欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

温室气体排放的原因优选九篇

时间:2024-01-23 14:58:57

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇温室气体排放的原因范例。如需获取更多原创内容,可随时联系我们的客服老师。

温室气体排放的原因

第1篇

关键词:气候变化;温室气体减排;温室气体评估;甘肃省

中图分类号:X321文献标识码:A文章编号:1003-4161(2008)03-0055-04

人为来源的温室气体排放是当前观测到的全球变暖现象最主要的驱动因素[1],温室气体减排是目前最重要的气候变化减缓举措,也是国际社会最广泛认同的气候变化减缓行动。但在温室气体减排目标、温室气体减排义务分配等具体问题上,国际社会也存在巨大的分歧。温室气体的排放主要来自工业活动和土地利用变化,其中尤以发达国家工业化发展所产生的贡献最大,在过去150余年间,发达国家排放的温室气体占全球温室气体排放总量的75.3%。温室气体减排意味着对社会经济发展的约束,对历史排放少的发展中国家而言更是意味着生存和发展机会的减少。

温室气体减排是重要的环境与发展问题,对发展中国家而言最重要的是协调减缓气候变化与保持社会经济持续发展之间的巨大矛盾。发展中国家如此,发展中国家中的欠发达地区更是如此。目前发展中国家中欠发达地区的温室气体排放与参与气候变化行动的可行性的系统研究还未展开,而这些地区可能是发展需求最迫切、减排空间很大、减排压力也很大的特殊区域。本文以甘肃省为例,从脆弱的生态环境、巨大的社会经济发展需求、艰巨的温室气体减排任务等角度着眼,分析欠发达地区温室气体排放的特征,为欠发达地区制定面向未来的气候政策、参与国际和国家的气候变化减缓行动提供参考。

1.甘肃省的气候变化挑战

甘肃省地处西北干旱―半干旱区,生态系统脆弱,自然生存环境相对恶劣,气候变化潜在威胁较大;社会经济水平总体较低,不能满足当地居民持续增长的物质和文化生活需求;作为我国老工业基地,甘肃省具有突出的工业发展与温室气体减排的矛盾,高排放产业比重较高,温室气体排放强度较高,但继续加快发展的需求较强。由于自然和社会经济条件的约束,甘肃省在适应气候变化和减缓气候行动方面面临着巨大的挑战。

1.1 气候变暖趋势明显

受全球气候变暖的影响,近40年来,甘肃的气候存在明显变暖的趋势。20世纪90年代是甘肃近40年中最温暖的时期,多数年份偏高0.4℃以上,特别是1997年以来,年平均气温偏高都在1.0℃以上,明显高于全国和全球平均值。1998年最高,达1.6℃,其中兰州市偏高2.1℃,为1932年建站以来的最高值。冬季增温最为明显,百年平均偏高1.0℃,1998~1999年的冬季是历史上有气象观测记录以来最暖的冬季,全省大部分地方气温偏高都在2.0℃以上,其中兰州、武威、西峰等地超过了3.0℃。

1.2 降水量下降,干旱事件频发

从1961~2000年,甘肃省平均降水量下降接近20%,特别是进入20世纪90年代以来,干旱频繁发生。近50年来,全省共发生严重干旱13次,而90年代就出现了6次。近100年中(1901~2000年),20世纪20年代和90年代是甘肃省曾发生的两个最为严重的干旱时段,而90年代的干旱,其持续时间、严重程度、出现范围都超过了20年代。

1.3 极端恶劣天气频繁出现

甘肃每年发生沙尘暴的频率总体呈现增加趋势,目前,甘肃省区域性沙尘暴过程平均每年21次左右,其强沙尘暴过程1次左右,强沙尘暴过程3次左右,一般沙尘暴过程17次左右。近几十年来,甘肃省暴雨次数明显增多,实测和调查24h的点暴雨量超过200mm的特大暴雨发生过15次,冰雹、霜冻天气也呈现增多趋势。

1.4 土地沙漠化形势严峻,可利用耕地面积减少

甘肃省土地沙化面积已达4 800km2,其中河西为4 100km2,占总沙化面积的85%;强烈发展的沙化土地2 270km2,严重沙化土地1 820km2,弃耕农田1 270km2。另外,白银市北部、华池县西北部、环县北部也有沙化现象和沙化发展趋势。

1.5 植被退化,生物多样性损失迅速由于干旱、过牧和毁草开荒等原因,造成草原、绿洲退化。全省草场退化面积

71 300km2,占全省可利用草场面积的52%。其中,重度草原退化面积22 300km2,中度退化面积19 700km2,轻度退化面积29 300km2。草场退化面积占草场面积河西为40.39%,黄土高原为91.8%,甘南高原为10%,祁连山为18.8%,陇南为19.2%。虽然最近几年以来退耕还林措施成效显著,但在一些森林覆盖区域,生物多样性降低趋势仍不容乐观。

1.6 社会经济水平较低,气候变化潜在风险巨大

甘肃省近年来社会发展保持了较快的增长速度,社会经济总体状况得到较大改善。但在全国持续快速增长的过程中,与东部地区社会发展的差距仍在拉大,社会发展与经济发展总于全国后列,社会各领域发展不平衡的问题及影响社会持续稳定协调发展的因素仍然较多,环境与发展矛盾日益突出,社会保障和抵御风险的水平较低[2]。这些问题也是欠发达地区的共性问题。

另外,甘肃省的内陆湖泊萎缩、冰川后退、降水变率增大等变化事实也不容乐观,这些已经或即将为甘肃省脆弱的生态和社会系统带来更大的潜在威胁。

2.甘肃省温室气体排放量评估

当前全球轰轰烈烈开展的温室气体减排谈判、减排活动以及排放贸易等行动,强烈依赖于对各种时空尺度人为温室气体排放量的精确评估,这是讨论、分配各国政府承担温室气体减缓义务的基础,也是衡量温室气体排放效率、公平发展机会的重要依据。

温室气体的排放既受自然因素的影响,也受人类活动的影响,其评估既涉及基础科学研究,又与技术和应用科学密不可分。在进行一般性的温室气体排放评估时,国际上广泛采用化石燃料燃烧排放的温室气体量为温室气体排放量的代用指标。本文主要利用政府间气候变化专门委员会(IPCC)的参考方法对甘肃省的温室气体排放量进行了评估,以获得甘肃省等欠发达地区温室气体排放的特征信息。

鉴于我国温室气体排放相关数据的规范不同、数据支持程度差异等实际情况,本文参考相关文献[3-8]中的数据对部分燃料类型和计算系数进行了适应性的修订,并据此对甘肃省2005年的温室气体排放情况进行了评估和比较分析。

根据计算,甘肃省2005年的温室气体排放总量为79 897.96KtCO2,其中,来自石油的排放是11 401.22 Kt CO2,煤炭的排放是66 657.03 Kt CO2,天然气的排放是1 839.72 Kt CO2。甘肃省温室气体排放主要来自于煤炭消费,煤炭产生的温室气体排放量占甘肃省温室气体排放总量的83.43%。

为了获得有关甘肃省温室气体排放的特征和规律信息,本文按照同一方法对甘肃省2004年温室气体排放情况、以及与甘肃省在经济发展模式、社会经济发展程度具有显著差异的上海市和全国在2005年的温室气体排放情况进行了评估(表1);基于获得的温室气体排放数据,结合GDP和人口数据,本文也对甘肃省、上海市和全国的单位GDP排放量和人均排放量等指标进行了计算(表2)。

3.甘肃省温室气体排放的特征分析

3.1 煤炭消费对甘肃省温室气体排放贡献巨大

通过比较甘肃省、上海市和全国各种来源的温室气体排放量发现,甘肃省温室气体排放量中煤炭消费的贡献为83.43%,这一比例要高于中国平均77.63%的排放水平,远高于上海市56.15%的排放水平(图1)。与此相呼应,石油消费对甘肃省温室气体排放的贡献仅为14.27%,低于全国平均水平20.42%和上海的41.48%。但甘肃省由于区位的相对优势,来自天然气消费排放的温室气体比例要高于全国1.95%的排放水平,与上海2.37%的排放水平基本持平。来自煤炭消费的排放量对甘肃省温室气体排放贡献最大,这成为甘肃省与全国平均水平和上海市显著不同的排放特征,这表明甘肃省的能源消费结构具有以煤炭为主的特点。

3.2 甘肃省单位GDP排放量遥遥领先

根据甘肃省、上海市和中国2005年的国内生产总值(GDP)数据,可以计算获得2005年单位GDP排放数据(表2)。甘肃省2005年单位GDP温室气体排放量为4.13t/万元人民币,是上海单位GDP排放量的2.51倍,是全国平均水平的1.66倍。但与世界平均水平相比,甘肃和上海的数据均高于全球单位GDP排放量,其中,甘肃省是世界平均水平的4.54倍,上海是世界平均水平的1.81倍。(图2)反映了甘肃省与其他地区在单位GDP排放上的差异。我国作为发展中国家,温室气体排放总量与多数的发达国家相比,存在产业分工差异、能源结构不尽合理、单位能耗产值较低等现实情况,这导致我国单位GDP排放量高于世界平均水平。处于发展中国家欠发达地区的甘肃省,单位GDP高排放的特征更为突出,造成这一局面,既有历史的原因,也有现实的原因。

3.3 甘肃省人均排放量处于较低水平

温室气体排放情况反映了社会经济活动的水平,在目前限制温室气体排放的国际背景下,温室气体排放空间更是被看做一种有限的资源。人均排放量可以反映各地区总体的社会经济水平和享受温室气体排放权的情况。2005年世界人均温室气体排放量为4.22 tCO2/人,同期,中国的人均排放量为3.48 t/人,上海为8.49t/人,而甘肃省仅为3.08t/人。甘肃人均排放量分别是中国的88.52%、上海的36.28%、世界的72.99%(图3)。这些指标说明甘肃省人均排放量处于较低的水平,所享受的以工业文明为代表的现代社会经济福利较少。

3.4 甘肃省温室气体排放情况总体向好的方向发展

在注意到甘肃省相对全国和作为发达地区代表的上海市的比较形势不容乐观的同时,本文也注意到甘肃省所发生的一些好的变化趋势。相对2004年,甘肃省在2005年温室气体排放量增加了3 970.13Kt CO2,但增长率仅为5.23%,这相对过去几年中超过10%的GDP增长率来说,是一个相对较低的排放水平。就排放结构来看,甘肃省在2005年来自煤炭的排放贡献为83.43%,而2004年煤炭的贡献率为83.98%,来自煤炭的排放贡献有所降低,与之相呼应,石油和天然气的消费比例略有上升。这些数据表明甘肃省的能源效率和能源结构总体在向更高效和更清洁的方向发展。

