欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

纳米科学与技术优选九篇

时间:2024-01-12 16:04:31

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇纳米科学与技术范例。如需获取更多原创内容,可随时联系我们的客服老师。

纳米科学与技术

第1篇

文章编号:1003-1383(2013)01-0106-04 中图分类号:R319 文献标识码:A

纳米(符号为nm)是一种度量单位。1 nm=1/100万mm。“纳米材料”的概念是20世纪80年代初形成的,指的是物质的颗粒尺寸小于100 nm的具有小尺寸效应的零维、一维、二维、三维材料的总称。目前在口腔医学临床上使用的材料相当广泛,运用于口腔的纳米材料称之为口腔纳米材料,对口腔临床修复治疗起到了非常重要的作用。随着纳米材料和纳米技术的兴起,新型的纳米材料开始在口腔医学领域[1]应用,对现有口腔材料的改性和创新具有重要意义。纳米材料具有以下主要特点:纳米粒子大小在1~100 nm;有大量的自由表面或界面;纳米单元之间存在着相互作用,作用或强或弱。因为具有以上特性,纳米材料具有包括表面或界面效应、小尺寸效应、量子尺寸、宏观量子隧道效应[2]。纳米材料与组成相同的微米晶体材料比较具有其许多优异的性能[3],主要表现在催化、磁性、光学、力学等许多方面。纳米高分子材料的应用涉及多方面,主要为介入性诊疗、免疫分析、药物控制释放载体等[4]。纳米技术涉及许多领域,包括纳米合成技术、纳米装置技术、微加工技术等,在口腔医学方面采用的纳米技术称之为口腔纳米技术[5]。现就纳米材料与纳米技术在口腔内外科学中的应用进行如下概括综述。

纳米技术与纳米材料在口腔内科学中的应用 1.纳米复合树脂 从以化学方式固化的复合树脂到光固化灯照射固化的复合树脂及双固化型复合树脂。用复合树脂修复牙体缺损已有40多年历史。复合树脂的基本组成部分是无机填料,根据无机填料的粒径大小分为大颗粒型、超微颗粒型和混合填料型。混合填料型树脂填料粒径近几年不断向纳米级发展。如今推出的适用于所有充填通用型纳米复合树脂,将是最有希望的新型复合树脂。为改善牙科树脂的性能,目前多采用许多增加强度和增加韧性的方法。在树脂中加入种类、数量、大小不相同的无机填料,虽然使复合树脂的强度得到提高,但同时又使树脂的韧性降低。而在树脂中运用纳米粒子来填充,可使复合树脂强度与韧性增加。使复合树脂的强度增强的纳米粒子包括纳米二氧化硅[6]、纳米氧化锆[7]、纳米羟基磷灰石[8]、纳米氧化钛[9]等。由于纳米粒子具有以下独特的性能,如非配对原子多,表面缺陷少,比表面积大,能与聚合物发生较强物理结合或化学结合,使粒子与基体间界面粘结时,对更大的载荷都能承受,从而使纳米复合树脂具有更高的强度和韧性。为使材料发生聚合时不收缩或收缩减小,在光化聚合丙烯酸脂或异丁烯酸脂基的向列液晶单体中,加入二氧化硅纳米微粒和较高含量的金属氧化物,使形成高分子量的聚合物粘结性增强,

体积收缩减小。二氧化锆用于口腔科具有X射线阻射性高、强度高和硬度高等优点,纳米氧化锆复合树脂光学透明性极高,是理想的口腔科复合树脂增强材料。口腔临床使用的树脂充填材料,放射阻射性弱,如发生继发龋坏时,X线片上很难将充填材料与继发龋进行鉴别,若将氧化钽纳米粒子通过运用纳米技术填充入树脂材料中,形成具有放射阻射性的新型纳米复合树脂材料,材料的物理强度会得到增强。而将氧化钽纳米粒子加入玻璃离子材料中,能使材料克服容易溶解的不足,同时强度增强,与一般的复合树脂相比,具有更好的耐磨性。该材料主要是依靠纳米机械结合,来提高其耐磨性。如果把纳米多孔二氧化硅凝胶加入树脂材料中,使新形成的材料具有不相同的结构,耐磨性能得到提高。有学者将纳米材料加入复合树脂中,发现能使其具有抗菌性能。Xu等在口腔科复合树脂中加入熔附了纳米硅颗粒的晶须和纳米二钙或四钙磷酸盐,可达到自修复的目的[10,11]。宋欣等人在复合树脂中加四针状氧化锌,发现该材料不仅能提高树脂的机械性能,还使树脂具有抗菌作用[12]。Niu等也在复合树脂中加入四针状氧化锌,使复合树脂具有抗菌性能的同时机械性能也增强[13]。由有机高分子材料和各种纳米单元通过多种方式复合成型的新型复合材料就是纳米填料复合树脂,是一种含有纳米单元相的纳米复合材料。纳米复合树脂与过去的复合树脂相比较性能上有更大提高,其优势就是色泽更逼真,抛光性与持久性更佳,超强强度更耐磨,可以广泛用于前牙或后牙。

2.纳米粘结材料 从BisGMA粘结剂和酸蚀技术用于口腔临床以来,在口腔临床粘结治疗方面获得很大进步。口腔内环境有其独特性,使许多粘接材料和粘接技术没有达到理想要求。随着纳米技术的广泛运用,纳米材料的日益发展,将纳米粒子加入现有的口腔粘结材料中进行改性外,还把纳米杂化树脂(poss)作为基质,用它与硅基纳米材料发生共聚,从而得到高强度、热稳定、耐久性的高粘结性材料。这种材料不仅能很好地克服酸蚀过程中造成的牙本质小管闭合问题,而且能在牙体和材料之间发挥较高的粘结性,使粘接技术和粘接材料达到一个更高更新的水平。牙本质过敏是口腔内科临床上常见病多发病,是牙齿上暴露的牙本质在受到外界刺激,如温度、化学性、机械性刺激后,引起牙齿的酸、软、疼痛症状,这主要是牙本质暴露后,牙本质小管内的液体,即牙本质液对外界刺激产生机械性反应所引起。临床主要是通过在暴露的牙本质表面涂布粘结剂来缓解敏感症状。在临床口腔常用的光固化粘结剂中加入一些纳米材料,不仅能提高其粘结力,还可作为牙本质过敏治疗的封闭材料。主要是利用纳米粘结材料来封堵牙本质小管,可以使牙本质过敏得到迅速和永久的治愈。

3.纳米根管充填材料 临床上用于做根管治疗的根充材料要求有以下特点:其一,能把炎症始发地彻底清除,能使根管封闭、死腔消灭,从而防止微生物进入根管内,阻止根管再次受到感染;其二,材料自身有恢复组织病变的能力,对根尖孔的钙化闭合有促进作用。因羟基磷灰石颗粒的尺寸较大,如单纯使用羟基磷灰石作为根管充填材料,在根管充填后形成的整体脆性较大,弹性模量与牙根牙本质不匹配,从而出现明显的微渗漏。随着纳米羟基磷灰石生物材料的出现,能很好解决根充材料存在的关于生物相容性的难题。经过大量基础和临床研究,发现纳米羟基磷灰石的结构与天然骨的无机成分很相似,均有良好的生物相容性,两者可以紧密结合,结合后周围组织未见有炎症和细胞毒性的发生,其对骨组织还有良好的诱导性。材料的组成和构造与脊柱动物硬组织相似,生物相容性良好[14~16]。将纳米羟基磷灰石制成糊剂用于充填根管,大多数病例根尖透影区变小或消失,临床症状消失,成功率达93.2%。根尖周围组织有病变的牙齿,成功率达93.8%。王艳玲[17]研究指出,用纳米羟基磷灰石根充与传统氧化锌丁香油糊剂根充两者相比较,在根管壁密合度方面,前者明显优于后者。纳米羟基磷灰石具有良好的根尖封闭特性,用其作根管封闭剂可减少微渗漏的出现。不少学者把具有良好的生物相容性,可使病变组织愈合加快,根充不会被组织吸收的纳米羟基磷灰石作为根管充填材料和根尖屏障材料,对其可行性进行了大量的临床研究[18~22],取得良好的疗效。纳米羟基磷灰石材料本身无杀菌作用,将碘或其他抗生素加入其中可以使该材料的抑菌和抗菌效果提高[23]。张海燕等[24]对难治性根尖周炎应用无机抗菌剂作为根管充填剂进行根管治疗,取得很好临床疗效。本身没有成骨性的纳米羟基磷灰石,可为新生骨的沉积提供合适的生理基质,引导牙骨质不断沉积来封闭根尖处的根尖孔。有临床报道将其用于年轻恒牙的根管充填特别合适。

纳米技术与纳米材料在口腔外科学中的应用 1.纳米技术在拔牙麻醉上的应用 拔牙麻醉时的注射操作和疼痛往往让患者感到害怕和恐惧。临床上可使用丁卡因进行组织的表面麻醉或局部注射碧兰麻来减轻患者的疼痛,但有时仍会出现诸多问题如麻醉镇痛不全、血肿、面神经暂时性麻痹等。随着纳米技术的发展,口外医生可将纳米粒子活性麻醉剂悬液直接涂布在牙龈和牙龈沟内,在声学信号(如超声波)或程序化的化学反应链(电化学机制)的指引下,经牙齿的薄弱区牙颈部,药物通过牙本质小管到达牙髓腔,达到麻醉效果。比牙本质小管管径(1~4 μm)小数百倍甚至数千倍的纳米粒子,可由信号引导,从牙本质小管灌流到牙髓腔内,起到麻醉效果,实现牙科无痛麻醉,给患者减少疼痛和恐惧感。

2.纳米复合体材料修复骨缺损 随着口腔材料学不断发展,羟基磷灰石作为新兴的材料,可大量用于口腔骨组织缺损的修复,如牙槽骨再造、牙周骨组织缺损、颌骨囊肿等。研究表明:羟基磷灰石所具有的许多特征与多种因素有关,尤其与它的颗粒直径大小有密切关系。如果颗粒直径大小在1~100 nm,羟基磷灰石则会具有特有的生物学特点。纳米羟基磷灰石的晶体构造与自然骨中的无机成分相比较,两者极为相似,都可以通过氢键方式与蛋白质及多糖结合在一起。无细胞毒性,生物相容性好,故认为其是多种口腔疾患造成天然骨质缺陷最好的替代物[25~29]。纳米羟基磷灰石材料既可作为骨形成的支架,而且还对骨细胞有引导的作用。有学者用纳米羟基磷灰石复合胶原植入术,对牙周病造成骨组织缺损的患者进行临床治疗及疗效观察,取得令人满意的临床效果[30,31]。羟基磷灰石复合胶原与周围组织相容性好,其组成和构造跟天然骨相似,本身无细胞毒性,对牙周膜细胞的生长和新生骨的形成有促进作用,故认为它是一种良好的组织工程支架材料。清华大学材料科学与工程系研制的纳米羟晶/胶原仿生骨,用来修复家兔颅颌骨实验性穿通性骨缺损,因仿生骨有良好的生物相容性,对骨组织的再生、修复起到促进作用,从而取得良好的骨创愈合效果,达到骨创的关闭和骨性桥接。有学者用纳米羟基磷灰石人工骨充填慢性根尖周炎及根尖囊肿手术后的骨缺陷区内以及下颌智齿拔除后的牙槽窝内,均取得令人满意的疗效。颌骨囊肿是口腔科的一种常见疾病,为减少术后出现感染概率,缩短术后修复时间,防止患者面部出现畸形,可加入纳米羟基磷灰石人工骨,纳米羟基磷灰石人工骨在充填骨缺损的同时,使感染问题得以解决,而且对骨诱导作用明显,手术操作简便易行,应在口腔外科临床工作中广泛推广。

