平洋海岸进行繁殖,以吸收附近工业区排出的二氧化碳。美国一些研究人员以加州巨藻为载体,繁殖一种可吸收二氧化碳的钙质海藻,形成碳酸钙沉入海底,腾出的巨藻表面可供继续繁殖。
2.能源革新
二氧化碳的排放在很大程度上取决于为获得能量而进行的矿物燃料燃烧,因此改革能源形式或能量来源称为减少二氧化碳排放的一个突破口,这也符合污染控制的原则,从源头上控制二氧化碳的生产。
(1)燃料脱碳:即以含碳量较低的燃料(如石油和天然气)或无碳燃料(如氢气)取代含碳量较高的燃料(如煤),使得每单位能耗量的平均二氧化碳排放量减少。20世纪80年代美国化工界就提出将煤、生物体等不清洁燃料与氢气反应生成甲烷、一氧化碳、氢以及固态焦炭等,再将甲烷高温分解成氢,一氧化碳以及固体炭黑,然后氢与一氧化碳合成甲醇,未反应的氢与一氧化碳作为原料循环使用。
(2)燃料电池:即以电化学氧化产生电力,直接将化学能转化为电能,燃烧效率达到40%-60%(与之相比火力发电的效率仅为30%左右),大幅节约了初级能源,避免了大量污染。重要的是,燃料电池是以氢为燃料的,燃烧产物是水,既解决了能源产生和输送,又避免了环境污染。
3.二氧化碳的收集
二氧化碳的人为排放源主要有汽车、工厂等。然而在众多汽车上安装收集二氧化碳的设备不现实,目前把收集二氧化碳的工作重点放在了以燃烧矿物燃料为主的发电厂上,这些发电厂的二氧化碳排放量大约占全世界二氧化碳排放量的1/4。在吸收塔中二氧化碳与醇胺接触发生反应,释放出浓缩的二氧化碳,并还原成化学吸收剂。另外,比较理想的办法是将收集到的二氧化碳输送到地下或海洋深处埋藏起来。石油开采行业中有些油田为了增加留在地层孔隙中难以开采的石油产量,向地下注入压缩二氧化碳,以增大地下压力,增强原油流动性,提高原油的采收率。目前,美国每年有近百个油田为提高原油产量向地下注入500万吨左右的二氧化碳。尽管封闭的地质结构是人们最理想的二氧化碳储存之处,但是一些科学家指出,深海才是未来温室气体最大的潜在储存库。海洋表面每天都要吸收2000万吨的二氧化碳。据估计,以海水溶解方式总共储有46万亿吨二氧化碳,但其容量还要大很多。因此即使人类向海洋加入两倍前工业时代大气浓度的二氧化碳,海洋的碳含量的变化也不超过2%。而且,通过自然过程,排放到大气中的二氧化碳早晚也会转移到海洋中。
4.二氧化碳的资源化利用
二氧化碳作为新的碳源,开发绿色合成工艺已引起普遍关注。综合利用二氧化碳并使之转化为附加值较高的化工产品,不仅为碳一化工提供了廉价易得的原料,开辟了一条极为重要的非石油原料化学工业路线,而且在减轻全球温室效应方面也具有重要的生态与社会意义。随着人们对二氧化碳性质的深入了解,以及化工原料的改革,二氧化碳作为一种潜在的碳资源,越来越受到人们的重视,应用领域将得到有效开发。
【参考文献】
[1] 赵成美.二氧化碳的性质, 中学化学教学参考,2000(5):27-28
[2]Garola Hanisch.二氧化碳储存的来龙去脉[J].环境科技动态,1998,2:9-12
[3]周欢怀,艾宇.二氧化碳减排与可持续发展[J].杭州化工,2005,32(2):15-18
【作者简介】
【摘 要】 初中化学新课标要求学生逐步学会从化学的角度认识自然与环境的关系,分析有关的社会现象。本文以二氧化碳内容的学习例,总结分析了二氧化碳综合利用的策略技术,提出了拓展学生科学视野,激发学生学习兴趣的方法。
关键词 二氧化碳;科学视野;学习兴趣
初中化学新课标指出:在化学教学中,通过帮助学生了解化学制品对人类健康的影响,懂得运用化学知识和方法治理环境,合理地开发和利用化学资源,逐步学会从化学的角度认识自然与环境的关系,分析有关的社会现象。
本文以二氧化碳一节内容的学习为例,在讲授完毕本节内容后,教师可以设置问题或布置任务:如果二氧化碳过度排放,将对人类产生什么危害呢?人类又将如何应对呢?由此引导学生深入思考。然后老师可以依据调研情况向学生说明:空气中大量排放的二氧化碳导致地表温度上升、冰川溶化、海平面上升、给人类带来灾难。尽管目前还无法科学计量,但确有迹象表明CO2所引起的气候变化是很显著的。控制减少大气中二氧化碳的含量已引起全世界科学家的重视,在努力寻找转化的方法,以保护环境。那么如何做到CO2的减排、封存和利用呢。在此可以向学生讲授当今二氧化碳处理利用的现状,以达到拓展学生科学视野、激发学习兴趣、提高环保意识的目的。