4.结论与建议

本文在修订、发展政府间气候变化专门委员会(IPCC)温室气体评估方法的基础上,对甘肃省的温室气体排放量进行了评估和比较分析。总体而言,甘肃省的温室气体排放具有:煤炭消费贡献大、单位GDP排放量高、人均排放量低的特点,但随着经济结构和能源结构逐步向好的方向发展,甘肃省来自煤炭的排放贡献和单位GDP排放量正在降低。

本文参照国际通行方案、结合中国和案例区域的数据情况,对温室气体排放评估方法进行了适应性的修订,基于修订方法所提出的评估结果具有较高的可信度。但由于数据和调查的局限性,本文在非能源利用的燃料消费量、过境加油量、固碳产品转移等数据的获得和计算上具有一定的误差,但本文的工作旨在寻找作为欠发达地区代表的甘肃省温室气体排放的总体特征和规律,这些误差不足以对评估结果和比较结论产生较大影响。

通过评估和比较分析甘肃省温室气体排放的特征,可以为欠发达地区参与国际和国家的温室气体减排行动提供决策参考。具体建议:

①欠发达地区需要增进对气候变化的科学事实和潜在威胁的了解,提高适应能力,加强减缓举措,增强应对气候变化的综合能力;②利用温室气体排放环境相对宽松的时期,逐步实现经济转型,提高应对未来低排放发展模式的应对能力;③将温室气体减排与生物固碳等工作相结合,发展有特色的欠发达地区的减排模式;④将温室气体减排义务的承担与国家的政策扶持、补偿机制、资金投入相结合,彻底改善欠发达地区社会经济状况;⑤鼓励欠发达地区与发达地区在温室气体减排工作中的合作,实现资源、效益、经验和减排空间的共享;⑥加强可再生能源的开发工作,逐步增加可再生能源、新能源在能源结构中的比例;⑦发展、转化先进的低碳排放、碳捕获与封存的先进技术,减少发展过程的累积排放,实现跨越式发展;⑧发展欠发达地区有关气候变化的社会风险评估、保险、预防、预报和救助能力,建立可以积极防御气候变化的社会保障体系。

基金项目:国家科技支撑计划“全球环境变化人文因素的检测与分析技术研究”(2007BAC03A11-01)、中国科学院2005年“西部之光”项目“甘肃省利用清洁发展机制的对策与实现途径研究”和甘肃省重大科技专项“甘肃省清洁发展机制项目开发”(编号:2GS063-A74-014-01)联合资助。

参考文献:

[1] IPCC. Climate Change 2007: The Physical Science Basis. Summary for Policymakers[EB/OL]. ipcc.ch. 2007.

[2] 甘肃省统计信息网.甘肃省社会发展水平综合评价报告[EB/OL]. gs.stats.省略/doc/ShowArticle.asp?ArticleID=507

[3] 中华人民共和国国家统计局编.2006年中国能源统计年鉴[M].统计出版社:2006.

[4] 中国气候变化国别研究组.中国气候变化国别研究[M].清华大学出版社.2000.

[5] 中华人民共和国国家统计局编.2005年中国能源统计年鉴[M].统计出版社,2005.

[6] 中华人民共和国国家统计局编.2006年中国统计年鉴[M].北京:中国统计出版社:2006.

第2篇

由于人类长期直接或间接的活动,使得大气组成发生变化,这不仅对自然环境和生态系统造成了破坏,最终的结果是导致人类自身健康和社会经济运作遭到严重不利影响。基于此,世界各国掀起了减少温室气体排放量的行动热潮,开展温室气体排放权交易便是其中之一。开展温室气体排放权交易,首先要对于作为交易客体的温室气体排放权做一理论上的探讨,在此基础上由立法来明确其权益属性,从而为温室气体排放权交易的展开奠定法律基础。

温室气体排放权,是指权利人依法向大气环境排放一定量的温室气体的权利。人类所享有的温室气体排放权应当体现为两个层级,第一层是基于人类基本生存所需而向大气排放一定量的温室气体的权利,这是全人类生而公平享有的一种权利,属于基本人权的范畴,应该得到尊重和保障;第二层,为了进一步的发展,人类需要获得基本生存所需以外的更多的排放权,而这种排放权则已不属于基本人权范畴,这种权利的行使有一定的界限,应当限制在大气所能容纳的范围之内,以不影响人类未来的生存与发展为前提,而且其获得应该经过严格的法定程序。南开大学韩良教授将第一层级的温室气体排放权称之为“生存排放权”,而将第二层级称之为“发展排放权”。而温室气体排放权交易中所指的便是第二层级的排放权,也就是韩良教授所说的发展排放权。本文中所探讨的温室气体排放权也是第二层级的排放权。

温室气体排放权具有以下特征:

第一,温室气体排放权的客体是大气环境容量。大气环境容量并非是一个法学术语,而是环境科学中的一个概念,是指在某一特定区域内,在满足该区域大气环境质量目标前提下,该地区大气环境所能容纳污染物的最大排放总量。在此范围内大气是具有自净能力的,一旦超过这个范围,就会造成大气环境污染。气候变化的最主要原因就是人类和自然向大气排放的温室气体超过了大气环境可承受的的范围。由此可见,大气环境容量是有限的,而温室气体排放权正是人类对这种有限的大气环境环境容量的使用、收益权。

第二,温室气体排放权的获得要经过严格的法定程序。在文章前面论述过,温室气体排放权交易中所说的温室气体排放权并非基本人权范畴,其行使应当以不影响人类的生存与发展为前提。基于此,私人主体温室气体排放权的获得要经过严格的法定程序,首先由当地的环保部门对于当地大气环境容量进行评估,确定可排放温室气体的总量,在此基础上,根据相应主体的申请赋予其一定的温室气体排放权。这实际上是一个行政行为,是政府公权力行使的结果。

二、温室气体排放权法律性质

(一)温室气体排放权法律属性

温室气体排放权属于排污权的一种,民法学界对于排污权的权利属性已经探讨了很多年,按照朱家贤、邓海峰等的观点,排污权属于民法中的用益物权。基于此,作为排污权的一种,温室气体排放权也属于我国民法权利体系中的用益物权。当然这需要对温室气体排放权进行分析,从民法学角度来论证其用益物权属性。

按照民法理论,用益物权是权利人依法对他人之物所享有的占有、使用、收益的权利,具有绝对性、支配性、排他性特点。所以,温室气体排放权作为用益物权的前提,就是要满足用益物权的概念和其所述的权利特征:

第一,做为温室气体排放权客体的大气环境容量是公共物品。大气环境容量是一种环境资源,属于公共物品,而国家是这种公共物品的所有者,私人主体要行使对于大气环境容量资源的使用、收益等权利时,要严格依照法定程序从政府相关部门申请所得;第二,作为温室气体排放权客体的大气环境容量是一种特殊的不动产。按照中国民法理论规定,不动产是性质上不可移动的特定物、独立物,并且可供人类所支配。据此大气环境容量似乎难以特定化、难以分割,因而并不满足条件。但是大气环境容量是大气环境对于自然和人为的排放污染物的最大承受范围,这个范围是有限度的,是特定的,在此范围内通过政府公权力的行使将其分为若干份,并授予不同的排放者行使,从而使之特定化、独立化,并可为权利享有者所支配,因而满足民法上对于不动产的要求;第三,温室气体排放权具有支配性、绝对性,排他性特点,依法获得温室气体排放权的主体,在法定的范围内享有对大气环境容量的占有、使用、收益权,权利主体可以将排放权用于自己温室气体排放使用,也可以根据自己的富余或不足情况到温室气体排放权交易市场去出售或购买,而权利人以外的他人负有消极的不作为义务,不得妨害权利人依法行使其权利。

基于以上温室气体排放权的分析,我们不难发现温室气体排放权完全满足民法上用益物权的权利特征:大气环境容量作为环境资源的一种,是公共物品,国家是权利的所有者,温室气体排放权正是排放者依法获得的对大气环境容量这种公共物品的占有、使用、收益权,其具有用益物权所具有的绝对性、支配性、排他性特点,获得排放权的主体可以依法自主行使其权利,排除他人干涉,在权利受到侵害时可以通过诉讼来获得救济,所以符合用益物权的属性。因此,温室气体排放权就是温室气体排放者依法享有的,在大气承载范围内向大气排放一定温室气体的权利,是权利人依法对有限的大气容量的占有、使用、收益权,归属于财产权中的用益物权

(二)温室气体排放权的特殊性

上文已分析过,温室气体排放权作为用益物权,具有用益物权所具有的支配性、绝对性、排他性的权利特征,但基于其权利客体是大气环境容量这种特殊的环境资源,其又区别于一般用益物权,主要体现在以下两个方面:

第一,温室气体排放权是一种“具有公权色彩的私权”。温室气体排放权的取得受到公私法双重制约,作为一种用益物权其属于私权范畴,但是其最初取得要经过政府公权力的行使,政府作为大气环境容量的所有者,通过法定程序赋予申请者相应的排放权,这首先是一种行政行为,受到公法的调整。第二,温室气体排放权的取得以总量控制为前提。政府赋予排放者温室气体排放权之前先要对当地的大气环境容量进行评估,确定大气环境可容纳的温室气体的最大排放量,在此基础上,根据申请赋予申请者不同量的排放权,权利主体在行使时,其权利范围受到各自所获得的排放权范围的限制。因此,温室气体排放权就是温室气体排放者依法享有的,在大气承载范围内向大气排放一定温室气体的权利,是权利人依法对有限的大气容量的占有、使用、收益权,归属于财产权中的用益物权。

三、结语

第3篇

关键词:美国 气候政策 演进 钻石模型

中图分类号:D83 文献标识码:A 文章编号:1005-4812(2010)05-0073-79

一、引言

人们已经意识到了气候变暖威胁着人类的生存,而人类活动产生的大量二氧化碳排放被认为是全球气候变暖的重要原因。目前,尽管中国在温室气体排放总量上已经超过了美国,但是美国的人均温室气体排放,以及历史上累积的温室气体排放量,仍居世界第一。从图1中,可以看出,在1981年到2000年这二十年间,美国能源消耗排放的温室气体占全世界的比例从25.56%下降到23.23%,接着又攀升到24.58%,从2000年以后,美国的这个比例一直在降低,但是仍然在20%以上。

美国能源消耗排放的温室气体占全世界的比例下降的原因并不是美国排放总量的下降,而是因为中国和印度等发展中国家工业的快速发展以及美国高耗能产业向发展中国家的转移。事实上,美国温室气体排放总量一直呈现上升的趋势(见图2)。美国政府开始意识到气候政策是开始于老布什政府时期,在其执政期间,美国的温室气体排放量并没有显著增加,但是到了克林顿和小布什时期,美国的温室气体排放量出现了明显的增加。