3.纳米控释系统在肿瘤治疗中的应用 纳米控释系统包括纳米粒子和纳米胶囊,它们直径在10~500 nm之间。药物可以通过吸附作用、附着作用位于粒子表面或者通过溶解、包裹作用位于粒子内部。在外磁场的引导下,将磁性纳米颗粒作为药剂载体引导到肿瘤患者的患病部位,对病变部位进行定位治疗,这样可以减少治癌药的毒副作用,提高药物疗效。恶性肿瘤血管组织的通透性较大,细胞的吞噬能力较强,用静脉给药方式把纳米粒子运送到肿瘤组织,可使药物疗效得到提高,降低毒副作用和减少给药量。Lebold T等[32]把针孔结构的纳米硅石当作载体,结合多柔比星,将两者制成薄膜,与其他给药方式比较其释药时间显著延长。作为抗恶性肿瘤药物的输送系统,纳米控释系统被认为是最有发展的应用之一。纳米颗粒乳剂载体与分散于人体内的癌细胞容易融合,临床上可利用它将抗癌药物包裹。有人用聚乙烯吡咯烷酮纳米粒子将抗癌药物紫杉醇包裹用于肿瘤治疗,结果表明,含紫杉醇的纳米粒子与同浓度游离的紫杉醇在治疗肿瘤疗效方面,前者疗效明显增加。大量研究显示,具有纳米级的一些抗肿瘤药物,延长在肿瘤内停留时间,肿瘤生长缓慢,同时减少对组织器官的毒性和副作用,减少药物剂量。纳米脂质载体在肿瘤造影和成像等方面具有较好的优势[33],因为其对药物、基因、成影剂有较好的包封率。

综上所述,随着纳米材料与纳米技术的兴起和快速发展,为口腔材料学的研究提供了一种全新的方法和手段。使我们能以全新的思维模式从纳米水平来重新探索和研究材料的成份与结构,从而为口腔医学领域研制出更好更理想的口腔材料。

参考文献[1]王程越,李曦光.纳米技术与口腔医学[J].辽宁医学院学报,2004,25(4):6870.

[2]梁立红.纳米材料特点及研究动态[J].吉林工学院学报,2000,21(3):3033.

[3]胡文祥.分子纳米技术在生物医药学领域的应用[J].化学通报,1998(5):3238.

[4] Song CX,Labhasetwar V,Murphy H,et al.Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery[J].J Controlled Release,1997,43:197212.

[5]陈治清.口腔生物材料学[M].北京:化学工业出版社,2004:116166.

[6]支 敏,李长福,韦界飞,等.纳米SiO2在PMMA口腔义齿修复材料中的应用基础研究[J].天津医科大学学报,2007,13(4):493496.

[7]吴伟力,张修银,朱邦尚,等.氧化锆的用量对纳米氧化锆/PMMA复合材料挠曲性能的影响[J].口腔颌面修复学杂志,2008,9(1):4347.

[8]王 云,王青山.牙体修复性纳米羟基磷灰石复合材料的机械性能研究[J].现代口腔医学杂志,2011,25(2):115117.

[9]Xia Y,Zhang F,Xie H,et al.Nanoparticlereinforced resinbased dental composites[J].J Dent,2008,36(6):450455.

[10]Xu HH,Sun L,Weir MD,et al.Nano DCPAwhisker composites with high strength and Ca and PO4 release[J].J Dent Res,2006,85(8):722727.

[11]Xu HH,Weir MD,Sun L,et al.Strong nanocomposites with Ca,PO4,and F release for caries inhibition[J].J Dent Res,2010,89(1):1928.

[12]宋 欣,杜 滢,肖 月,等.添加四针状氧化锌晶须抗菌剂对义齿软衬材料机械性能的影响[J].黑龙江医药科学,2011,34(1):3940.

[13]Niu LN,Fang M,Jiao K,et al.Tetrapodlike zinc oxide whisker enhancement of resin composite[J].J Dent Res,2010,89(7):746750.

[14]李 平.新型纳米羟基磷灰石根充糊剂(nHA)的应用基础研究[D].四川大学华西口腔医学院硕士学位论文,2005.

[15]苏 勤,叶 玲,周学东.纳米羟磷灰石/聚酰胺66对牙髓细胞生物学作用的实验研究[J].华西口腔医学杂志,2005,23(1):7981.

[16]方厂云,曹 莹,夏 宇,等.大鼠牙细胞与纳米羟基磷灰石的体外复合培养[J].中南大学学报:医学版,2007,32(1):114118.

[17]王艳玲.纳米级HA根充糊剂根管密合度及抑菌性的实验研究[D].佳木斯大学口腔医学院硕士学位论文,2006.

[18]董 波,刘陆滨,刘玉杰.纳米羟基磷灰石修复慢性根尖周炎骨缺损的研究[J].黑龙江医药科学,2006,29(4):103.

[19]杨青岭,李文婷,王健平,等.壳聚糖/纳米羟基磷灰石治疗髓室底穿的实验研究[J].黑龙江医药科学,2007,30(2):37.

[20]程玉华,陈 东,赵广军,等.骨形成蛋白复合羟基磷灰石用于盖髓根管充填的临床观察[J].医药,1998,10(2):9394.

[21]刘秀丽,刘 曦.复方羟基磷灰石充填根管临床疗效观察[J].西安医科大学学报,2000,21(3):257258,295.

[22]Jallot E,Nedelec JM,Grimault AS,et al.STEM and EDXS characterisation of physicochemical reactions at the periphery of solgel derived Znsubstituted hydroxyapatites during interactions with biological fluids[J].Colloids Surf B Biointerfaces,2005,42(34):205210.

[23]Krisanapiboon A, Buranapanitkit B, Oungbho K.Biocompatability of hydroxyapatite composite as a local drug delivery system[J].J Orthop Surg (Hong Kong),2006,14(3):315318.

[24]孙海燕,裴玉岩,梁 楠.羟基磷灰石根管充填诱导根尖形成的临床研究[J].黑龙江医药科学,2003,26(1):21.

[25]温 波,陈治清,蒋引珊,等.纳米羟基磷灰石骨细胞相容性的研究[J].华西口腔医学杂志,2004,22(6):456459.

[26]崔 阳,刘一,陈学思,等.改性羟基磷灰石骨修复纳米复合材料的制备及生物学评价[J].中国组织工程研究与临床康复,2007,11(26):50745077.

[27]汤京龙,奚廷斐.纳米羟基磷灰石生物安全性的研究现状[J].中国组织工程研究与临床康复,2007,11(5):936939,943.

[28]Huber FX,Belyaev O,Hillmeier J,et al.First histological observations on the incorporation of a novel nanocrystalline hydroxyapatite paste OSTIM in human cancellous bone[J].BMC Musculoskelet Disord,2006,7:50.

[29]Kalita SJ,Bhardwaj A,Bhatt HA.Nanocrystalline calcium phosphate ceramics in biomedical engineering[J].Materials Sci Eng C,2007,27:441449.

[30]张 莉,马 宁,车彦海,等.纳米羟磷灰石和胶原复合膜修复下颌骨缺损[J].国际口腔医学杂志,2009,36(6):647649,654.

[31]孙 波,李月玲,杨德龙.纳米羟基磷灰石胶原骨植入治疗根分叉病变的临床研究[J].口腔医学,2010,30(6):358359,366.

[32]Lebold T,Jung C,Michaelis J,et al.Nanostructured silica materials as drugdelivery systems for Doxorubicin:single molecule and cellular studies[J].Nano Lett,2009,9(8):28772883.

第2篇

关键词:《纳米技术的基础和应用》讲义;CAI课件;教学效果

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)19-0140-02

一、《纳米技术的基础和应用》课程的现状

纳米技术的发展依靠的是人才的发展,纳米科技人才是纳米技术发展的根本保证。我国一直以来十分重视对纳米科技方面人才的培养。《国家纳米科技发展纲要(2001―2010年)》中明确地提出:要从学校的教育抓起,要重视纳米科技的相关学科建设,择优设立有关于纳米科技的专业,同时在物理、化学、生物、机械、电子学、计算机科学等专业内部,设置有关纳米科技的新课程,重视和保障我国纳米科技的可持续发展。目前,纳米技术的相关教学工作十分活跃,国内许多高校都开设了与纳米技术相关的公共选修课或者专业选修课。在材料类本科专业中,开设有“纳米材料与技术”、“纳米材料”课程,这是当前材料科学领域中重要的专业课程。为弥补专业课程的不足和提供学生自主学习的机会,不少高校还在化学工程与工艺、应用化学、制药工程等专业中开设了“纳米科技导论”选修课程,受到学生的普遍欢迎。

为了让对纳米科技有兴趣的学生了解和认识纳米科技的基本知识、基本概念、基本方法及其应用,我们在桂林电子科技大学大学一年级新生中开设了“纳米技术的基础和应用”通识教育选修课程。这门选修课程推出后,立即受到了广大学生的欢迎,选修本门课的学生人数达到了200人,且仍有相当部分的学生由于受到选课人数的限制未能选上这门课程。实践表明,学生选修“纳米技术的基础和应用”课程的兴趣主要源于对新兴纳米科技知识的求知欲望。目前,在我国的高等院校开设的纳米技术相关课程中,大部分是偏向纳米材料的内容,这些纳米材料类课程一般是作为高年级专业主干课或专业选修课开设。这类课程的开设,一般要求选修的学生具有一定的材料、化学、生物等相关专业知识。对于我校大一新生来说,目前的相关教材和教学内容显然过于深奥。在教学实践过程中,经常有学生发出这样的疑问:“纳米技术这门课这么深奥,我们该如何学呢?以后工作中能用到吗?”