1.生物技术
利用光合作用吸收储存二氧化碳,是控制二氧化碳最直接、副作用最小的方法。减少大气中二氧化碳含量最简单的办法就是植树造林,也是最廉价的解决方案。树木在生长的过程中从空气吸收二氧化碳,放出氧气,以木材的形式存储碳。据估计,全世界森林中总共存储着近1万亿吨碳。然而,利用植物光合作用降低二氧化碳的效率很低,因为需要大量的土地来植树或农作物。据计算,要平衡目前全球二氧化碳排放值,人们必须每年种植相当于整个印度国土那么大面积的森林,显然这是不可能的。但生物吸收二氧化碳的方法并非穷途末路,研究发现海洋生物吸收二氧化碳的潜力巨大。日本科学家已经筛选出几种能在高浓度二氧化碳下繁殖的海藻并计划在太平洋海岸进行繁殖,以吸收附近工业区排出的二氧化碳。美国一些研究人员以加州巨藻为载体,繁殖一种可吸收二氧化碳的钙质海藻,形成碳酸钙沉入海底,腾出的巨藻表面可供继续繁殖。
2.能源革新
二氧化碳的排放在很大程度上取决于为获得能量而进行的矿物燃料燃烧,因此改革能源形式或能量来源称为减少二氧化碳排放的一个突破口,这也符合污染控制的原则,从源头上控制二氧化碳的生产。
(1)燃料脱碳:即以含碳量较低的燃料(如石油和天然气)或无碳燃料(如氢气)取代含碳量较高的燃料(如煤),使得每单位能耗量的平均二氧化碳排放量减少。20世纪80年代美国化工界就提出将煤、生物体等不清洁燃料与氢气反应生成甲烷、一氧化碳、氢以及固态焦炭等,再将甲烷高温分解成氢,一氧化碳以及固体炭黑,然后氢与一氧化碳合成甲醇,未反应的氢与一氧化碳作为原料循环使用。
(2)燃料电池:即以电化学氧化产生电力,直接将化学能转化为电能,燃烧效率达到40%-60%(与之相比火力发电的效率仅为30%左右),大幅节约了初级能源,避免了大量污染。重要的是,燃料电池是以氢为燃料的,燃烧产物是水,既解决了能源产生和输送,又避免了环境污染。
3.二氧化碳的收集
二氧化碳的人为排放源主要有汽车、工厂等。然而在众多汽车上安装收集二氧化碳的设备不现实,目前把收集二氧化碳的工作重点放在了以燃烧矿物燃料为主的发电厂上,这些发电厂的二氧化碳排放量大约占全世界二氧化碳排放量的1/4。在吸收塔中二氧化碳与醇胺接触发生反应,释放出浓缩的二氧化碳,并还原成化学吸收剂。另外,比较理想的办法是将收集到的二氧化碳输送到地下或海洋深处埋藏起来。石油开采行业中有些油田为了增加留在地层孔隙中难以开采的石油产量,向地下注入压缩二氧化碳,以增大地下压力,增强原油流动性,提高原油的采收率。目前,美国每年有近百个油田为提高原油产量向地下注入500万吨左右的二氧化碳。尽管封闭的地质结构是人们最理想的二氧化碳储存之处,但是一些科学家指出,深海才是未来温室气体最大的潜在储存库。海洋表面每天都要吸收2000万吨的二氧化碳。据估计,以海水溶解方式总共储有46万亿吨二氧化碳,但其容量还要大很多。因此即使人类向海洋加入两倍前工业时代大气浓度的二氧化碳,海洋的碳含量的变化也不超过2%。而且,通过自然过程,排放到大气中的二氧化碳早晚也会转移到海洋中。
4.二氧化碳的资源化利用
二氧化碳作为新的碳源,开发绿色合成工艺已引起普遍关注。综合利用二氧化碳并使之转化为附加值较高的化工产品,不仅为碳一化工提供了廉价易得的原料,开辟了一条极为重要的非石油原料化学工业路线,而且在减轻全球温室效应方面也具有重要的生态与社会意义。随着人们对二氧化碳性质的深入了解,以及化工原料的改革,二氧化碳作为一种潜在的碳资源,越来越受到人们的重视,应用领域将得到有效开发。
参考文献
[1] 赵成美.二氧化碳的性质, 中学化学教学参考,2000(5):27-28
[2]Garola Hanisch.二氧化碳储存的来龙去脉[J].环境科技动态,1998,2:9-12
[3]周欢怀,艾宇.二氧化碳减排与可持续发展[J].杭州化工,2005,32(2):15-18
【作者简介】