温室气体的排放具有外部性,要做到切实减少温室气体排放,就必须建立起一套全球协调机制。不过,由于世界各国在发展水平、环境条件、文化背景、需求偏好上存在差异,面临的发展与环境问题各不相同,使得各利益集团有着不同的发展要求、环境立场和政策选择,往往缺乏共同行动的逻辑起点。美国作为世界上唯一的超级大国,在经济、科技和政治领域具有强大的领导力,因此美国的气候政策会影响、甚至是左右气候谈判的进程和协议的实施效果。然而,迄今为止,美国一直拒绝加入全球气候谈判框架,坚持自己的气候政策理念,这也是全球气候谈判步履蹒跚的重要原因之一。美国为什么会这样,已经成为一个重要的研究热点,一些学者从政治、经济等方面给予了解释。这里在归纳美国气候政策演进的基础上,运用波特的“钻石模型”从国家竞争优势角度进行解释。

二、美国历届政府气候政策的变化

在老布什政府时代,美国已经认识到气候变化问题亟待关注,但是并没有将其提升到战略高度给予对待。当时整个社会对气候变化带来的危害性后果缺乏思考,关于气候变化的研究结论及相关判断并不能让人信服。老布什政府认为在全球变暖的问题上存在多种观点,因此,也就没有重视这个问题,这带来的直接结果便是缩小了美国应对气候变化方面的投入。不过,在对外关系上,老布什政府表现出了积极的合作态度,老布什政府迅速批准了联合国气候变化框架公约(UNFCCC)。

克林顿政府在气候变化议题上采取了积极主动的政策,努力促使美国在国际上应对气候变化威胁所作出共同努力中发挥领导作用。在1993年10月公布了的《气候变化行动方案》中,克林顿政府承认,人类活动导致了大气中温室气体浓度增加,从而导致了海平面上升、沿海地区被淹没、生态体系遭到不可避免的损坏,以及农业生产的不稳定等严重后果。因此,美国采取了一系列应对气候变化的措施,但是成果非常有限。克林顿政府这一态度基本没有落实到对外关系上,尽管克林顿政府签署了《京都议定书》,但是并没有采取行动降低排放,也没有将《京都议定书》递交给参议院讨论表决。

小布什政府在应对气候变化问题方面经历了从漠视到做出一定调整的过程。在其第一届任期中,基本上是采取自由放任的气候政策,小布什在上任初期就宣布美国将不批准《京都议定书》。小布什不落实《京都议定书》的原因主要有四点:一是落实《京都议定书》规定的条款会导致失业、通货膨胀等经济问题;二是气候变化在多大程度上是由人类活动造成的,答案并不明确,同时也缺乏在商业上消除与储藏二氧化碳可行的技术;三是认为中、印等温室气体排放大国也必须受到约束;四是反对采取强制性限排措施来减少温室气体排放,主张采取自愿性的限排措施。在小布什的第二期任期内,由于国际和国内要求重视气候变化的强烈呼吁,小布什承认人类温室气体排放量的增加正在导致全球变暖,并认为全球气候变化对国家安全构成了严重挑战,通过技术进步可以解决这一问题,美国到2025年前将停止温室气体排放量的增长,但是这只是小布什停留在对气候变化严重性的认识上,他没有采取具体的实质性减排措施。

奥巴马一改小布什在气候问题上的态度,他认为气候变化及美国对石油的依赖将继续削弱美国经济、威胁美国国家安全,为此奥巴马政府树立了振兴经济、保证安全与应对气候变化彼此补充、相互促进而不彼此排斥、相互削弱的理念,并以此指导具体政策的制定。奥巴马政府主张以市场机制为基础的“总量管制与排放交易”来减少温室气体排放。截止到目前,奥巴马已经签署了两份关于限制温室气体排放的备忘录,一份是指示交通部要求汽车制造商在2011年以后所产汽车确定更高的油效标准,另外一份是指示环保署重新考虑加州关于制定高于联邦标准并在汽车排放温室气体方面设定更为严格限制的申请。另外,奥巴马政府确立了构建绿色经济、研发新能源的行动方针,探索新的经济增长模式,实现美国经济复苏。然而,在对外关系上,奥巴马政府并没有实质性的改变。在哥本哈根气候谈判中,美国仍然不愿意承诺减排目标,反对《京都议定书》式的条约,反对强加的国际法定义务,坚持认为中国、印度、南非和巴西等发展中国家必须承诺放缓温室气体排放量的增长速度。

从美国历届政府气候政策变化的过程中可以看到,美国历届政府基本上认为气候变化是一个需要关注的问题,但是美国坚持认为减少温室气体排放是需要通过市场手段来实现的,且担心承诺减少温室气体排放会阻碍经济发展,这种担心带来的直接结果是美国不愿意在国际上承诺减排目标。

三、从伯瑞德一海格尔决议到《气候安全法案》

美国是三权分立的国家,但是在涉及到国家利益问题上,政府和参众两院的利益基本上是一致的。在气候政策的问题上,美国参众两院和政府的立场基本一致。但是与政府的立场相比,美国参众两院在气候政策方面更加保守,始终坚持气候政策不能有损美国的竞争力。

在《京都议定书》谈判的关键时刻,也就是1997年7月25日,美国参议院通过了伯瑞德一海格尔决议(Byrd-Hagel Resolution),表达了美国关于气候变化问题的基本立场。在该决议中,认为在以下任何一种情况下,美国不得签署任何与1992年《联合国气候变化框架公

约》(以下简称《公约》)有关的议定书或者协定:一是《公约》的发展中国家缔约方不同时承诺承担限制或者减少温室气体排放义务,却要求美国等发达国家缔约方承诺承担限制或者减少温室气体排放义务;二是签署该议定书或协定将会严重危害美国经济。伯瑞德一海格尔决议在参议院表决中,以95票赞成、0票反对通过,可以说该决议反映了美国国内不同利益集团在气候变化问题上的共同观点。

2005年美国通过了《能源政策法》,以法律的形式集中体现了美国的能源政策和气候变化政策。在该法中,提倡使用清洁能源和可再生能源,鼓励企业和个人提高能源使用效率。在节约能源方面,新的能源法规定从2007年起,美国将原有“夏令时”时间再增加4周,长达7个月,以节约能源。《能源政策法》其真实的目的并不在于减少温室气体排放,而是要减少美国对进口石油的依赖,解决美国的能源安全问题。

《气候安全法案》是美国迄今为止最为完备的一部应对气候变化的联邦法案。《气候安全法案》首先确定了建立以市场机制为基础的“限量排放与交易”体系;其次,首次将气候变化问题提升至国家安全层面,拟建立整合经济、贸易、技术、能源等政策的综合性气候战略;最后,尽管《气候安全法案》是国内法,但是其有关条文清晰地反映出美国气候政策的国际意图,该法案着意将京都机制下的发展中国家集团区别对待,同时,该法案还设计了其国内交易体系及补偿机制与其它国家及国际碳交易市场相互联系的通道。

四、美国气候政策演进的原因:钻石体系

(一)波特的“钻石体系”

迈克尔・波特认为企业战略离不开环境,当国家环境有助于某些产业发展时,国家便随企业而兴盛,反之亦然。企业的竞争优势与国家环境息息相关,像企业能否自由运作、特定技术人力的供应、本地市场需求等因素,都和国家脱不了关系。国家不但影响企业所实施的战略,也是创造并延续生产与技术发展的核心。因此,国家是企业最基本的竞争优势,它能创造并保持企业的竞争条件。

为什么一个国家的某种产业能在国际竞争中崭露头角,甚至获得竞争优势?波特认为必须从每个国家都有的四项环境因素来分析,这些因素可能会加强本国企业创造国内竞争优势的速度,也可能造成企业发展停滞不前。这四项环境因素为生产要素、需求条件、相关产业和支持产业的表现以及企业的战略、结构和竞争对手,这四项关键要素形成“钻石体系”(见图3),关系到一个国家产业或者产业环节能否取得成功。在“钻石体系”中,这四项环境因素是一个双向强化的系统,其中任何一项因素的效果必然影响到另一项的状态。不过,对于高度依赖自然资源或技术层次较低的产业而言,可能只需要具备钻石体系中的两项因素就能得到竞争优势,但是这种优势会因为产业的快速变化或其它国际竞争者的先发制人而无法持久。

尽管在“钻石体系”中没有政府这一环境要素,但是波特认为政府是构成整个竞争力拼图的最后一片。譬如说,能源税的征收会迫使企业采用节能的技术。来降低能源的使用,或者淘汰高耗能的产品。因此“漠视经济政策对国家优势的影响,正如过度夸大或过度贬抑国家与企业的关系,是不切实际的”。

(二)“钻石体系”对美国气候政策的解释

如果一国要使经济不断发展,达成经济发展的目标,就必须促进现有产业无止境的改善和创新,并培养能在新的产业领域里成功的能力,因此,政府的政策应该致力于创造产业发展的环境。现在几乎所有的国家都在朝采用各种政策来改善竞争力的方向发展,这些政策大致包括:货币贬值、自由化、私有化、放宽产品和环境标准、税制改革、区域发展、鼓励创新、改善教育体系和多种形式的政府采购等。那么如何对这些政策工具进行判断,波特认为钻石体系理论是一个很好的工具。这里就采用“钻石体系”来分析美国气候政策演进的原因。

1 对生产要素的效应

在新古典增长理论中,生产要素包括技术、资本、劳动力、人力资本以及能源等,企业的生产决策过程就是在成本最小化的条件下最优化组合这些要素,这些要素的最优化组合在一定时期内是稳定的,如果要改变这种稳定的组合,企业需要更新设备、培训技术人员、改变产品设计和进行新的市场推广等,这些都会给企业带来成本的增加。气候政策的核心是通过市场手段或者行政手段来减少温室气体排放,这就直接要求企业改变生产要素的组合,重新达到最优,这个改变的过程增加了企业的成本。杜克能源(Duke Energy)公司是全美第三大温室气体排放企业,是全球第12大排放企业,其总裁吉姆・罗格(Jim Rogers)虽然赞同使用“限额一交易制度”来控制温室气体排放,但是他反对旨在减少温室气体排放的利伯曼一华纳法案,认为该法案没有包括政府应该给与企业的资金支持,也没有为企业设定一个适应期以帮助企业平稳过渡。

当然,如果落实了温室气体减排的政策,势必影响生产要素在整个社会生产中的配置。资本、劳动和技术等要素会加速往环保产业转移,推动新能源产业的发展,也会加速传统耗能产业的绿化,甚至会带来金融领域的创新。在气候变化问题上,华尔街已经意识到了二氧化碳排放交易市场具有广阔的增长前景,像摩根士丹利、高盛这样的大型投资银行纷纷进入这个市场。不仅如此,华尔街的金融机构还开始有组织地推动这一事业朝前发展。

传统产业以种种理由反对政府实施控制温室气体排放的各种政策,而新兴产业则希望借助于政策的利好完成发展的跨越。这二者对控制温室气体排放的不同态度反映到美国的气候政策上,就使得美国的气候政策难以真正地落实,只能通过市场手段来自然地解决,达到协调各方利益的作用。