综上所述,我们必须对“纳米技术的基础和应用”这门课程的教学内容、教学模式和教学方法等进行改革。根据教育部“关于推进高等教育面向新世纪教学内容和课程体系改革计划实施工作的若干意见”的指示精神,结合办学定位和人才培养目标,面向大一新生这类特殊的教学对象,本文在《纳米技术的基础和应用》课程中探索了一条切实有效的教学改革之路。

二、新的教学模式和方法在《纳米技术的基础和应用》课程中的应用

(一)教学模式改革的目的

在“纳米技术的基础和应用”课程教学中,结合该课程理论和实践性强的特点,对教学过程中教学要求、教学内容、教学方法、教材建设和考核方法等多个环节进行改革,推动“纳米技术的基础和应用”课程的建设,为将来从事与纳米科技研究及产业相关工作的本科生提供必要的知识准备,以便能快速进入相关领域,满足社会之需求。并力图培养学生的科学思维和创新能力,为培养高层次、综合性、有创新意识和能力的人才奠定基础。

(二)新的教学模式和方法

1.编制新的讲义。目前可供高校教师上课选择的有关纳米技术的相关教材较少,且绝大部分是专业性较强的专业教材。在以往的教学实践中,使用类似的教材,大一学生常常感到接受起来比较困难,影响了教学效果和学生的积极性。因此,有必要针对大一新生,查阅国内外大量与本课程相关的资料,旁征博引,编写纳米技术的相关讲义。该讲义既要比较全面地介绍纳米技术的相关基本概念、理论和应用,又要把握专业深度,体现出专业性和科普性的结合。主要包括:纳米技术概述、扫描隧道显微镜和原子力显微镜、纳米材料、纳米生物与医学技术、纳米机械、纳米电子学等内容。纳米科技的研究对象涉及诸多领域,它的基础研究问题又与应用密不可分。对于大一新生,在有限的学时内,不可能把纳米技术的方方面面都做个系统讲授,比较可行的做法是将本学科领域最近发生的重要事件纳入讲义,并将这些事件产生的巨大影响加以阐述,让学生真切感受到知识的实用性与社会效应,提高学生的学习积极性,这就对教师的专业综合素质提出了较高的要求。结合大一新生专业基础知识较弱同时对前沿科技比较感兴趣的特点,我们在现有教材的基础上编制了新的讲义,注重趣味性、通俗性、易懂性,提高了对学生的吸引力。

2.CAI课件研制。“纳米技术的基础和应用”课程涵盖面较广、信息量教大,单一的板书教学手段不易满足该课程的教学需要。将现代化多媒体技术应用于课堂教学,利用视听说等手段向学生提供声、像、图、文等综合信息,有利于学生集中注意力。纳米技术的许多知识是微观领域的,单靠语言和文字描述,学生难以理解。通过多媒体技术进行动画模拟,可以使微观知识宏观化,变抽象为具体。因此,必须系统开发研制“纳米技术的基础和应用”课程CAI课件,该课件以科学研究前沿课题形式体现纳米技术领域的最新研究成果,尤其是国内外高校和公司中纳米技术应用的具体实例,激发学生的学习和研究热情。

在新的讲义基础上,为了达到好的教学效果,我们研制了高质量的CAI课件。对于纳米尺度相关问题的研究,采用图像、视频、动画等形式,这就比单纯的文字说明更加具有感染力,也更利于学生接受,有利于调动学生的学习积极性。

3.依托科研项目,实现多种教学手段。目前,依托多媒体等现代化的教学设备,已经实现了板书向PPT教学的转化,但在教学内容上,比较偏重理论,教学手段和教学方法比较单一。《纳米技术的基础和应用》课程对于大一新生来说,属于内容比较陌生,概念抽象,较难理解的课程。如果还是采用传统的课堂教学手段,往往使学生产生畏难情绪,影响课堂效果。针对这种情况,我们采取了依托科研项目,将教材内容和科研项目中相关联的内容联系起来,实现两者的有机结合。具体表现为:在教学内容上,首先讲解基本的知识点和相关概念,用浅显易懂的语言表达出来,让学生容易接受,接着引入科研项目中相关的例子,将课堂讲解的内容在科研项目中的应用进行阐述,便于学生有更切实的直观体验;在教具的准备上,如果条件允许,将科研项目中相关的原理样机、视频、图像等在课堂上进行展示,和教学内容相结合,可以引起学生极大的兴趣和参与感。例如,在《纳米技术的基础和应用》课程中,通过展示微流控芯片的原理样机,启发学生思考芯片的设计和加工流程。通过展示胶囊内窥镜、纳米机器人等最新科研成果,激发学生的科研兴趣和学习热情。另外,通过科研项目,邀请有合作研究的企业技术人员、其他高校合作研究人员等以讲座、培训等形式实现多元化的教学模式,丰富教学方法和教学手段。

4.在教学中发掘出科研前沿新课题。通识教育选修课程的教学目标主要是扩充大学生的知识面,注重知识点的“广度”而非“深度”,因此,应具备科普性、前沿性、实用性与趣味性的特点要求。与此相对应的教学形式和教学方法上也和其他的课程有所区别。在教学形式上,以专题形式展开教学。针对学生所关注的问题,开设各相关专题,例如纳米机器人、生物分子马达、隐形飞机表面的纳米涂层、纳米生物芯片等,来充实教学内容。实施讨论式、启发式的教学方法,激发学生的潜能。比如提出问题:“月亮和地球之间的天梯如何实现?”来引出纳米材料的独特优势;从学生熟悉的例子入手,比如媒体上炒的很热的纳米冰箱、纳米保暖内衣等,引出纳米技术的真正定义。采用多媒体教学手段,不断改善教学质量和效果。

纳米技术是目前国家大力支持的发展项目,各项科研资金投入较大。所以,如何通过教研相长,将教学研究作为科学研究的创新源,从教学中发掘出科研前沿新课题和新领域,是一个值得深入研究的问题,通过为学生进行科学讲座,积极倡导科学精神和创新精神指导学生进行探究性学习,集思广益,提炼出科研前沿课题,同时挖掘学生创造性思维潜力,提高分析和解决工程问题的能力。

三、总结

通过以上新的教学模式和方法在《纳米技术的基础和应用》课堂教学中的应用,有效地提高了课堂教学效果,达到了预期的教学目的。

参考文献:

[1]黄德欢.纳米技术与应用[M].上海:中国纺织大学出版社,2001.

[2]姜忠义,成国祥.纳米生物技术[M].北京:化学工业出版社,2003.

[3]李素敏,赵玉涛.关于专业选修课《纳米材料》课程的思考[J]考试周刊,2011,(27).

第3篇

关键词:纳米技术及其相关产业;概念界定;体系辨识。

当前,“发展纳米技术及其相关产业”这一口号,已被提升到实现中国梦苏州篇章、苏州实施创新引领战略进而华丽转身的重大战略高度,那么什么是纳米技术及其相关产业,搞清楚这一问题,则无论对于苏州的决策者、研究者还是实践者来讲,都具有重要的建设性意义。

去年,我们在执行一项有关促进苏州市纳米技术及其相关产业发展的重大软科学课题时,首当其冲地遭遇到这一问题。通过文献检索与分析,我们发现,由于纳米技术及其相关产业纷繁复杂,纳米科学技术界尚未对该一问题形成共识;同时,社会科学理论界卷入纳米领域研究较少,可资借鉴的成果太少。然而,这一问题的解决将直接影响到我们研究项目的进一步履行,为此,我们设立了一个研究子课题,本文即是该子课题研究成果,在此抛砖引玉,期望不仅对苏州市,也对国内其他正在促进纳米技术及其相关产业发展的地区起到启迪作用。

一、什么是纳米技术及其相关产业

要搞清楚纳米技术及其相关产业首先要理解纳米与纳米尺度范围,以及纳米尺度范围内物质的质变特性及其意义,本节我们将据此入手,进而界定纳米技术及其相关产业的概念。

1.纳米与纳米尺度范围

纳米(Nanometer,缩写nm)是计量学中的长度单位。1纳米(nm)等于10-3微米(mm),等于 10-6毫米(mm),等于 10-9米。1—100纳米(nm)被纳米学界公认确定为纳米尺度。 通过不同物体相对尺度大小比较(见图1)及纳米尺度范围内常见球形物体大小比较(见图2),可以加深对于纳米及纳米尺度范围概念的理解。

2.纳米尺度范围内物质的质变特性及其意义

科学家发现,当物质小到1 ~100纳米时,由于其量子效应、物质的局域性及巨大的表面及界面效应,物质的很多性能将发生质变,呈现出许多既不同于宏观物体,又不同于单个孤立原子的奇异现象(白春礼,2001)。即在原子、分子及纳米尺度上,物质表现出极其新颖的物理、化学和生物学特性,该特性能被人类学习、掌握、控制和利用,从而使得人类社会现存的一切发生翻天覆地的变化。

3. 国外科学家如何理解与解释纳米技术

看一看国外科学家如何理解与解释纳米技术或许对我们会有很大帮助,以下是国外科学家对于什么是纳米技术的典型解释(转引自彭练矛,2011):

“The term nanotechnology means different things to different people. It used to cover anything from making microelectromechanical systems (MEMS) to creating designer proteins.”

“Whatever we call it, it should let us

—— Get essentially every atom in the right place.

—— Make almost any structure consistent with the laws of physics and chemistry that we can specify in atomic details.

—— Have manufacturing costs not greatly exceeding the cost of the required raw materials and energy.”