2 对需求条件的效应

气候政策将会影响到需求。美国已经形成了一个消费型社会,美国人消费着世界各地生产的产品,这种消费习惯导致了大量的温室气体排放,要在短时间内改变美国这种长期形成的消费文化是很难的;在美国的环境保护制度下,美国的一些污染和高耗能的产业已经转移到了发展中国家,如果继续实施严格的温室气体排放政策,将会导致更多的美国企业移到国外去,产业空洞化将导致失业增加;这些政策还会导致美国企业的生产成本提高,特别是对传统产业的企业而言,在全球竞争中处于不利的状态,影响美国产品的m口。这些需求方面的因素使得美国控制温室气体排放的政策措施乏力。

气候政策还会影响到需求条件。政府制定涉及环境问题的产品和流程规范,或者制定严格的产品标准,这些规范和标准一方面给企业经营带来了压力,另一方面却有助于企业改善质量、提高技术能力、提供新造型以满足社会和重要客户的需要。如果严格的产品标准能够扩展到国际,并且成为国际性的标准,它就会使本国企业领先开发新的产品和服务性商品,进而趁势扩散到全球。美国人长期关注污染防治工作,使得美国在污染防治设备和服务方面具有强大的竞争力,但是随着德国、瑞典、丹麦等国在环境质量方面超越了美国,它们的企业在相关领域的国际市场竞争优势便逐步显现出来,威胁着美国的领跑地位。在这种条件下,美国就需要通过制定更多严格的环境政策,来提高美国的企业在环境保护及其相关领域的创

新能力和国际竞争力。

3 对相关与支持性产业的效应

国家的竞争优势除了表现在产业内部,也表现在产业集群上。一个产业集群包括生产商、供应商、客户以及其它相关产业,它们共同构成一个产业生态系统。政府政策在滋养和强化产业集群上扮演着重要的角色。

气候政策的变化将会给产业集群带来正负两个方面的效应。严格的气候政策将会导致有关提供环境服务的企业进入传统的产业集群,或者形成围绕新能源、新材料的企业组成的新的产业集群,从而达到提升产业集群竞争力和促进经济增长的目的。不过,严格的气候政策将迫使原有产业集群中的部分企业由于环境治理成本太高而搬走,降低了整个产业集群的竞争力,甚至导致一些失业问题。

另外,气候政策的变化还会影响到区域经济的均衡发展。旨在控制温室气体排放的政策将会制约传统产业比较集中的地区经济发展,美国的五大湖地区是美国的钢铁、化工等传统产业的集聚地。目前,这些产业面临着来自日本、韩国、欧盟以及新兴发展中国家的挑战,其国际竞争力出现了下降。如果采取严格控制温室气体排放的政策将会进一步降低这些产业的竞争力,导致传统产业地区的经济衰退。但同时,控制温室气体排放的政策又会促进新兴产业比较集中的地区的发展,美国的加利福利亚州是美国环保产业的主要集聚区,任何严格的环境政策都将为加州的环保产业催生需求,从而促进其发展,拉动加州经济的增长。

4 对企业战略、企业同构、同业竞争的效应

政府政策会影响到企业如何成立、组织、管理、发展目标和竞争方式。如果美国实施控制温室气体减排的方案,将会给企业行为带来一系列影响。企业获取市场竞争力的手段将发生改变,低能耗和低排放的产品将成为争取市场的重要竞争砝码之一。企业一方面要提高自己的生产技术,尽可能地降低生产过程中的温室气体排放量,另外一方面要改进产品,生产出节能环保的产品。企业生产上的这些变化,在短期内会提升企业的生产成本,如果国外的同类企业不受温室气体排放的限制,其产品的成本必然要低于国内的产品,那么这些国外的产品将极有可能挤走国内的产品,从而将国内企业置于死地。

美国企业,特别是传统行业的企业,将会加速国际化的进程,将温室气体排放较多的环节转移到其它国家。但是,这可能会和美国的国家长期利益相冲突,主要体现在企业国际化或者外移时,移出的可能是高生产力而非低生产力的企业。所以美国要求发展中国家也必须承担同等的义务,试图防止由于自己实施了限制温室气体排放的政策,而使国内的高生产力企业转移到发展中国家。

企业在追求利润最大化的同时,除了受资本、劳动力等成本的约束外,温室气体排放指标将成为一个重要的制约因素。企业的产能一旦超过了自己温室气体排放配额,就必须兼并具有多余温室气体排放配额的企业或者通过温室气体交易市场来获得多余的排放配额。这样不仅将会使得兼并活动变得频繁,而且还会使得温室气体交易市场逐渐取代资本市场的地位,美国有机会借鉴其管理和运作资本市场的经验,成为世界温室气体交易中心。

五、结论

第4篇

关键词:温室气体;绝对限制;强度限制

中图分类号:F061.3 文献标志码:A文章编号:1673-291X(2010)32-0024-02

引言

温室气体会产生温室效应,过量的温室气体排放被认为是全球气候变暖、恶劣天气增多的重要原因。这在国际社会已形成了广泛的共识。在这样的共识之下,从《京都议定书》到《哥本哈根协议》,世界各国一直在极大范围内讨论有关温室气体减排问题,也都在尽各自的努力来确定未来的温室气体减排目标。

1997年,149个国家和地区的代表通过了旨在限制发达国家温室气体排放量以抑制全球变暖的《京都议定书》。议定书对2008―2012年第一承诺期发达国家的减排目标做出了具体规定,即整体而言发达国家温室气体排放量要在1990年的基础上平均减少5.2%。但不同国家有所不同,例如,欧盟作为一个整体要将温室气体排放量削减8%,日本和加拿大各削减6%,而美国削减7%。从减排目标的形式上看,以上的目标是对排放或者说减排做出了绝对数量的控制。2001年,美国布什政府宣布退出议定书,并随后提出了应对气候变化、降低温室气体排放强度的政策新建议,承诺美国温室气体排放强度将由当时的183吨碳/百万美元GDP下降到2012年151吨碳/百万美元GDP,即温室气体排放强度下降18%。这种将温室气体减排与某种投入或产出的测度相联系的排放限制可认为是强度限制。

2009年,世界又聚焦哥本哈根召开的气候大会,共商京都协议的第一个承诺期到期之后的行动。各经济体提出了未来一段时期的减排目标,举例来说,美国提出到2020年在2005年基础上对温室气体减排17%,欧盟承诺到2020年将温室气体排放量较1990年减少20%以上,日本把减排目标定为在1990年的基础上对温室气体减排25%,中国提出到2020年在2005年的基础上将单位国内生产总值的温室气体排放量减少40%―45%,印度提出到2020年实现单位GDP温室气体比2005年下降20%―25%。从以上目标的形式来看,也可以分为绝对限制和强度限制。

也就是说,在减排目标设定和变迁的十几年间,主要的国家和地区提出的减少温室气体排放的目标表现为两种形式:绝对限制和强度限制。而且,所提出的强度限制的参照指标也主要是与国内生产总值(GDP)相联系。在这种情况下,对绝对限制和强度限制的异同进行分析就显得很重要。所以,在文章接下来的讨论中,将分析绝对限制与强度限制的特性,并分析说明如何选择确定排放限制的目标形式。

一、在确定性下绝对限制与强度限制的等价

考虑一国承诺限制温室气体排放,在目标上,可以设定为绝对限制,也可以设定为强度限制。

在绝对限制下,决策者制定一个未来某时点的排放量Q,即表示承诺在未来的某时点排放不超过Q。在强度限制下,决策者先选定一个经济总量指标Y(通常是GDP),然后以此作为参照再来确定未来某时点排放强度的上限γ。在这里,γ=,表示排放强度。

如果未来不存在不确定性,不论是Q限制还是γ限制,在减排效果上是等价的。这是很容易理解的。在强度限制下,存在不确定性的是经济总量,假设决策时拥有的信息集是θ,决策者对承诺时点的经济总量的预期是Eθ[Y]。如果未来是确定的,则这就是未来时点的实际经济总量,即Eθ[Y]=Y,那么不管决策者是从绝对量还是强度上进行限制,最终的排放目标是没有差别的,即

Q=γEθ [Y]=γY(1)

为说明减排效果,我们更进一步假设无减排计划的情况下未来的排放将达到Qf,而在实行减排计划下这将表现为期望形式,用Eθ [Qf]表示。又假设绝对限制下减排为AA,预期的减排成效为

Eθ [AA]=Eθ [Qf]-Q (2)

强度限制下减排为AI,预期的减排成效为

Eθ [AI]=Eθ [Qf]-γEθ [Y] (3)

根据式(1),我们可以得到Eθ [AA]=Eθ [AI]。在确定性下,预期减排就是实际减排,所以,AA=Eθ [AA]=Eθ [AI]=AI,说明绝对限制和强度限制的减排效果是一样的。

二、不确定性带来的影响

而当存在未来的不确定性时,情况便不同。若我们还从减排效果上考虑,那么根据式(2)和(3),差异来自于两个方面,一个经济总量方面预期未来总量Eθ [Y] 与实际未来总量Y的偏离,再者是预期无减排计划的未来排放Eθ [Qf]和实际无减排计划的未来排放Qf的偏离。其中,Y是在未来时刻可以观察到的值,Qf在进行了减排计划下是无法观测的,是理论上进行有无对比时的参照值。在未来不确定时,Y和Qf通常都是会偏离期望值的。

对于Y和Qf两者间的关系,我们假定是正相关的。这是符合全球经济发展到现阶段的实际情况的,也就是说,如不实行减排计划,一国更大的经济规模就意味着更大量的温室气体排放。

我们进一步假设经济规模和温室气体排放同比例增长,这在考虑当今较短的历史时期时是适合的,即

=(4)

这里,Y0和Q0表示基准年的经济总量和排放。在这个前提下,我们使用一个假想的数值例子来进行绝对限制和强度限制的减排效果分析。

假设一国减排基准年的经济总量Y0=y百万美元,温室气体排放量Q0=q吨碳当量,那么在基准年排放强度γ0=吨碳当量/百万美元。又假设在所拥有的信息集θ下预期经济总量在未来时点比基准年增长50%,即Eθ[Y]=1.5Y0=1.5y,根据前面式(4),相应有Eθ[Qf]=1.5Q0=1.5q。

政策制定者根据以上的情况设定排放限制目标,假设希望达到的强度限制是基准年强度的60%(即温室气体排放强度下降40%),那么,γ=0.6γ0=0.6吨碳当量/百万美元,与其等价的绝对限制目标是Q=γEθ[Y]=0.9q吨碳当量。

对于未来的不确定性,我们考虑两个方向的:一是实际增长不及预期,我们假设实际增长40%;再者是实际增长超过预期,我们实际假设增长60%。根据以上的设定,可计算出一系列数值如表1:

为说明不同程度的强度限制可能带来的影响,在其它条件不变的情况下,改变强度限制为,γ=0.8γ0=0.8吨碳当量/百万美元,再次计算各个数值,作表2。

对以上两个表进行分析:

1.从排放额度(Q与γY)上分析。不论实际与预期是否偏离,根据定义,绝对限制都保持为一个固定量,不随承诺期可能发生的经济不确定性变动。强度限制的排放目标在经济增长不及预期时会调低,相当于紧缩了温室气体排放量,而在经济增长超过预期时会调高,相当于放宽了温室气体排放量。

2.从减排效果(AA与AI)上分析。不论是绝对限制还是强度限制,在经济增长不及预期时,减排效果不如预期水平;在经济增长超过预期时,减排效果也超过预期水平。两者对比,还可以发现,对于经济波动,绝对限制的减排效果波动较大,而强度限制的减排效果波动较小。可以说从减排效果来看,强度限制更能够应对经济波动,保持较为稳定的减排效果。

3.不管排放强度降到基准年的60%还是80%,这种影响都是对整体的紧迫程度施加的,并不影响上述两点的结论。

三、结论和建议

从排放额度上看,绝对限制的目标是刚性的,如果认为全球在未来一段时期的温室气体排放应该严格控制在一定量之内,那么,绝对限制对达到这样的目的是具有约束力的。这往往是视气候与环境问题重于发展问题时得到的结论,所要关心的主要是一定量的排放额度在全球的分配问题。

如果认为发展问题和气候与环境问题应该兼顾,或者发展问题是一个更重要的问题的话,那么强度减排确定的排放额度是更具灵活性的。当经济发展较快时,排放可以允许适当增多;当经济发展较慢时,排放也适当减少。这能够很好应对经济发展的不确定性。这些不确定性受整个国际经济大环境影响,同时也会因国家所处的发展阶段不同而有所差异。尤其是对于发展中国家,强度限制的目标既可以使它们参与到减排中来,也可以很大程度消除它们对不确定性的担忧。

从减排效果上看,在经济增长面临不确定的情况下,强度限制可以使减排保持相对平稳的效果。如果我们认为一国达到一定的发展阶段(例如,工业化基本完成的目标,人民生活质量的目标)必须要在经济总量上达到一定水平的话,那么它一定也会产生一定量的排放。强度限制的优势就在于把减排的努力合理分配在发展时期中――经济发展快时,对应较高减排,又不致过高;经济发展慢时,对应较低减排,又不致过低。而绝对限制可能会过紧造成负担,或者过松导致努力不够,这样经历几个时期之后的加总很可能使减排效果与发展进程偏离较大。从这点上也可以看出,发达国家在达到现阶段的历史过程中,完成了经济总量上的进程,而没有付出相应的减排努力。所以对于发达国家现阶段的减排目标,国际上也一直在讨论怎样才是合理的。而对于发展中国家,根据前面的分析,要加入到减排目标制定中,在现阶段采取强度限制比绝对限制更合适。

简单来说,得到的结论和建议是:首先,发展中国家现阶段更适宜采取强度限制的目标,这能够使得更多国家参与到减排中来,迈出有意义的第一步,而不必存有过多担心;其次,采取强度限制的具体标准应由各国根据本国实际情况制定,这个标准的宽与严对减排效果影响很大,所以也应该参照相似国家的目标,并参考科学研究对排放量与气候环境状况的分析结论;第三,由于发达国家的经济总量已经达到了一定的阶段,发展问题不像工业化国家那么迫切,所以绝对限制和强度限制差别不是很大,但考虑到其排放量的基数,不管采取何种形式的限制,发达国家都应该承担起较发展中国家更多的减排责任。

四、留待进一步讨论的问题

在本文的讨论框架下,笔者认为有两个问题可以进一步讨论研究。

第一,经济规模和温室气体排放的相关关系。本文只讨论了同比例增长情况,而且为了说理的简便,只给出了虚拟的数值例子。对于同比例增长的情况,是可以用更一般化的方式证明前述结论的。而对于其他形式的相关关系,也是可以进行研究的,限于篇幅,这里暂不详述。简单说,经济发展到一定阶段之后,由于经济结构、技术进步等一系列原因,等量经济增长本应产生的排放可能是越来越少的。这是值得进一步讨论的。

第二,排放限制可以有其他形式,比如,绝对限制与强度限制的混合形式,或者分段函数的形式。这些形式也各有其特点,而且可能在一定的环境下,要优于本文所讨论的两种形式。这个也是值得深入研究的。

另外,进行实例的说明论证可能也是有很大帮助的。

参考文献:

[1] Sue Wing, Ian.; Ellerman, A. Denny.; Song, Jaemin. 2006. Absolute vs. Intensity Limits for CO2 Emission Control: Performance Under Uncertainty. MIT Joint Program on the Science and Policy of Global Change. Report no.130.

第5篇

(一)对温室气体排放进行规制缺乏法律依据

在我国,如何对二氧化碳为代表的温室气体进行法律规制,一直在理论上存在着广泛的争论。如常纪文认为‘匕旦二氧化碳在立法上被作为污染物质,西方发达国家就会要求我国的环境立法建立排放标准和超标排放处罚制度,这将不利于我国工业的发展。胡苑、郑少华也认为“在《大气污染防治法》中不宜将二氧化碳界定为污染物。”李艳芳主张“我国不宜将二氧化碳等温室气体作为空气污染物由《大气污染防治法》加以规定,而应当选择制定专门的低碳发展促进法或者气候变化应对法”。与此相对的是,孟伟主张“将温室气体排放作为环境问题纳入大气污染防治法的修改内容,并设控制温室气体排放专章。姚莹则认为“规制温室气体排放的专门立法的缺失需要已有的单行法进行功能补位《大气污染防治法》是最优选择。

在我国的《大气污染防治法》修订过程中,2014年6月提交国务院的《大气污染防治法(修订草案送审稿)》除了第2条关于协同控制、综合管理的规定之外,还专门辟出专章,在第六章对温室气体的排放控制进行规定。主要涉及到控制温室气体排放的原则和规划、调整产业结构、管理能源效率、探索推广低碳技术、能效标识管理、增强碳汇功能以及国际合作等内容。然而在后来的修订草案和最终公布的《大气污染防治法(修订案)》中,关于控制温室气体排放的章节被全部删去了,与温室气体排放直接相关的内容仅剩下第2条关于协同控制的规定。

可以说,目前以二氧化碳为代表的温室气体在我国没有国内法律法规对其直接进行规制。《京都议定书》作为国际社会应对气候变化的法律武器,在附件中明确列明了以二氧化碳为代表的六种温室气体,但是我国作为发展中国家根据共同但有区别责任原则在其中并没有直接的减排义务。虽然温室气体在此次修订中被首次引入《大气污染防治法》,但是协同控制的提法是将温室气体与大气污染物并列,实际上承认了温室气体与大气污染物在法律地位上的差异。我们可以依据《大气污染防治法》对大气污染物进行管控,但还不能依据该法对温室气体的排放进行管控。因此,对温室气体进行严格的排放数量控制,目前还没有直接的法律依据。

(二)大气污染与气候变化分别由不同机关管控

温室气体排放引发的气候变化是一个全球性的公共问题。虽然我国温室气体的排放缺乏法律规制,但是为做好应对气候变化工作,国家发展和改革委员会(以下简称国家发改委)在2008年机构改革中设立了应对气候变化司,其主要职责包括了综合分析气候变化对经济社会发展的影响,组织拟订应对气候变化重大战略、规划重大政策和牵头协调、组织、承担应对气候变化的有关具体工作。发改委在“十二五”期间,积极采取强有力的政策行动,有效控制温室气体排放,增强适应气候变化能力,推动应对气候变化各项工作取得重大进展。目前发改委正在编制“十三五”控制温室气体排放工作方案。

在大气污染法律规制方面,控制大气污染物的排放是《大气污染防治法》的主要手段,也曾经是目的。自从20世纪70年代我国设立环境保护部门以来,经历了环保小组、环保局、环保总局和环保部等组织形态,但负责大气环境污染防治的监督管理一直是其基本职能。总体而言,新《大气污染防治法》在立法理念、实现目标、制度设计、法律责任等方面都有了较大进步,将会成为减少大气污染物排放、改善大气环境质量的有力武器。除了要求加强对燃煤、工业、机动车船、扬尘、农业等领域大气污染的综合防治外,还明确了对颗粒物、二氧化硫、氮氧化物、挥发性有机物、氨等大气污染物的排放控制。根据新《大气污染防治法》规定‘县级以上人民政府环境保护主管部门对大气污染防治实施统一监督管理”。目前我国在大气污染物与温室气体排放控制上实行的是分头管控的模式。这与协同控制的要求显然是存在较大差距的。

(三)大气污染物与温室气体在治理目标上也有差别

第6篇

(一)碳排放权制度和碳税制度的理论基础与争议情况

碳排放权制度将排放温室气体确定为一种量化权利,通过权利总量控制、初始分配与转让交易推动温室气体减排;碳税制度根据化石能源的碳含量或者二氧化碳排放量征税,以降低化石能源消耗,减少二氧化碳排放。二者的理论渊源,可分别追溯至科斯定理与庇古定理。环境经济学理论认为,经济活动的负外部性是环境问题的重要成因,即经济活动对环境造成负面影响,而这种负面影响又没有体现在产品或服务的市场价格之中,致使市场机制无法解决环境污染问题造成“市场失灵”[4]。如何将负外部性内部化,存在科斯思想与庇古思想的路径之争。科斯思想是通过交易方式解决经济活动负外部性的策略。科斯认为,将负外部性的活动权利化,使其明晰与可交易,市场可对这种权利作出恰当配置,从而解决负外部性问题[5]。基于科斯思想,碳排放权制度的作用机理得以展现:首先确定一定时期与地域内允许排放的温室气体总量,然后将其分割为若干份配额,分配给相关企业。配额代表量化的温室气体排放权利,若企业实际排放的温室气体量少于其配额所允许排放的量,多余的配额可出售;若企业实际排放温室气体量超出其配额,则必须购买相应配额冲抵超排部分。通过总量控制形成的减排压力和排放交易形成的利益诱导,可有效刺激企业实施温室气体减排[6]。1997年,《京都议定书》确立“排放权交易”“清洁发展机制”“联合履行”3种灵活履约机制,碳排放权交易作为一种温室气体减排手段首次在国际法层面得到认同①。欧盟2003年通过第2003/87/EC号指令决定设立碳排放权交易体系,作为实现减排承诺的主要方式。庇古思想通过税收方式解决经济活动负外部性。企业在生产过程中排放温室气体导致气候变化,恶果由全社会共同承受。若政府根据温室气体排放量或与之相关的化石能源碳含量征税,使气候变化方面的社会成本由作为污染者的企业负担,企业基于降低自身成本的经济利益考量,将采取有效措施控制温室气体排放;同时,所征税金可用于支持节能减排技术的研发与应用,抑制负外部性,激励正外部性,实现环境保护[7]。1990年,芬兰在世界范围内率先立法征收碳税,随后瑞典、荷兰、挪威、丹麦等国效仿[8]。有意见认为碳排放权制度与碳税制度是相互替代关系,在温室气体减排领域,只能二选一。在美国,有学者主张采用碳税减排[9],另有学者的观点相反[10]。立法者犹疑不决,在第110届国会,就有Lieberman-Warner法案(S.2191)、Waxman法案(H.R.1590)等数个立法草案要求设立碳排放权制度,Stark-McDermott法案(H.R.2069)、Larson法案(H.R.3416)则要求采用碳税制度[11]。中国学界在此问题上的观点亦是针锋相对,碳排放权制度与碳税制度各有学者支持[12]。也有意见认为碳排放权制度与碳税制度可在温室气体减排领域协同适用。持这一意见的学者内部,有不同的观点:对同一排放源,碳排放权制度和碳税制度可重叠适用,二者并行不悖①;碳排放权制度和碳税制度各有作用空间,不同类型的排放源应受不同制度规制[13]。中国作为世界上最大的温室气体排放国,面临减排重任,认真对待碳排放权制度与碳税制度的关系论争具有重要意义。

(二)碳排放权制度与碳税制度的应然关系

从1990年芬兰引入碳税至今已20余年,从2005年欧盟开始实施碳排放权交易至今也已9年。结合理论与实践,在经济激励型制度内部,碳排放权制度与碳税制度不是相互替代关系,二者可在温室气体减排领域协同适用;但碳排放权制度与碳税制度各有其适用范围,二者不宜针对同一排放源重叠适用。原因在于碳排放权制度与碳税制度各有其优劣,优势互补,可最大程度地发挥减排的激励效果。

1.对大型温室气体排放源采用碳排放权制度

第一,碳排放权制度能够更有效地实现温室气体减排目标。碳排放权制度与碳税制度的作用原理相异,前者是通过总量控制确保减排目标实现,再由市场决定碳排放的价格,后者则是通过碳税税率确定碳排放的价格,再由市场决定减排效果如何。碳税如欲产生理想的环境效果,其税率之高必须足以使企业采取温室气体减排行动,同时又不致过分影响经济发展。在实践中,由于受信息不对称等因素制约,政府事先很难恰当地确定碳税税率,碳税的减排成效具有不确定性。征收碳税虽然可以取得减排效果,但减排成效不能充分实现。如丹麦原本计划通过征收碳税在1990年碳排放水平的基准上减排21%,实际却增长6.3%[8];挪威1991年开始征收碳税并将之作为减排的主要手段,但1990年至1999年碳排放量不降反增19%[14]。碳排放权制度因实行温室气体排放总量控制,减排效果事先确定。如实施碳排放权交易的欧盟2009年在1990年排放水平上实现减排17.4%,在2008年的排放水平上减排7.1%[15]。《联合国气候变化框架公约》强调要把大气中的温室气体浓度稳定在一个安全的水平,这一目标意味着到2050年世界碳排放量须比目前降低至少50%[16]。显然,碳排放权交易制度更有助于目标的实现。

第二,碳排放权制度有助于降低减排的社会总成本。企业之间的减排成本具有差异性,如生产技术集约的企业通过技术改良进行减排的空间较小,相对生产技术粗放的企业其减排成本较高。在碳排放权制度下,减排成本高的企业可通过购买碳排放权的方式实现由减排成本低的企业替代其进行减排,从而使减排的社会总成本最小化。美国曾以排放权交易的方式推行二氧化硫减排,结果不仅超额完成减排目标,而且相对命令控制型手段,每年节省成本至少10亿美元[17]。碳税因为无法交易,不具有降低社会减排总成本作用。

第三,碳排放权制度更有利于实现温室气体减排的国际合作。气候变化是全球问题。《联合国气候变化框架公约》将控制温室气体排放确立为共同责任。碳排放权制度可为各国协作实施减排提供可靠的制度平台,欧盟碳排放权交易体系即为区域内各国合作进行温室气体减排的范例。征收碳税涉及各国国家,难以进行合作。

第四,碳排放权制度能够获得更广泛的社会认同。碳税制度建立在企业承受不利益之上,企业被动缴纳碳税而不能直接从中受益,对征收碳税难免有所抵触。在碳排放权制度下,企业如能超额减排,多余的配额可以出售谋利。在碳排放权制度实施之初,往往实行权利免费取得,企业减排成本较低。相较于碳税,企业更青睐碳排放权制度。从民众角度而言,增加新的税种普遍受到抵制,征收碳税亦不例外。碳税的征收将增加能源生产成本,能源生产商通过涨价方式将新增成本转嫁至消费者,最终由民众为征收碳税“埋单”。实行碳排放权制度所导致的生产成本增加最终也由民众负担,但没有税收之名,来自民众反对声小,政治阻力相应也较小。越来越多的国家计划或已经引入碳排放权制度,实施碳税制度的国家也积极向碳排放权制度靠拢。韩国计划2015年引入碳排放权交易制度[18],挪威在2008年时将未受碳税规制的行业纳入了欧盟碳排放权交易体系[7],澳大利亚计划在2015年将碳税制度转换为碳排放权制度[19]。既然碳排放权制度和碳税制度适用于大型温室气体排放源减排不存在理论上的障碍,能否对大型温室气体排放源重叠适用此两种制度?2012年《气候变化应对法》(征求意见稿)第12条规定有碳排放权制度,要求企事业单位获取碳排放配额,排放温室气体不得超过配额数量,节余的配额可以上市交易;第13条规定国家实行征收碳税制度。起草者对二者关系的认识,体现在第13条第3款:“超过核定豁免排放配额排放且不能通过企业内部减增挂钩、市场交易手段取得不足的排放配额的企事业单位,除了依法缴纳碳税外,还应当就不足的排放配额向当地发展与改革部门缴纳温室气体排放配额费。”根据该款规定,同一企业若超额排放,不仅要缴纳碳税,还要缴纳温室气体排放配额费。换言之,同一企业不仅受到碳税制度的规制,还受到碳排放权制度的规制,碳排放权制度与碳税制度可针对同一排放源重叠适用。此种处理方式值得商榷。首先,从实践情况看,对某一碳排放企业单独适用碳排放权制度,只要制度本身设计合理,就足以产生良好的减排效果,无须碳排放权制度与碳税制度双管齐下,重叠适用的必要性不足,可谓“无益”。其次,在重叠适用的情况下,企业若选择从市场中购买碳排放权达到排放要求,还须另行承担缴纳碳税的成本;若选择通过改进生产技术减排,则不仅不需要从市场中购买碳排放权,还可以减少缴纳碳税的数额。如此一来,企业宁愿花费更多的成本改进生产技术减排,也不愿从市场中购买碳排放权,造成碳排放权需求的萎缩。缺乏需求,活跃的碳排放权市场不可能建立,碳排放权制度减少社会减排总成本的功能也无从谈起。从历史实践看,为解决因二氧化硫排放导致的酸雨问题,财政部、原国家环保总局曾实施《排污权有偿使用和排污交易试点实施方案》,在电力行业试行排放权制度,试图通过二氧化硫排放权交易的方式实现减排。试点未取得预期效果,原因之一是电力企业购买排放权后仍不能豁免缴纳排污费(类似于碳税),企业宁愿治理污染也不愿从市场中购买排放权,实际上形成了排放权“零需求”局面。电力企业普遍惜售排放权,又几乎形成了排放权“零供给”局面[13]。

此外,在重叠适用的情况下,企业既要为碳税付费,又要为碳排放配额付费,增加了经济成本,对经济发展冲击未免过大。综观各国立法例,没有对同一排放源重叠适用碳排放权制度与碳税制度的先例。采用碳排放权制度的欧盟虽允许各成员国采用碳税措施,但明确规定碳税只适用于碳排放权交易未能覆盖的设施①;征收碳税的挪威加入欧盟碳排放权交易体系,参与交易的只是碳税所没有覆盖的行业。中国企业承担碳税与碳排放权双重成本,减损中国产品在国际贸易中的价格优势,可谓“有害”。总之,对大型温室气体排放源应适用碳排放权制度减排,且不宜碳排放权制度与碳税制度重叠适用。即使从便于操作等角度考虑对大型排放源暂时采用碳税制度减排,也应在条件成熟时逐步转换为碳排放权制度,并且在转换完成后不再继续对大型排放源征收碳税。

2.对中小型温室气体排放源适用碳税制度

相对于碳税制度,碳排放权制度具有明显优势,但也存在局限,主要是机制设计复杂,运作成本较高碳排放权制度的运行过程可分为碳排放权总量控制、初始分配和转让交易3个环节,每一环节的成本均不低廉。美国以排放权交易的方式成功实现二氧化硫减排,其经验之一就在于要求所有受管制实体安装污染物排放连续监测系统,确保能够真实记录企业的排放数据[20]。对企业温室气体排放的监测、报告和核证,须耗费人力、财力和物力。因为碳排放权交易运作成本高昂,为确保制度效率,在确定碳排放权制度的覆盖范围时只能“抓大放小”,即只将温室气体排放量大的大型企业纳入管制范围。如欧盟第2003/87/EC号指令设定参与碳排放权交易的门槛条件,要求纳入交易范围的燃烧装置功率在20MW以上,造纸工厂的日产能超过20吨②,等等。对于碳排放权制度所不能覆盖的中小型排放源,若不对其碳排放加以任何管制,一方面可能造成企业之间不公平,违背平等原则;另一方面众多中小型排放源碳排放积少成多,不能确保取得减排①§25740ofCaliforniaPublicResourcesCode(2011)。效果。碳税根据排放源的化石能源消耗量或二氧化碳排放量征收,并借助既有税收征管体系施行,机制运作简单、成本相对低廉。因此,对碳排放权制度所不能涵盖的中小型排放源,可通过征收碳税使之承担碳排放成本。例如,为数众多的机动车是二氧化碳的重要排放来源,但因其性质所限难以纳入碳排放权交易。实践中,欧盟成员国西班牙和卢森堡于2009年开始征收机动车碳税[21]。