这两段英文的中文翻译如下:纳米技术术语意味着对于不同对象人群的不同事情。它通常涵盖从制造微电子机械系统到创造人造蛋白质的所有事情。然而,不管我们如何称呼,纳米技术的实质应该包括:每一个原子应被安排在合适的位置,任何相应建构应符合原子水平上的物理和化学原理,原材料和能源等相应制造成本应不是太贵。

从以上国外科学家对于什么是纳米技术的典型解释中我们可以发现,纳米技术(nanotechnology)在国外是一个约定俗成的术语,是对纳米领域新生事物科学研究、技术研发和工程应用的统称,纳米技术尚是一个发展中的概念,目前还没有被严格界定。

4. 纳米技术概念

经过上面的铺垫,现在我们可以来探讨界定纳米技术概念。对于什么是纳米技术,麻省理工学院(MIT)的德累克斯勒(Drexler)教授曾作出过一个解释:

“在分子水平上,通过操纵原子来控制物质结构,利用单个原子组建分子系统,据此制备不同类型的纳米器件”(Drexler,1990)。

而在中文语境中,谈到技术往往还牵连到科学与工程,对此,白春礼院士也有一个解释:

“纳米科技是20世纪80年代末、90年代初才发展起来的前沿、交叉性新兴学科领域,是指在纳米尺度上研究物质(包括原子、分子的操纵)的特性和相互作用,以及利用这些特性的多学科交叉的科学和技术”(白春礼,2001)。

白院士所指的纳米科技既包括纳米科学又涵盖纳米技术。实际上,中文语境中的纳米科技常常是纳米科学研究、技术研发和工程应用的统称。指在纳米尺度上研究物质和体系的现象、规律及其相互作用,重新认识自然界,发现新现象和新知识,并通过直接操控原子、分子结构的技术来创造对人类有用的新的物质和产品。

综上所述,可见所谓纳米技术是指涉及到纳米科学研究、材料发展和制备、器件制造以及产品开发生产之所有技术的总和。

5. 纳米技术相关产业概念

知道了什么是纳米技术以后就较易分辨纳米技术相关产业。过去的二、三十年,纳米科学技术的进步,尤其是纳米技术的应用已经和正在对人类社会的经济发展、社会进步和国防安全产生重大影响。然而,这仅仅是开始,纳米科学研究、技术发展和工程应用已经和正在引发一场新的工业革命,证据表明,纳米技术在材料、信息、能源、环境、生命、生物、军事、制造、纺织、染料、涂料、食品等产业领域都具有广泛而重要的应用。而一旦这些产业领域中纳米技术应用产品批量化、商品化和规模化,则自然形成一个个纳米技术相关产业。

二、纳米技术体系范畴

界定了纳米技术及其相关产业概念后,本节与下节我们可以转而讨论纳米技术体系范畴以及纳米技术相关产业体系范畴。

技术来源于科学,是理论知识应用于实践、解决实际问题的方法和手段,因此谈到纳米技术不能不涉及到纳米科学。尽管目前学术界对于纳米科学的内涵和分类尚存在着不同的认识和提法,但对于这一新兴领域多学科交叉特性的认识是一致的。一般而言,纳米科学可以包括纳米材料物理学、纳米材料化学、纳米材料学、纳米测量学、纳米电子学、纳米机械学和纳米生物医学等,由此也产生了按照这一体系分类的纳米技术。

然而,白春礼院士(2001)认为这种与传统学科紧密联系的分类方式无法简单便捷地勾勒出纳米科技的大致轮廓,而且各类别之间又有交叉和重叠。因此,他建议将纳米科学研究分为“纳米材料”、“纳米器件”和“纳米检测和表征”三大领域, “其中纳米材料是纳米科技的基础; 纳米器件的研制水平和应用程度是人类是否进入纳米科技时代的重要标志; 纳米尺度的检测与表征是纳米科技研究必不可少的手段和理论与实验的重要基础”(白春礼,2003)。据此,纳米技术体系又可主要由上述三大范畴来表达。

我们认为上述与传统学科紧密联系的分类及三个大类的简单分类都有各自的道理和应用价值,前一个分类便于整合发展纳米学科知识和实施教育培训,而后一个分类则更多地聚焦到纳米科学技术当前关键发展领域,重点特出、应用性强。若与纳米技术相关产业相联系,则我们更倾向于并将更多地采纳和应用后一个分类。

无独有偶,日本专利局《专利申请技术动向调查报告》中提供了一个与应用实际联系密切的纳米技术分类(见图3,该图由DRM咨询公司补充修改而完成),该分类基本遵循上述三个大类分类范畴,并采用图式标识了各主要应用领域中的发展状况,恰好为三大类纳米技术分类体系作了一个生动的注解,虽然尚未达到完整完善的程度,但已有很大的参考价值。

沿着三大类纳米技术分类思路继续往下走,可以得到图4所示纳米技术分类体系。其中一级状态子目录包括“纳米检测和表征技术”、“纳米材料制备技术”和“纳米器件制造技术”。而每个一级目录又可进一步产生二级目录,如纳米检测和表征技术可分为“扫描探针显微技术”和“原子级和超精密加工技术”;纳米材料制备技术可分为“化学制备技术”、“物理制备技术”和“综合制备技术”;纳米器件制造技术可分为“LIGA制造技术”、“超精密机械加工技术”、“特种加工技术”、“注塑成形加工技术”和“机械组装技术”等。需要说明的是,这一分类只是大体上勾勒了纳米技术发展现状,提供了一个整体认识把握的粗略框架。现实纳米世界中的实际情况则更为纷繁复杂,不仅存在着旁支末叶,也可以进一步细分和再细分。

三、纳米技术相关产业体系范畴

应用上述“纳米材料”、“纳米器件”和“纳米检测和表征”三大范畴的纳米技术分类思想,可以推导出纳米技术相关产业体系范畴,如图5所示:

如图5所示,首先,纳米技术相关产业可以被界定为纳米材料产业、纳米器件产业和纳米检测仪器设备产业,其中纳米材料是纳米技术相关产业得以生存发展的原始基础,没有纳米材料则一切无从谈起;纳米器件系纳米材料进一步加工组合后的产物,是延伸发展各种纳米技术应用产品的基础;而纳米检测仪器和设备则是发展纳米材料、器件及其延伸产品的必不可少的硬件手段,缺乏这些手段,事情就无法进行。

上述三者一方面构成了纳米技术相关产业生存发展的基础,另一方面,正是基于这种基础性和不可替代性,它们各自能够发展成三个供需旺盛的分支产业,并在每个分支产业下面各自生成若干数量不等的子产业。

此外,鉴于纳米材料和纳米器件能够被应用到各个新兴和传统产业领域,创造出各种各样新颖独特、质量上乘、性能优异的新产品,因此,在上述三个分支产业以外,又可辨识出纳米材料应用和纳米器件应用两个分支产业。当然,这两个分支产业下面更能各自生成若干数量不等的子产业。

若从事情发生的先后次序来看, 纳米科学技术研究发展的需要首先造就了纳米检测仪器设备产业和纳米材料产业。结合纳米检测手段和纳米材料的研究创造了纳米器件, 纳米器件(如纳米传感器)的推广应用催生了纳米器件产业。接着,纳米材料和器件在各个领域的广泛应用开发出许多新颖产品和更新换代产品,从而发展出形形的纳米产品产业,并进一步促进纳米材料、器件和检测仪器设备产业的发展。这就是纳米技术相关产业相伴共生、互促共长的内在逻辑。

在现实生活中, 纳米材料产业和纳米检测仪器设备产业已经形成一定规模,发展相对成熟。处于纳米技术高端的纳米器件产业(电子/光电子器件、量子器件、以及微/纳机电系统)目前尚处在发展成长过程中,这是纳米大国共同关注、竞相角逐的领域,也是进一步发展的方向,其中属于MEMS/NEMS范畴的微纳传感器分支产业已经初具规模。同时,纳米材料和器件的应用已经渗透进入许多不同的经济和社会领域,例如,电子和信息、生物与医药、环境保护等,从而增殖衍生出发展状况各异、纷繁复杂的纳米技术产品和产业。

当然,换一个角度,如果忽略纳米技术居中扮演的角色,这一复杂逻辑体系中各个分支仍可分属于自己的母体产业,例如,纳米材料产业可归属于材料产业,纳米检测仪器设备产业可归属于仪器设备产业等等,由此也揭示了纳米技术相关产业所具有的双重产业属性。

四、结 语

以上我们通过运用相关文献资料, 进行抽丝剥茧式的逻辑分析,界定了纳米技术及其相关产业的概念, 进而揭示了纳米技术及其纳米技术相关产业的体系范畴,从而为从社会科学角度研究促进纳米技术及其相关产业发展(譬如制定技术/产业发展路线图)奠定了有关客体对象的认知基础。

当前,纳米技术与信息技术和生物技术一起并列为世界三大高技术前沿热点领域,而纳米技术又在促进信息技术和生物技术发展中扮演了重要角色,正在悄然引发着新一轮工业革命,成为国际高科技及其产业竞争的制高点。期待我们这一抛砖引玉的工作能为苏州/中国抢占这一制高点作出些微贡献。

参考文献

赵康等。《苏州市纳米技术及其相关产业发展战略研究总论》, 古吴轩出版社,2012。

杨辉。《纳米科学技术概论》(未发表PPT课件),2010。

白春礼。纳米科技及其发展前景。《科学通报》,2001/2。

白春礼。全面理解纳米科技内涵,促进纳米科技在我国的健康发展。《微纳电子技术》,2003/1。

彭练矛。《纳米科技和纳米电子学》(未发表PPT课件),2011。

基金项目:苏州市2012年度重大软科学课题,项目编号:SR201201。

作者简介:赵康(1950 –),男,江苏苏州人,博士,教授,博导,主要研究方向为公共管理、咨询学、专业社会学。顾茜茜与陈加丰均为赵的博士研究生,赵迪凡为项目研究助理。

What Is Nanotechnology and Its Related Industries

——Concept Defination and System Identification

ZHAO Kang GU Xixi CHEN Jiafeng ZHAO Difan

(School of Politics and Public Adminstration, Soochow University, Suzhou 215021, China)

第4篇

“DNA鸭子”与“纳米猛兽”

在《纳米艺术概论》一书中,纳米艺术被定义为“使用纳米技术手段、方法创作的,纳米尺度或反映纳米题材的艺术”。在微纳米艺术作品中,纳米画与纳米浮雕的区分已经很模糊了,对于由若干个分子或者是原子在基体材料表面拼成的图形,实际上我们已经很难说它是浮雕或者是纳米画。尽管如此,我们仍然可以将微纳米动物艺术作品分为平面的微纳米动物绘画、浮雕和雕塑。

科学家采用原子力显微镜探针,拨动DNA分子链在材料基体表面上拼绘的“DNA鸭子”,是一张扫描探针显微镜(SPM)的照片;DNA鸭子的轮廓线宽度为10余纳米,鸭子身高几百纳米,立体度很小,故可以归结为纳米画范畴。美国犹他大学机械工程系学生Ecsedy与该校艺术技术交叉研究中心合作的纳米浮雕作品,作品中的“纳米猛兽”,采用聚焦的电子束在材料表面“雕刻”而成。整个动物的身高为几百微米,立体度为百十微米。

从制作工艺来看,微纳米动物艺术作品可以分为传统手工艺的作品和微纳米加工技术的作品。基于传统手工艺的代表是当代英国微雕大师Willard Wigan创作的《针孔里的车马》。整个马车的长度约一毫米,马的腿、尾巴、耳朵等细节的尺寸仅为百微米。该微雕作品的创作过程实际上和宏观的雕刻作品相似,只不过创作或欣赏过程中均需要高倍的显微镜,同时,它的创作对雕刻的工具也有很高的要求。基于微纳米加工技术的的作品创作时通常需要扫描探针显微镜,或能够产生聚焦的离子/电子束设备,同时还对实验条件有苛刻要求。

从作品的尺度来讲,微纳米动物艺术作品可以分为百微米量级的以及微纳米量级的两大类。一般来说,基于传统手工艺的作品大都属于百微米量级的,这些作品的整体尺寸近乎毫米量级,但局部细节属于百微米量级。基于微纳米加工技术的作品则大多属于微纳米量级。百微米量级的作品通常在高倍的光学显微镜下就能看得清楚,而要欣赏微纳米量级的作品,则通常需要分辨率更高的电子显微镜,甚至扫描探针显微镜。

从计算机虚拟与现实的角度来看,微纳米动物艺术作品可以分实际的纳米动物作品和计算机虚拟设计的作品。

从作品的创作机理来看,微纳米动物艺术作品可分为基于物理方法和化学方法的作品。一般来说,传统手工创作的作品大多属于物理方法;另外,依靠扫描探针显微镜的探针,拨动纳米颗粒、分子,或者在材料基体表面刻画出动物的形象等,也属于物理方法。从作品创作的必然性和偶然性来看,又可分为有意识的,以及偶然间得到的作品。

针孔里的车马

传统的微雕技术:微雕艺术作品通常都是在高倍的光学显微镜下完成的。以《针孔里的车马》为例,为了制作针眼中的车马,作者使用极其微小的刻刀对金颗粒、砂糖或者沙粒进行微雕;雕刻这些作品时,注意力要高度集中,呼吸均匀,并利用两次心跳的间隔来工作;微雕完成后,再移植到针孔中去。整个创作过程中,任何细微的失误都会导致整个创作的失败。

离子/电子束刻蚀技术:采用电磁场加速和聚焦带电的离子或电子,进而可对材料的表面进行刻蚀,由于离子和电子的德布罗意(物质波)波长很短,因而刻蚀精度更高。离子/电子束光刻主要包括聚焦离子/电子束刻蚀和离子/电子投影刻蚀等。遗憾的是,离子/电子束刻蚀技术效率低下,很难在实际生产中得到应用,但这并不妨碍科学艺术家用它开展纳米雕刻艺术创作。

双光束聚合技术:近年来,一种被称作“双光束聚合”的技术已经被发展到三维纳米构型的加工,并被用于材料表面微观塑像的构建。最为典型的当数日本科学家的雕刻作品《纳米公牛》。该纳米牛的高度与红血球直径相当,高约数十微米。在纳米公牛像的制造过程中,科学家使用两股激光射线照射浸在合成树脂溶液中的材料表面,溶液中只有被两股激光射线交叉照射到的那部分树脂才凝固起来,形成雕塑件的“部件”,这样的部件的精度为120纳米。

扫描探针显微镜技术:上世纪80年代,扫描探针显微镜(SPM)的发明使人们对物质世界的认识与改造深入到了原子和分子层次。现在SPM已经发展为一大类型的显微技术,包括扫描隧道显微镜、原子力显微镜、扫描力显微镜、近场光学显微镜、弹道电子发射显微镜、热扫描显微镜和静电力显微镜等。SPM不仅可以对材料表面进行微观成像,还能对材料表面进行微加工,因此被科学家誉为纳米世界的“眼”和“手”。

化学催化气相沉积技术:美国伦斯勒工业大学约翰·哈特教授使用大约1.5亿根纳米碳管制作了一组花花公子的兔子画像,每个微型兔子头像包含上亿个纳米碳管,这些纳米碳管像丛林中的树木一样垂直地排列着,每个纳米碳管都是中空圆柱体结构,其直径仅为人体头发的五万分之一。

计算机纳米工程建模技术:计算机辅助纳米工程设计软件是近几年才出现的新生事物。这些软件是依据生命科学、物理化学、分子物理力学等工程原理来构建纳米器件的综合设计工作平台,软件充分体现了纳米器件“从上到下”及“从下到上”的设计思想。这些软件为创作包括纳米动物形象在内的纳米艺术作品提供了平台。目前,许多纳米艺术家利用这些软件,开展了纳米艺术创作的尝试。

第5篇

摘要:纳米技术为人类带来的便利:纳米技术的发展,不仅可以在治理环境污染方面起到很好的作用,对于有害气体,污水处理,而且对于磁辐射,废弃物等治理方面起到了很大的作用,但是随着纳米技术的逐步发展,人类一味的对技术产生依赖心理,在这种情况下我们要用自己的判断力,增加自己的基本素养,具备独立思维的能力,合理的运用科技的发展为人类服务。

关键词:纳米技术 污水处理 依赖技术 基本素养

中图分类号:N031 文献标识码:A 文章编号:1006-026X(2013)10-0000-02

1.纳米技术的定义

纳米技术是一种创新的技术,它在非常小的范围之内之内,来进行对原子,分子的研究,并利用其来进行发展和创新的一门技术,纳米机器人,纳米马桶,人类通过电子显微镜看到的微观的人体细胞,病毒等等。利用纳米技术制作的材料又与我们经常使用的材料有很大的区别,它发展了吸附等的一系列功能。那么这种新型材料的出现,也将会利用到人类生活的各个方面,带来了技术创新。

2.纳米技术为人类带来的便利

纳米技术的发展为科学技术的发展带动了新的改革,纳米技术的发展也推动了医学、艺术等方面的发展。医学中产生了光学传感设备,对于骨质修复作用产生了重要的作用,同时纳米技术在药物输送方面产生了重要作用,纳米技术在艺术层面也产生了重要的影响,纳米画等作品。纳米技术不仅从技术层面关心人类,而且从人的综合状态中予以提升。

2.1 纳米技术带来了科技层面的改革

例如,纳米技术制作的微型器械,按照人类的操作任意运动,将微小的颗粒,划分成原子或者分子,再按照自己的想法任意拼接,这些器械不仅可以按照人类的想法任意工作,而且具有自我还原的能力。纳米材料是一种新型的材料,这也体现了从认识―实践―认识的客观规律。人类之所以能制作出纳米仪器,利用纳米材料的主要原因是人类对于纳米世界认识的比较深入全面,然后再利用纳米材料制作出纳米设备,这也是令一个再认识―实践―认识的过程,推动了从不断认识到实践的过程,体现出了发展是靠不断运动的哲学道理。

2.2 纳米技术体现了物质和意识的关系

物质决定意识,意识对物质有反作用。人类推动了纳米材料的发展,最主要的原因在于人类对纳米世界有了非常客观的认识,了解了它的运动发展规律,通过人类对于纳米世界的学习和研究,来创造出纳米材料,而这种材料的创造体现了物质决定意识,意识对物质起到了发作用。

2.3 纳米技术同时体现了由量变到质变的一个过程

物质的质变有两种来源,一种形式是量变达到一定程度就会产生质变,质变的另一种形式就是在总量不变的前提下,内部组织自己行的排列与组合,从而产生质变,纳米技术一方面是利用纳米结构的特点而生产的一种纳米材料,另一种就是利用原子,分子中间的距离变化,重新组合,而产生的质变生产的纳米材料,这就体现了由量变到质变的过程,

2.4 纳米技术加强了人们对于排列结构的认识

原子,或分子之间的距离,位置不同就会形成新的不同的物质,纳米技术也就是利用了这一特点,而形成的技术。纳米技术完成了从生物到非生物的跨越,在医学上生产出新的微型仪器,置放在人体中代替,或者弥补人体某些部分脏器的功能,通过改变人体细胞的组织结构,利用纳米技术孕育出新的生命,

3.纳米技术带来的消极影响

纳米就会造成人类社会的危害,人类的想象和发明没有边界,纳米技术的产生就是对原子分子进行重新的排列组合,在这种非常方便的状况下,纳米技术也会生产出任何东西,这是一件可怕的事情,在这种没有节制的的状态下,纳米技术就像病毒一样无限蔓延开来,可以想象一下,我们周围到处存在着纳米仪器,有有利于人类发展的仪器设备,医药用品,也有限制人类发展的纳米病毒,学生利用纳米仪器来应付考试,小偷利用纳米仪器进行偷窃,人人都有纳米设备防身,这是一件多么可怕的事情。

人类如果过度依赖技术,就会将人类和技术之间的关系发生改变,不是技术为人类服务,而是人类对技术的崇拜,人的思想会随着发生改变,产生混乱和偏执,基本理论的缺失。

技术会导致人缺乏用自己的思维,一味的对技术产生依赖心理。有些观点认为纳米技术可以解决任何问题,此观点认为,所有的物质存在方式都是按照自己的规律存在的,万事万物的存在都有自己的规则,相互之间也有自己的的特点,遵循着某种法则,依照纳米技术的原理,人类社会的存在方式也可以任意组合,相互之间可以打乱,再进行新的排列组合,有的观点认为,人的思维,与任何一种社会存在进行排列组合,所有的存在都可以依照纳米技术的存在方式来进行发展,有机界和无机界,非生物和生物,任何物种都可以排列组合,有些组合还没有实现,得依据纳米技术的发展状况,需要进一步学习研究。更有甚者认为人的思维是由大脑控制的,为了改变人的思维方式完全可以像纳米技术那样,将人的大脑细胞与大脑结构重新进行排列组合,这种思想是非常可怕的。

依照这种推论,我们要想让刚种的树苗,瞬间长大,完全可以改变它内部细胞生长结构,要想让刚出生的婴儿长大,改变他的细胞排列结构,要想让养的家禽快速长大,只要改变体内细胞的排列结构,这是一件多么可怕的事情,况且这种言论还没有成立,纳米技术的无限制发展就会对人类社会带来危害,使人的思维发生错乱,

这也是一种拜物的想法,一味的抬高技术的发展,而降低了人的主观能动性,人服务于技术,技术是最高的物质,失去了人在社会中的主导地位,虽然这样的想法没有办法去证明它的合理性,但也很难证明它的不合理性,但是能够确定的是,如果按照这种状况发展下去,人类社会的发展将会被阻挠。

4.面对纳米技术的优劣是该如何解决

根据纳米技术的发展而产生的一些消极理论,我们必须做一些考虑,针对性的提出一些意见,来限制其肆意发展。阻止其危害人类社会。纳米技术的发展一方面促进了人类社会的发展,为人类的医学,艺术,技术各个方面提供了积极地影响,而另一方面纳米技术的肆意发展又导致了人的异化,对人类社会的发展产生了阻碍,这种现象也是不可避免的,事物的发展总是存在这两面的,如果利大于弊,它就是正面的,可继续发展的,如果弊大于利,就要引起人们的反思,那么从纳米技术的发展状况来看,它更多地是造福人类,但是在它为人类带来方便的同时又对社会的发展产生了阻碍。对于这一利大于弊的现状,针对于它的利弊我们一方面要改变人的观念发扬正面的力量;另一方面,应该采取一些相关的政策措施,针对性的阻碍它的负面影响。