二、碳排放权制度、碳税制度与低碳标准制度之关系

(一)低碳标准制度的理论与实践

低碳标准是在综合考虑科学、经济、技术、社会、生态等因素的基础上,经由法定程序确定并以技术要求与量值规定为主要内容,以减少温室气体排放为主要目的的环境标准,是技术性的环境法律规范。国家通过制定与实施低碳标准,对管制对象在生产、生活中的碳排放提出量化限制或技术要求,并以法律责任保障这些量化限制或技术要求得到遵守,从而产生碳减排效果。这一过程的实质,是科予管制对象减排的法律义务,以义务主体履行法律义务的方式达到法律调整目标。低碳标准如欲取得实效,法律责任的合理设置不可或缺。在传统环境治理中,环境标准所属的命令控制型手段曾长期居于主导地位。即使在碳排放权与碳税等经济激励型制度兴起之后,低碳标准仍不丧失其意义,因为相对于碳税制度中存在合理确定税率、碳排放权制度中存在合理进行总量控制等复杂疑难问题,低碳标准有更多简便易行之处。实践中,欧盟与美国在温室气体减排方面都采用有低碳标准,如欧盟要求轻型机动车生产企业出产的小客车在2015年前达到行驶每千米排放不超过135gCO2的标准(135gCO2/km),到2020年进一步降低至行驶每千米不超过95g(95gCO2/km)[22];美国加利福尼亚州为实现2050年在1990年碳排放水平上减排80%的目标,设定了可再生能源比例标准(renewableportfoliostandard),要求到2020年受管制设施利用替代能源量占其能源总量的33%①。

(二)碳排放权制度与低碳标准制度的应然关系

碳排放权制度与低碳标准制度各有其适用范围,对于同一排放源,不能同时适用。

1.在无法适用碳排放权制度

减排的领域,可适用低碳标准制度。温室气体减排可从多个领域着手,而碳排放权制度因机制设计复杂,适用范围有限。碳排放权制度要求精确统计排放源的碳排放量,在某些领域这一要求的实现或者不可能或者不经济。例如,数量庞大的居民建筑消耗能源是大量温室气体排放的最终来源,若对建筑朝向、太阳辐射、建筑材料等因素进行综合考虑,设计出低能耗建筑,无疑有助于减少温室气体排放。这一目标,通过碳排放权交易显然难以实现,通过要求居民建筑的设计和建造必须符合一定节能标准的方式则易于达到。低碳标准的适用领域广泛,对碳排放权制度无法覆盖的领域,可通过低碳标准制度减排。2012年《气候变化应对法》(征求意见稿)第42条规定交通工具应当符合温度控制标准、节能标准、燃油标准和温室气体减排标准;第43条规定城镇新建住宅应当符合国家和地方新建建筑节能标准。

2.在适用碳排放权制度

减排的领域,不应再适用低碳标准制度。根据碳排放权交易实现减排的作用原理,在实施碳排放权制度时,企业可基于成本收益的考量,自主决定是通过自行减排的方式还是从市场中购买碳排放权的方式达到排放要求,自主决定是采取此种措施减排还是彼种措施减排。易言之,碳排放权制度不要求所有企业一律减排,企业具有自主选择的灵活性,可以采用此种方式减排也可采用彼种方式减排,只要企业的碳排放总量不超出其配额拥有量即可。碳排放权制度所具有的降低社会减排总成本的功能,正是建立在企业可根据自身实际情况自由选择低成本的措施达到碳排放要求的基础之上。在低碳标准制度下,所有企业不论减排成本高低,一律被强制要求达到某种碳排放标准,或者符合某种技术要求,企业没有自主选择决定的空间。对某企业适用低碳标准制度,该企业就不能自由选择减排与否与减排方式,从而有碍碳排放权制度发挥作用。由此可见,碳排放权制度的柔性与低碳标准制度的刚性具有内在的冲突,对同一排放源二者不能同时适用,否则低碳标准制度将会给碳排放权制度的实施造成羁绊。这一点已经为中国与美国曾经开展的二氧化硫排放权交易实践所证明。中国《两控区酸雨和二氧化硫污染防治设施“十五”计划》要求137个老火电厂全部完成脱硫设施建设[13]。强制要求电力企业安装脱硫设施减排,与排放权制度下企业可自行决定不减排而从市场购买排放权达到排放要求以及可自主选择减排方式的机理明显相悖。在制度设计上未尊重排放权制度,又怎能期待其在实践中发挥作用?美国以排放权交易的方式取得二氧化硫减排成功,就在于尊重了电力企业对减排与否与减排方式的选择权,没有以命令控制型措施干扰排放权交易制度的灵活性和成本效率性[23]。2012年《气候变化应对法》(征求意见稿)对碳排放权制度与低碳标准制度关系的处理,集中体现在总则部分第13条第1款:“国家对能源开采和利用实行总量控制制度。企事业单位利用能源不得低于国家或者地方规定的低碳标准,排放温室气体不得超过规定的配额。”根据规定,企事业单位同时适用低碳标准与碳排放权制度。如此规定之下,碳排放权交易难以顺畅运行,其实施效果亦难保障。《气候变化应对法》应合理界定碳排放权制度与低碳标准制度各自的作用范围。一旦决定对某一行业采用碳排放权制度减排,就应当尊重碳排放权制度的作用机理,让低碳标准制度退出该领域。

(三)碳税制度与低碳标准制度的应然关系

碳排放权制度与低碳标准制度不能针对同一排放源重叠适用,不影响碳税制度与低碳标准制度重叠适用。碳税制度的作用机理与碳排放权制度相异,其实施不要求赋予企业选择权,因此与低碳标准制度不相冲突。如果确有必要,碳税制度与低碳标准制度可针对同一排放源重叠适用。如对机动车按照单位里程的二氧化碳排放量征收碳税,并不妨碍对该机动车适用碳排放标准。碳税通过经济诱导的方式促使公众减少对机动车的使用,有助于降低温室气体排放量;碳排放标准对机动车的温室气体排放效率进行最低程度地控制,亦有助于温室气体减排,二者并行不悖。实践中,欧盟对轻型机动车制定碳排放标准,部分成员国如西班牙、卢森堡、葡萄牙等同时又对机动车征收碳税。2012年《气候变化应对法》(征求意见稿)第69条规定“凡是购买或者消费煤炭、石油、天然气、酒精等燃料或者电力的,都应当缴纳碳税”,结合第42条对交通工具适用低碳标准等其他规定可推知,起草者认同碳税制度与低碳标准制度可对同一排放源重叠适用。碳税与低碳标准可重叠适用,不意味着应当重叠适用。对某一排放源是否二者重叠适用,需视具体情况斟酌。

三、结语

第7篇

垃圾用于卫生填埋产生CH4释放量,可按IPCC1995推荐的经验公式,计算如下:ECH4=s×η×DOC×w×(16/12)×0.5(5)式中,ECH4为垃圾填埋场的CH4排放量,以填埋每吨垃圾产生的CH4千克数计;S为填埋垃圾场区域的垃圾产量,单位为t,η为城市垃圾填埋率(质量分数),单位为%;DOC为垃圾中可降解有机碳的含量,IPCC推荐发展中国家为15%,发达国家为22%;计算中取值22%,w为垃圾中可降解有机碳的分解率(质量百分比),IPCC推荐为77%。固态垃圾处理平均每吨耗能按电能计约231.3324kW•h。据调查,张家界旅游者平均每人每天产生固态垃圾1.12kg,张家界2010年旅游固体废弃物共释放6853.338kgCH4,即157626.8kgCO2-e,固态垃圾处理耗能释放15316920kgCO2-e,旅游固体废弃物共释放15474547kgCO2-e。张家界2010年旅游收入共计1253198万元,其中住宿231842万元、餐饮216803万元、游览268184万元、交通184220万元(市内交通72084万元,长途交通收入112136万元)、购物190486万元、娱乐135345万元。2010年旅游温室气体总排放量为244384030kgCO2-e,其中住宿温室气体排放占总排放量的49.72%,餐饮温室气体排放占总排放量的12.56%,游览温室气体排放占总排放量的4.27%,交通温室气体排放占总排放量的15.17%,购物温室气体排放占总排放量的5.49%,娱乐温室气体排放占总排放量的2.93%,用水温室气体排放占总排放量的3.52%,固体废弃物温室气体排放占总排放量的6.33%。2010年旅游总生态效率(为便于比较,旅游收入以美元为单位)为0.197125kgCO2-e/元、住宿0.357839kgCO2-e/元、餐饮0.096633kgCO2-e/元、游览0.026558kg-CO2-e/元、交通0.137427kgCO2-e/元、旅游购物0.048116kgCO2-e/元、旅游娱乐0.036159kgCO2-e/元。

结果分析

张家界的旅游温室气体排放主要由住宿、交通、餐饮构成,其中住宿产生的温室气体排放几乎占总温室气体排放量的一半。由于研究中主要考虑的是旅游目的地的温室气体排放,仅考虑了市内交通的温室气体排放,所以交通温室气体排放在总温室气体排放占据的比例低于住宿温室气体排放。因此要降低旅游活动在当地的温室气体排放应着重从旅游住宿着手,而要降低整个旅游过程的温室气体排放,则需要考虑更多的因素。与欧洲短途游客的生态效率相比,张家界旅游并不具有高效性,欧洲短途游客的生态效率通常低于0.1508kg-CO2-e/元(国外旅游生态效率一般在0.0131~1.6080kg-CO2-e/元,欧洲短途游客生态效率在0.0131~1.6080kg-CO2-e/元)。2010年张家界旅游收入中住宿占18.5%、餐饮占17.3%、游览占21.4%、交通占14.7%、购物占15.2%、娱乐占10.8%、其他占2.1%。张家界温室气体排放各部门所占比例分别为:住宿49.72%、餐饮12.56%、游览4.27%、交通15.17%、购物5.49%、娱乐2.93%、旅游用水3.42%、固体废弃物6.33%。结果表明:住宿、交通占总温室气体排放比例高于其在总收入中所占比例,游览、购物、娱乐占总温室气体排放比例低于其在总收入中所占比例,餐饮基本持平,旅游用水、固体废弃物处理产生温室气体,却对旅游收入毫无贡献。旅游各部门温室气体排放与对应的旅游收入之间是一种非线性关系。张家界旅游业不同部门间的生态效率存在一定的差异。生态效率较好的部门是游览、娱乐、购物。原因如下:张家界目前旅游发展还处于数量扩张阶段,旅游消费主要是门票消费,景区内游览能源消耗主要是电能,因此游览的生态效率较好。旅游线路以观光为主,主要的旅游吸引物是自然风光和民族风情,温室气体排放量较高的体验型和参与型项目有限,因此娱乐所消耗的能源和由此排放的温室气体有限;张家界旅游商品以中草药、土特产为主,旅游购物所产生的电能消耗较低。

提高张家界生态效率的发展策略

第8篇

关键词:沥青路面;能源使用;温室气体排放;养护

Eco-efficiency analysis of maintenance of asphalt pavement

Abstract:In this paper, for the purpose of maintenance durability, reducing energy usage and greenhouse gas emissions. The paper analysis the common diseases and their reasons of asphalt pavement and recommend several reasonable curing technology by comparing energy usage, greenhouse gas emissions and life extension of Asphalt Pavements rehabilitation and maintenance treatment to make reference for making rehabilitation and maintenance technology.