4.1 改变人们的观念发扬正面力量

在科技不断发展的今天,从人的本身开始,从知识文化层面,提高人本身的素养,对科学技术重新认识,树立科学的文化精神。只有这样,当新的的技术出现时,就不会出现违背科学文化而出现的不合于人的伦理道德的事情,人类尊重科学知识,但不盲目崇拜,对科学技术的态度,要合理保护。只有这种科学知识观念扎根在人的脑海中,任何消极的观念都不会滋生,另一方面,科学技术的发展的最要的目的,是以为人类共同利益而服务的,我们应该分出什么任务是共同的,这就需要对人类自身修养的提高与丰富,当面对共同利益时,联合起来,共同发展,当科学技术不符合人的共同利益时,人的自我修养自我意识,就可以提醒自己,科学技术的发展危害到人的共同利益时,要知道杜绝其发展,人的思想也是一步一步完善起来的,科学技术也在发展的阶段,虽然人类很难预测科技发展的后果,但由于人类有基本的科学素养,基本的科学文化,人类在面临科学发展的时候,最基本要做到的是科学技术的发展要与人类社会的发展,相互协调。

科学技术是一种被人类用来创造的东西,是人类达到某种目的的手段或者媒介,是人类可以掌控的东西,在这个时候就对创造者有要求,创作发明者本着为人类共同利益的原则,选择性的发展科学技术哲学,纳米技术也一样,当它符合人的共同利益的时候我们大力发展,当它没有边界肆意发展,为社会的发展总成阻碍,危害人类的共同利益,违反公共道德,反人类的基本素养,创造者就要摒弃它,限制其发展,当然在不同的年代,各个国家对于科学技术发展,纳米技术的发展的衡量标准是不一样的,在这个时候,首先纳米技术的发展要符合当时,符合国家的需求,符合人们的共同利益,不能超越人类的道德底线,不同年代,不同国家的国情,科学技术的发展,要和当时国家的人们素质,国庆的发展相互协调,整体性推动人类发展的历史进程。始终不能违反人类的共同需求,和人性发展的基本素质的本质要求。

4.2 纳米技术的发展应从政治、教育、法律等方面来约束和规范

从政治方面国家应该出抬相应的政策引导纳米技术的发展朝向符合国家利益,人民根本利益的方向发展,明确规定杜绝哪些科学技术的发展。最大化的实现人民根本利益的。要杜绝不良技术的发展滋生,不仅仅要依靠政策的导向,严重的情节要依靠法律的武器,彻底消灭不符合人类发展规律的科技发展,有些人为了自己私利,不顾人类发展的根本利益,利用科学技术,发展生产一些危害人类的利益,危害社会健康的一些科技,在这种情况之下,国家的法律应该做出明确的规定,对于这类,危害人类,危害社会发展的行为,予以法律的制裁。目前我们的国家正处于发展中的阶段,以上说的政策导向。和法律法规还需要一个发展过程,科学技术,尤其是纳米技术的发展是一个新型的事物,人类对它的了解是一个非常模糊的状态,所以难免会造成一些违背大众基本文化原则的事情,所以人类要树立这种科技发展的文化观,在每朝每代,社会舆论,难免是人类发展的一个催化剂,我们应该树立正确的舆论导向,人人心里树立正确的和意识,引导科学技术从正确的方向发展,当科学技术,违背大众舆论的时候,人类要积极站出来,对不良的发展想象造成压力,时刻朝向正确健康的方向发展。

结语:纳米技术是一种新型的科学技术,是科技发展的一场革命,它将人类带进了另一个新的先进的世界,它的发展造福了大众,另一个新的光明的世界已经到来,任何事物的发展都有双层的利害关系,纳米技术的发展也如此,人类不能被异化,要树立对科学技术发展的认识和基本素养,并通过政治、文化、法律等一列的约束和导向,使科学技术朝正确的方向发展,造福人类。

参考文献:

[1]阵垮泉.纳米科技探索[M].北京:清华大学出版社,2002.

[2]孙超.纳米技术带来的哲学思考[J].安徽农业大学学报(社会科学版):2002(61)

[3]郝春城等.纳米科技及纳米材料发展的哲学思考[J].青岛化工学院学报(社会科学版):1999(3)1.

[4]吴文新.科学技术应成为上帝吗?[J].自然辩证法研究:2000(11).

[5]王秀丽,王德胜.纳米技术的哲学价值[J].自然辩证法研究:2006,22(4)61-64.

第6篇

【关键词】 纳米、纳米技术、纳米材料、纳米结构

1 引言

著名科学家费曼于1959年所作的《在底部还有很大空间》的演讲中,以“由下而上的方法”出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。他说道,“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”并预言,“当我们对细微尺寸的物体加以控制的话,将极大得扩充我们获得物性的范围。”[1]

1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。1982年,科学家发明研究纳米的重要工具――扫描隧道显微镜,使人类首次在大气和常温下看见原子,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用。1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。[2]

2 纳米技术

纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。

3 纳米材料

3.1纳米材料的概念

纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下,即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。

纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有10的9次方倍之巨,所以二者行为上将产生明显的差异。

3.2纳米材料的分类

纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。

(1)纳米粉末

纳米粉末又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。可用于:高密度磁记录材料;吸波隐身材料;磁流体材料;防辐射材料;单晶硅和精密光学器件抛光材料;微芯片导热基片与布线材料;微电子封装材料;光电子材料;先进的电池电极材料;太阳能电池材料;高效催化剂;高效助燃剂;敏感元件;高韧性陶瓷材料(摔不裂的陶瓷,用于陶瓷发动机等);人体修复材料;抗癌制剂等。

(2)纳米纤维

纳米纤维指直径为纳米尺度而长度较大的线状材料。可用于:微导线、微光纤(未来量子计算机与光子计算机的重要元件)材料;新型激光或发光二极管材料等。静电纺丝法是目前制备无机物纳米纤维的一种简单易行的方法。

(3)纳米膜

纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于:气体催化(如汽车尾气处理)材料;过滤器材料;高密度磁记录材料;光敏材料;平面显示器材料;超导材料等。

(4)纳米块体

纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。主要用途为:超高强度材料;智能金属材料等。

4 纳米材料的应用

由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性[8]、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。

5 纳米材料的前景

纳米科学是一门将基础科学和应用科学集于一体的新兴科学,主要包括纳米电子学、纳米材料学和纳米生物学等。纳米材料的应用涉及到各个领域,21世纪将是纳米技术的时代。纳米科学技术的诞生,将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题,特别是能源、人类健康和环境保护等重大问题。

21世纪初的主要任务是依据纳米材料各种新颖的物理和化学特性,设计出各种新型的材料和器件。通过纳米材料科学技术对传统产品的改性,增加其高科技含量以及发展纳米结构的新型产品,目前已出现可喜的苗头,具备了形成21世纪经济新增长点的基础。纳米材料将成为材料科学领域一个大放异彩的明星展现在新材料、能源、信息等各个领域,发挥举足轻重的作用。随着其制备和改性技术的不断发展,纳米材料在精细化工和医药生产等诸多领域会得到日益广泛的应用。

6 结束语

纳米材料在21世纪高科技发展中占有重要地位。纳米材料由于其无可挑剔的优越性,已成为世界各国研究的热点。其应用已渗透到人类生活和生产的各个领域,促使许多传统产业得到改进。世界发达国家的政府都在部署未来10~15年有关纳米科技研究规划。我国对纳米材料的研究也取得了令世界瞩目的、具有前沿性的科技成果。纳米技术的开发,纳米材料的应用,推动了整个人类社会的发展,也给市场带来了巨大的商业机遇。

参考文献

[1]孙红庆.科技天地―计划与市场探索[M],2001/05

第7篇

研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。

1研究形状和趋势

纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。

纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基础研究和应用研究都取得了重要的进展。美国已成功地制备了晶粒为50urn的纳米Cu的决体材料,硬度比粗晶Cu提高5倍;晶粒为7urn的Pd,屈服应力比粗晶Pd高5倍;具有高强度的金属间化合物的增塑问题一直引起人们的关注,晶粒的纳米化为解决这一问题带来了希望,纳米金属间化合物 FqsAJZCr室成果的转化,到目前为止,已形成了具有自主知识产权的几家纳米粉体产业,睦次鹦米氧化硅。氧化钛、氮化硅核区个文的易实他借个缈阳放宽在纳米添加功能陶瓷和结构陶瓷改性方面也取得了很好的效果。 加至5亿美元。这说明纳米材料和纳米结构的研究热潮在下一世纪相当长的一段时间内保持继续发展的势头。

2国际动态和发展战略 斯顿大学于1998年制备成功量子磁盘,这种磁盘是由磁性纳米棒组成的纳米阵列体系,10-”bit/s尺寸的密度已达109bit/s,美国商家已组织有关人员迅速转化,预计2005年市场为400亿美元。1988年法国人首先发现了巨磁电阻效应,到1997年巨磁电阻为原理的纳米结构器件已在美国问世,在磁存储、磁记忆和计算机读写磁头将有重要的应用前景。

最近美国柯达公司研究部成功地研究了一种即具有颜料又具有分子染料功能的新型纳米粉体,预计将给彩色印橡带来革命性的变革。纳米粉体材料在橡胶、颜料、陶瓷制品的改性等方面很可能给传统产业和产品注入新的高科技含量,在未来市场上占有重要的份额。纳米材料在医药方面的应用研究也使人瞩目,正是这些研究使美国白宫认识到纳米材料和技术将占有重要的战略地位。原因之二是纳米材料和技术领域是知识创新和技术创新的源泉,新的规律新原理的发现和新理论的建立给基础科学提供了新的机遇,美国计划在这个领域的基础研究独占“老大”的地位。 为了使中国科学院在世纪之交乃至下一世纪在纳米材料和技术研究在国际上占有一席之地,在国际市场上占有一份额,从前瞻性、战略性、基础性来考虑应该成立中国科学院纳米材料和技术研究中心,建议北方成立一个以物质科学中心为基础的研究中心(包括金属研究所),在南方建立一个以合肥地区中国科学院固体物理所和中国科技大学为基础的研究中心,主要任务是以基础研究为主,做好基础研究与应用研究的衔接和成果的转化。 3国内研究进展

我国纳米材料研究始于80年代末,“八五”期间,“纳米材料科学”列入国家攀登项目。国家自然科学基金委员会、中国科学院、国家教委分别组织了8项重大、重点项目,组织相关的科技人员分别在纳米材料各个分支领域开展工作,国家自然科学基金委员会还资助了20多项课题,国家“863”新材料主题也对纳米材料有关高科技创新的课题进行立项研究。1996年以后,纳米材料的应用研究出现了可喜的苗头,地方政府和部分企业家的介人,使我国纳米材料的研究进入了以基础研究带动应用研究的新局面。

目前,我国有60多个研究小组,有600多人从事纳米材料的基础和应用研究,其中,承担国家重大基础研究项目的和纳米材料研究工作开展比较早的单位有:中国科学院上海硅酸盐研究所、南京大学。中国科学院固体物理研究所、金属研究所、物理研究所、中国科技大学、中国科学院化学研究所、清华大学,还有吉林大学烹北大学、西安交通大学、天津大学。青岛化工学院、华东师范大学\华东理工大学、浙江大学、中科院大连化学物理研究所、长春应用化学 近年来,我国在功能纳米材料研究上取得了举世瞩目的重大成果,引起了国际上的关注。一是大面积定向碳管阵列合成:利用化学气相法高效制备纯净碳纳米管技术,用这种技术合成的纳米管,孔径基本一致,约20urn,长度约100pm,纳米管阵列面积达到 3mmX3mm。其定向排列程度高,碳纳米管之间间距为100pm。这种大面积定向纳米碳管阵列,在平板显示的场发射阴极等方面有着重要应用前景。这方面的文章发表在1996年的美国《科学》杂志上。二是超长纳米碳管制备:首次大批量地制备出长度为2~3mm的超长定向碳纳米管列阵。这种超长碳纳米管比现有碳纳米管的长度提高1~2个数量级。该项成果已发表于1998年8月出版的英国《自然》杂志上。英国《金融时报》以“碳纳米管进入长的阶段”为题介绍了有关长纳米管的工作。三是氮化嫁纳米棒制备:首次利用碳纳米管作模板成功地制备出直径为3~40urn、长度达微米量级的发蓝光氮化像一维纳米棒,并提出了碳纳米管限制反应的概念。该项成果被评为1998年度中国十大科技新闻之一。四是硅衬底上碳纳米管阵列研制成功,推进碳纳米管在场发射平面和纳米器件方面的应用。五是唯一维纳米丝和纳米电缆:应用溶胶一凝胶与碳热还原相结合的新方法,首次合成了碳化或(TaC)纳米丝外包覆 绝缘体SIOZ和 TaC纳米丝外包覆石墨的纳米电缆,以及以S江纳米丝为芯的纳米电缆,当前在国际上 仅少数研究组能合成这种材料。该成果研究论文在瑞典召开的1998年第四届国际纳米会议宣读后,许多外国科学家给予高度评价。六是用苯热法制备纳米氮化像微晶;发现了非水溶剂热合成技术,首次在300℃左右制成粒度达30urn的氮化锌微晶。还用苯合成制备氮化铬(CrN)、磷化钻(COZP)和硫化锑(Sb。S。)纳米微晶,在1997年的《科学》杂志上。七是用催化热解法制成纳米金刚石;在高压釜中用中温(70℃)催化热解法使四氯化碳和钠反应制备出金刚石纳米粉,在1998年的《科学》杂志上。美国《化学与工程新闻》杂志还发表题为“稻草变黄金?从四氯化碳(CC14)制成金刚石”~文,予以高度评价。

第8篇

学贯中西 赤心报国促交流

朱教授作为海外留学杰出的归国人才,2003年回国以后,为了适应纳米多学科交叉研究、联合攻关和相应人才培养新需要,他利用自己与澳大利亚和美国材料领域尤其是纳米材料领域科学家有广泛的学术合作关系和学术联系,率先签署了“中国―澳大利亚功能纳米材料联合实验室合作协议”和“昆士兰大学学术合作协议”,创建了我国目前在功能纳米材料前沿领域唯一的中国-澳大利亚功能纳米材料联合实验室,打造了一个由院士、教授、副教授、博士后、博士及硕士生组成的研究团队(包括10余名中国科学院院士和澳大利亚联邦教授院士组成的实验室学术委员会),形成了一个有特色的、多学科交叉的纳米研究国际合作和研究生联合培养(尤其是联合授予博士学位)平台。联合实验室研究方向被集中在当前纳米材料界的热点问题:通过非平衡热力学过程来可控制备、加工、改性、组装纳米结构和器件。以超快过程新效应和纳米尺寸新效应为理论基础,以非平衡热力学过程为工具,将不同材料整合或改性成一个全新的纳米结构或器件,实现其全新功能。

朱教授先后联合澳洲和美国科学家申请合作研究项目10余项,联合培养研究生10余名,邀请澳洲、美国等国知名院士、教授、专家来华访问、讲学、交流、合作20多人次。共计实现了中澳、中美研究人员互访交流合作近100人次,合作申请专利6项,30余篇,相关合作成果被重点推选在2010上海世博会澳大利亚-中国科技周上展示。

联合实验室创建与正式成立引起近100家行业媒体关注与报道,标志着中澳双方合作进入一个新的历史阶段。联合实验室将联合中澳双方实验室技术力量,进一步发挥中澳双方实验室各自的优势和特长,开展纳米科学与技术在生物能源、信息技术、生态环境等领域中前沿战略性的研究与应用,推动和促进物理、化学、材料、生物医学等学科的交叉发展,为发展我国的纳米科学做出贡献。同时在促进亚太地区纳米研究的国际交流与合作上扮演重要角色。

兢兢业业科研方面结硕果

1986年,朱教授在中国科学院固体物理所开始纳米材料研究,是中国为数不多最早开展纳米研究的科学家和国际功能纳米材料领域青年学术带头人之一。亲历了纳米材料科学和技术研究三个发展阶段。在纳米材料设计、制备、改性及纳米结构稳定性方面有二十余年的研究经验。近十五年在澳大利亚国立大学、美国伊利诺大学香槟分校、阿贡国家实验室、杰弗逊国家实验室、Univ of Georgia的纳米科学与工程中心及厦门大学等单位,用多种非平衡方法制备出纳米粒子、纳米膜、纳米孔、多孔硅、纳米球壳有机无机复合结构、纳米线和纳米管及其宏观有序阵列等新型低维纳米结构(多种结构属首次发现),并对各种纳米结构稳定性进行了大量系统的电镜原位和非原位观察。发展了纳米结构亚稳性新理论。工作得到Nature编委重视和许多位国际知名同行专家高度评价。

他认为,纳米结构是一个非平衡的亚稳结构,具有很大不确定性,纳米实验是一个长期的、仍需不断实践的过程,纳米研究不能仅停留在其表面现象或被其表面现象所迷惑,而是要深入系统探究其物理本质。他首次指出现有数学工具和物理概念原理不再适用于非平衡、非线性、非对称有序纳米现象的描述,纳米学科研究本质是对传统学科的不断挑战和突破过程,纳米学科的建立必须是传统学科的一个质飞跃,这个突破飞跃不是依靠个人就能够完成的,需要经过长期甚至几代人学术理论、科研实践的长时间积累。为了能全面系统证明他提出的“纳尺寸(nanosize)”和“纳时间(nanotime)”新概念和建立相应的纳米稳定性新的理论体系,他目前手头已积累大量实验室数据和论文稿件,并没有为了一时的功利和荣誉,而急于发表。

教书育人 桃李满园争天下

回国后,朱教授利用自己双语和国外经历优势, 每学年为厦门大学开设并承担了四门研究生双语课程和一门本科生双语课程。他已先后指导博士后2名、博士生5名(毕业一名)、硕士生10余名(毕业6名)、本科生毕业论文20余名。并在教学方面实现以下改革:1)他提倡培养学生学习兴趣、主动性,强调要授予学生自己得到知识的方法,而不仅是知识的传教;2)他采用中英文相结合的方式讲解,授课形式不仅局限于讲解,而且穿插形式灵活多变的学生自己讲座、提问和讨论;3)他特别注意科研对教学的促进与融合,通过教学研究与自己最新科研成果转换,开发、凝练了内容新颖、方法灵活的开放式创新性本科和研究生实验教学和课程教学方式,自编课件, 把具基础性、研究性、前沿性及学科最新发展成果引入到教学中来。其中, 朱贤方负责的《大学物理实验》课程在2007年获得福建省省级精品课程称号,目前正在积极争取申请国家省级精品课程。

朱教授极推动和参与了厦门大学985工程建设论证申请、凝聚态物理省重点学科建设申请、校院十一五211工程建设论证申请、校纳米学科建设和其他学科建设工作。

另外,他以学术带头人身份申请和组建了厦门大学凝聚态物理国家重点学科、物理系工程硕士、福建省材料重点实验室、材料科学与工程系一级博士和硕士授权点、生物材料系博士和硕士授权点及电子工程系一级博士和硕士授权点、智能型生物医用材料团队及光电子与信息技术创新团队。

精勤不倦的他,而今仍奋战在教育第一线上……

第9篇

1、各国竞相出台纳米科技发展战略和计划

由于纳米技术对国家未来经济、社会发展及国防安全具有重要意义,世界各国(地区)纷纷将纳米技术的研发作为21世纪技术创新的主要驱动器,相继制定了发展战略和计划,以指导和推进本国纳米科技的发展。目前,世界上已有50多个国家制定了国家级的纳米技术计划。一些国家虽然没有专项的纳米技术计划,但其他计划中也往往包含了纳米技术相关的研发。

(1)发达国家和地区雄心勃勃

为了抢占纳米科技的先机,美国早在2000年就率先制定了国家级的纳米技术计划(NNI),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。

日本政府将纳米技术视为“日本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,日本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。

欧盟在2002—2007年实施的第六个框架计划也对纳米技术给予了空前的重视。该计划将纳米技术作为一个最优先的领域,有13亿欧元专门用于纳米技术和纳米科学、以知识为基础的多功能材料、新生产工艺和设备等方面的研究。欧盟委员会还力图制定欧洲的纳米技术战略,目前,已确定了促进欧洲纳米技术发展的5个关键措施:增加研发投入,形成势头;加强研发基础设施;从质和量方面扩大人才资源;重视工业创新,将知识转化为产品和服务;考虑社会因素,趋利避险。另外,包括德国、法国、爱尔兰和英国在内的多数欧盟国家还制定了各自的纳米技术研发计划。

(2)新兴工业化经济体瞄准先机

意识到纳米技术将会给人类社会带来巨大的影响,韩国、中国台湾等新兴工业化经济体,为了保持竞争优势,也纷纷制定纳米科技发展战略。韩国政府2001年制定了《促进纳米技术10年计划》,2002年颁布了新的《促进纳米技术开发法》,随后的2003年又颁布了《纳米技术开发实施规则》。韩国政府的政策目标是融合信息技术、生物技术和纳米技术3个主要技术领域,以提升前沿技术和基础技术的水平;到2010年10年计划结束时,韩国纳米技术研发要达到与美国和日本等领先国家的水平,进入世界前5位的行列。

中国台湾自1999年开始,相继制定了《纳米材料尖端研究计划》、《纳米科技研究计划》,这些计划以人才和核心设施建设为基础,以追求“学术卓越”和“纳米科技产业化”为目标,意在引领台湾知识经济的发展,建立产业竞争优势。

(3)发展中大国奋力赶超

综合国力和科技实力较强的发展中国家为了迎头赶上发达国家纳米科技发展的势头,也制定了自己的纳米科技发展战略。中国政府在2001年7月就了《国家纳米科技发展纲要》,并先后建立了国家纳米科技指导协调委员会、国家纳米科学中心和纳米技术专门委员会。目前正在制定中的国家中长期科技发展纲要将明确中国纳米科技发展的路线图,确定中国在目前和中长期的研发任务,以便在国家层面上进行指导与协调,集中力量、发挥优势,争取在几个方面取得重要突破。鉴于未来最有可能的技术浪潮是纳米技术,南非科技部正在制定一项国家纳米技术战略,可望在2005年度执行。印度政府也通过加大对从事材料科学研究的科研机构和项目的支持力度,加强材料科学中具有广泛应用前景的纳米技术的研究和开发。

2、纳米科技研发投入一路攀升

纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。

美国的公共纳米技术投资最多。在过去4年内,联邦政府的纳米技术研发经费从2000年的2.2亿美元增加到2003年的7.5亿美元,2005年将增加到9.82亿美元。更重要的是,根据《21世纪纳米技术研究开发法》,在2005~2008财年联邦政府将对纳米技术计划投入37亿美元,而且这还不包括国防部及其他部门将用于纳米研发的经费。

日本目前是仅次于美国的第二大纳米技术投资国。日本早在20世纪80年代就开始支持纳米科学研究,近年来纳米科技投入迅速增长,从2001年的4亿美元激增至2003年的近8亿美元,而2004年还将增长20%。

在欧洲,根据第六个框架计划,欧盟对纳米技术的资助每年约达7.5亿美元,有些人估计可达9.15亿美元。另有一些人估计,欧盟各国和欧盟对纳米研究的总投资可能两倍于美国,甚至更高。

中国期望今后5年内中央政府的纳米技术研究支出达到2.4亿美元左右;另外,地方政府也将支出2.4亿~3.6亿美元。中国台湾计划从2002~2007年在纳米技术相关领域中投资6亿美元,每年稳中有增,平均每年达1亿美元。韩国每年的纳米技术投入预计约为1.45亿美元,而新加坡则达3.7亿美元左右。

就纳米科技人均公共支出而言,欧盟25国为2.4欧元,美国为3.7欧元,日本为6.2欧元。按照计划,美国2006年的纳米技术研发公共投资增加到人均5欧元,日本2004年增加到8欧元,因此欧盟与美日之间的差距有增大之势。公共纳米投资占GDP的比例是:欧盟为0.01%,美国为0.01%,日本为0.02%。

另外,据致力于纳米技术行业研究的美国鲁克斯资讯公司2004年的一份年度报告称,很多私营企业对纳米技术的投资也快速增加。美国的公司在这一领域的投入约为17亿美元,占全球私营机构38亿美元纳米技术投资的46%。亚洲的企业将投资14亿美元,占36%。欧洲的私营机构将投资6.5亿美元,占17%。由于投资的快速增长,纳米技术的创新时代必将到来。

3、世界各国纳米科技发展各有千秋

各纳米科技强国比较而言,美国虽具有一定的优势,但现在尚无确定的赢家和输家。

(1)在纳米科技论文方面日、德、中三国不相上下

根据中国科技信息研究所进行的纳米论文统计结果,2000—2002年,共有40370篇纳米研究论文被《2000—2002年科学引文索引(SCI)》收录。纳米研究论文数量逐年增长,且增长幅度较大,2001年和2002年的增长率分别达到了30.22%和18.26%。

2000—2002年纳米研究论文,美国以较大的优势领先于其他国家,3年累计论文数超过10000篇,几乎占全部论文产出的30%。日本(12.76%)、德国(11.28%)、中国(10.64%)和法国(7.89%)位居其后,它们各自的论文总数都超过了3000篇。而且以上5国2000—2002年每年的纳米论文产出大都超过了1000篇,是纳米研究最活跃的国家,也是纳米研究实力最强的国家。中国的增长幅度最为突出,2000年中国纳米论文比例还落后德国2个多百分点,到2002年已经超过德国,位居世界第三位,与日本接近。

在上述5国之后,英国、俄罗斯、意大利、韩国、西班牙发表的论文数也较多,各国3年累计论文总数都超过了1000篇,且每年的论文数排位都可以进入前10名。这5个国家可以列为纳米研究较活跃的国家。

另外,如果欧盟各国作为一个整体,其论文量则超过36%,高于美国的29.46%。

(2)在申请纳米技术发明专利方面美国独占鳌头

据统计:美国专利商标局2000—2002年共受理2236项关于纳米技术的专利。其中最多的国家是美国(1454项),其次是日本(368项)和德国(118项)。由于专利数据来源美国专利商标局,所以美国的专利数量非常多,所占比例超过了60%。日本和德国分别以16.46%和5.28%的比例列在第二位和第三位。英国、韩国、加拿大、法国和中国台湾的专利数也较多,所占比例都超过了1%。

专利反映了研究成果实用化的能力。多数国家纳米论文数与专利数所占比例的反差较大,在论文数最多的20个国家和地区中,专利数所占比例超过论文数所占比例的国家和地区只有美国、日本和中国台湾。这说明,很多国家和地区在纳米技术研究上具备一定的实力,但比较侧重于基础研究,而实用化能力较弱。

(3)就整体而言纳米科技大国各有所长

美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域快速发展。随着纳米技术在癌症诊断和生物分子追踪中的应用,目前美国纳米研究热点已逐步转向医学领域。医学纳米技术已经被列为美国国家的优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对多种癌症进行早期诊断,而且,已能在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断。2004年,美国国立卫生研究院癌症研究所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标;利用纳米颗粒追踪活性物质在生物体内的活动也是一个研究热门,这对于研究艾滋病病毒、癌细胞等在人体内的活动情况非常有用,还可以用来检测药物对病毒的作用效果。利用纳米颗粒追踪病毒的研究也已有成果,未来5~10年有望商业化。

虽然医学纳米技术正成为纳米科技的新热点,纳米技术在半导体芯片领域的应用仍然引人关注。美国科研人员正在加紧纳米级半导体材料晶体管的应用研究,期望突破传统的极限,让芯片体积更小、速度更快。纳米颗粒的自组装技术是这一领域中最受关注的地方。不少科学家试图利用化学反应来合成纳米颗粒,并按照一定规则排列这些颗粒,使其成为体积小而运算快的芯片。这种技术本来有望取代传统光刻法制造芯片的技术。在光学新材料方面,目前已有可控直径5纳米到几百纳米、可控长度达到几百微米的纳米导线。

日本纳米技术的研究开发实力强大,某些方面处于世界领先水平,但尚未脱离基础和应用研究阶段,距离实用化还有相当一段路要走。在纳米技术的研发上,日本最重视的是应用研究,尤其是纳米新材料研究。除了碳纳米管外,日本开发出多种不同结构的纳米材料,如纳米链、中空微粒、多层螺旋状结构、富勒结构套富勒结构、纳米管套富勒结构、酒杯叠酒杯状结构等。

在制造方法上,日本不断改进电弧放电法、化学气相合成法和激光烧蚀法等现有方法,同时积极开发新的制造技术,特别是批量生产技术。细川公司展出的低温连续烧结设备引起关注。它能以每小时数千克的速度制造粒径在数十纳米的单一和复合的超微粒材料。东丽和三菱化学公司应用大学开发的新技术能把制造碳纳米材料的成本减至原来的1/10,两三年内即可进入批量生产阶段。

日本高度重视开发检测和加工技术。目前广泛应用的扫描隧道显微镜、原子力显微镜、近场光学显微镜等的性能不断提高,并涌现了诸如数字式显微镜、内藏高级照相机显微镜、超高真空扫描型原子力显微镜等新产品。科学家村田和广成功开发出亚微米喷墨印刷装置,能应用于纳米领域,在硅、玻璃、金属和有机高分子等多种材料的基板上印制细微电路,是世界最高水平。

日本企业、大学和研究机构积极在信息技术、生物技术等领域内为纳米技术寻找用武之地,如制造单个电子晶体管、分子电子元件等更细微、更高性能的元器件和量子计算机,解析分子、蛋白质及基因的结构等。不过,这些研究大都处于探索阶段,成果为数不多。

欧盟在纳米科学方面颇具实力,特别是在光学和光电材料、有机电子学和光电学、磁性材料、仿生材料、纳米生物材料、超导体、复合材料、医学材料、智能材料等方面的研究能力较强。

中国在纳米材料及其应用、扫描隧道显微镜分析和单原子操纵等方面研究较多,主要以金属和无机非金属纳米材料为主,约占80%,高分子和化学合成材料也是一个重要方面,而在纳米电子学、纳米器件和纳米生物医学研究方面与发达国家有明显差距。

4、纳米技术产业化步伐加快

目前,纳米技术产业化尚处于初期阶段,但展示了巨大的商业前景。据统计:2004年全球纳米技术的年产值已经达到500亿美元,2010年将达到14400亿美元。为此,各纳米技术强国为了尽快实现纳米技术的产业化,都在加紧采取措施,促进产业化进程。

美国国家科研项目管理部门的管理者们认为,美国大公司自身的纳米技术基础研究不足,导致美国在该领域的开发应用缺乏动力,因此,尝试建立一个由多所大学与大企业组成的研究中心,希望借此使纳米技术的基础研究和应用开发紧密结合在一起。美国联邦政府与加利福尼亚州政府一起斥巨资在洛杉矾地区建立一个“纳米科技成果转化中心”,以便及时有效地将纳米科技领域的基础研究成果应用于产业界。该中心的主要工作有两项:一是进行纳米技术基础研究;二是与大企业合作,使最新基础研究成果尽快实现产业化。其研究领域涉及纳米计算、纳米通讯、纳米机械和纳米电路等许多方面,其中不少研究成果将被率先应用于美国国防工业。

美国的一些大公司也正在认真探索利用纳米技术改进其产品和工艺的潜力。IBM、惠普、英特尔等一些IT公司有可能在中期内取得突破,并生产出商业产品。一个由专业、商业和学术组织组成的网络在迅速扩大,其目的是共享信息,促进联系,加速纳米技术应用。

日本企业界也加强了对纳米技术的投入。关西地区已有近百家企业与16所大学及国立科研机构联合,不久前又建立了“关西纳米技术推进会议”,以大力促进本地区纳米技术的研发和产业化进程;东丽、三菱、富士通等大公司更是纷纷斥巨资建立纳米技术研究所,试图将纳米技术融合进各自从事的产业中。

欧盟于2003年建立纳米技术工业平台,推动纳米技术在欧盟成员国的应用。欧盟委员会指出:建立纳米技术工业平台的目的是使工程师、材料学家、医疗研究人员、生物学家、物理学家和化学家能够协同作战,把纳米技术应用到信息技术、化妆品、化学产品和运输领域,生产出更清洁、更安全、更持久和更“聪明”的产品,同时减少能源消耗和垃圾。欧盟希望通过建立纳米技术工业平台和增加纳米技术研究投资使其在纳米技术方面尽快赶上美国。

相关文章
相关期刊