Keywords:Asphalt pavement, energy usage, greenhouse gas emissions, maintenance

1 引言

改革开放以来,我国高速公路发展迅速,公路在数量和质量上有了重大的突破,其中以国道主干线为重点的国家高等级公路建设快速发展,成为公路基础建设的主要标志。由于沥青路面的诸多优点,90%以上的高等级公路都采用沥青路面铺装。按照沥青路面的设计年限和我国交通环境的实际情况,沥青路面的早期破坏相当严重,制约着我国经济的快速发展。据有关资料显示:早期修建的高等级公路陆续要进行大修,每年有6000-7000公里的沥青路面需要维修和养护,并且这个数量在不断增加。今后若干年内,在公路网基本形成的情况下,大修和养护的规模将超过在建的规模[1]。

为了处理沥青路面各种病害,已经涌现处了很多不同的工艺技术:如薄罩面、微表处、石屑封层、裂缝处理、热拌沥青修复和温拌沥青修复等技术。对于一些技术,现阶段已经有了成功应用的经验,但就目前情况来看,对于施工工艺的选择主要考虑的是路面病害形式,很少从环境和能源的角度去考虑。2006年交通部颁发了《公路建设项目环境影响评价规范》,给公路建设项目环保工作提供了相应的规范[2] 。“十二五”是实现温室气体排放目标的关键期,在全世界能源即将用完和温室效应日益严重的趋势下,我们应该把能源消耗和温室气体的排放作为选择养护和修复工艺的重要指标之一。因此,文章对比分析了几种常用的维修养护工艺的能源使用、温室气体排放和使用寿命情况,从低碳环保和维修养护耐久综合考虑,推荐了几种合理的维修养护工艺,为制定养护策略提供参考。

2 沥青路面病害及其成因

早期病害是我国沥青路面的一大特点,这与我国的实际情况相关。为了能够更有效的进行养护,必须弄清楚病害的成因,对症下药。我国沥青路面的病害主要有:

(1)裂缝

裂缝是沥青路面最常见的病害之一。按照其成因不同分为横向裂缝、纵向裂缝和网状裂缝,横向裂缝又分为荷载裂缝与非荷载裂缝。荷载裂缝主要是由于路面设计不当或施工质量低劣,或者交通严重超载,致使半刚性基层沥青路面在反复的交通荷载下,沥青面层或者半刚性基层内产生的拉应力超过其疲劳强度而断裂[3],其主要表现为沥青面层温宿裂缝与基层反射裂缝。荷载裂缝首先在路面的低面发生,在车辆荷载反复作用下,裂缝逐点向上扩展至表面。

纵向裂缝产生的原因有两种情况:一是沥青面层分路幅摊铺,两幅接茬处未处理好,在车辆荷载与环境因素的作用下开裂;另一种是由于路基压实不均匀或者由于路基边缘受水侵蚀产生的不均匀沉陷引起的。网状裂缝主要是由于路面的整体强度不足引起的。路面设计不合理,路基路面压实不足,路面材料配比不当,路面出现横向会纵向裂缝未及时处理等都可能造成网状裂缝。

(2)车辙

车辙是渠化交通的高等级沥青路面的主要损害类型之一。车辙一般是在高温季节,沥青面层在车辆的反复碾压下产生永久变形和塑性流动逐点形成的。车辙通常是伴随着沥青路面压缩沉陷的同时,出现侧向隆起现象,对于半刚性基层沥青路面,由于半刚性基层具有较大的刚度,路面的永久变形主要发生在沥青面层中。因此,为了延缓车辙的形成,主要要从提高沥青面层材料的高温性能着手。

(3)松散剥落

松散剥落主要是指沥青从矿料表面脱落。在车辆荷载的作用下沥青面层呈现松散状态,以致从路面剥落形成坑槽。松散剥落产生的原因主要是由于沥青与矿料的粘附性较差,在水或冰冻的作用下,沥青从集料表面脱落。还有可能是由于施工过程中混合料加热温度过高,致使沥青老化失粘所致。

(4)表面磨光

沥青路面在使用过程中,在车辙反复滚动摩擦的作用下,集料表面逐点被磨光,有时还伴有沥青的不断上翻造成沥青路面表面磨光,尤其是在雨季常会因此而酿成车祸。。造成表面磨光的原因可能是集料的质地较软,缺少棱角或者矿料级配不当,沥青用量过多等。

(5)坑槽

沥青路面的坑槽是龟裂与松散等损坏进一步发展的结果。

3 维修养护措施及生态效应分析

目前针对沥青路面的病害已经涌现出很多维修养护工艺:如薄罩面、微表处、石屑封层、裂缝处理、热拌沥青修复和温拌沥青修复等。不同的维修养护工艺消耗的能量和排放的温室气体不同,在修复和养护时,一定要根据路面结构、工艺类型和需要材料的实际数量评估维修养护工艺的能源消耗和温室气体排放量。沥青、石料等材料的获取、加工、运输、储存以及混合料的拌合、成型都需要消耗大量的能量和排放大量的温室气体。有关资料显示:生产一吨沥青需要4900MJ的能量;生产一吨水泥需要4976MJ的能量;生产一吨集料需要40MJ的能量[4]。对于每一种工艺分析时,要考虑包括原材料获取、运输、加工、拌合以及维修养护施工等一个完整的过程。沥青路面维修养护的能源使用和温室气体排放情况如表1,各工艺延长路面使用寿命情况见表2。

从表1和表2可以看出:

在修复方面,温拌沥青修复的能量使用和温室气体排放都少于热拌沥青修复;各种养护工艺下,不同的工艺消耗的能量和排放的温室气体不同。从数据来看,HMA罩面和就地热回收消耗的能量和排放的温室气体明显多于其他养护工艺;5cm厚度的能量使用和温室气体排放明显多于3.8cm;石屑封层消耗的能量和排放的温室气体多于微表处理;裂缝密封和裂缝灌浆单位距离上消耗的能量和排放的温室气体相当;在所有养护工艺当中,雾封层消耗的能量和排放的温室气体最少,消耗能量最少为0.4MJ/m2,排放CO2最少为0.02kg/m2;各种工艺延长寿命情况不一,HMA薄罩面和就地热回收延长的寿命最长,可达5-10年,但这两种技术成本较高,消耗的能量和排放的温室气体都较多;而雾封层最短,大约为1年,消耗的能量和排放的温室气体则较少。

4 基于可持续的维修养护工艺选择

不同的病害类型有不同的处理方式或者同一种病害类型可能同时采用几种方式来处理,因此在进行养护维修时,不要盲目的选择施工工艺,应该对病害成因进行分析,考虑当地和工程实际情况选择一种或几种工艺,再通过其它的因素进行抉择。

由于路面维修养护成本占公路养护成本的比重较大,应优先做好路面养护成本的预测分析,运用成本管理原理, 建立相关线路交通流量、道路长度、通车年限、路面类型、地区因素等与路面养护成本之间的多元回归分析数学模型,针对预防性养护和专项工程养护方式,运用统计方法,推导各项因素的表达式,建立路面养护经费与交通量变量之间的依赖关系,以此构建路面维修费用模型,选择成本最低的预防性养护措施[5]。

根据前面对各种维修养护工艺的能生态效益分析情况,在选择养护工艺时,在成本选择的基础上慎重考虑各个工艺的生态效益。尽量做到减少对能源的消耗,减少温室气体的排放量,比如:温拌沥青(WMA)修复与热拌沥青(HMA)修复对比,就地热再生与就地冷再生对比等。同时考虑各工艺延长寿命情况,做到用最小的环境代价换取更大的经济效益。

5 结论

道路维修养护必不可少的要消耗能量和排放温室气体,但是如何把消耗和排放降到最低却是值得研究的问题。从上面分析看来,能源消耗和温室气体排放是>修复>养护。沥青路面WMA修复优于HMA修复;各种养护技术能量消耗和温室气体排放不尽相同,但是由于沥青路面往往是多种病害同时出现,养护技术的选择也可能不是某一种,所以应该尽可能的同时使用几种技术使能量消耗和温室气体排放最小化,使寿命延长最大化。

参考文献

[1]张争奇.高速公路沥青路面维修养护技术[M].第一版.北京:人民交通出版社,2010.

[2]吴光会,李浩东.浅谈公路环境影响评价及环境保护措施[J].吉林交通科技2009(3).

[3]艾思伟.沥青混凝土路面危害成因及防治措施[J].现代公路.2010,23(10).

[4]Jim Chehovits. Energy Usage and Greenhouse Gas Emissions of Pavement Preservation Processes for Asphalt Concrete Pavements[A].2009.

第9篇

关键词 户用沼气池;温室气体;农村能源;气候变化

中图分类号 TK6,X511 文献标识码 A 文章编号1002-2104(2008)03-0048-06

自工业革命以来,化石燃料的使用和土地利用变化使得大气中二氧化碳等温室气体浓度显著 增加,迫使人类开始采取行动减少温室气体排放。作为《京都议定书》的签约国之一,中国 积极应对气候变化,公布了《中国应对气候变化国家方案》,提出要改善能源结构,发展可 再生能源,并明确指出要大力加强农村沼气建设和城市垃圾填埋气回收利用以控制温室气体 排放。

发展农村沼气,不仅可以解决农村能源短缺问题、改善农业生态环境和农村卫生面貌、促进 农村经济发展,而且在减少温室气体排放方面也具有重要作用。由于沼气具有较高的热值, 并能替代煤炭、石油、天然气等化石能源及薪材、秸秆等生物质能源,可减少温室气体排放 [1,2]。此外,农村户用沼气池通过集中管理人和牲畜的粪便,进行厌氧消化处理 ,从而避免温室气体尤其是甲烷的排放[3,4]。

本文从沼气利用能缓解农村能源短缺问题及减少温室气体排放两个方面出发,利用1991以来 中国农村利用沼气的数据,分析其在农村能源可持续发展和温室气体减排中的作用。

1 农村沼气建设成就

中国农村家庭能源消费约占国家一次性能源消费的16.7%, 广大农村地区由于难以获得商品 性能源, 农村居民66. 7%以上的生活用能依靠传统的生物质能[5]。沼气是一种可 再生能源,在中国广大农村地区得到推广,作为农村炊事、照明等生活用能,成为农村居民 重要的非商品性能源。

我国农村沼气建设起步于20世纪70年代,初期阶段主要是解决农村地区严重的能源短缺问题 [6]。80年代中后期,为满足广大农民对清洁、方便和低成本能源的需求,沼气 建设以燃料 改进和优质化能源开发为主要目标。进入90年代,沼气技术与农业生产技术紧密结合,形成 了以南方“猪-沼-果”和北方“四位一体”为代表的能源生态模式,随着国家“生态家园 工程”和“能源环境工程”的开展,沼气建设在保护植被资源、农业废弃物污染防治和资源 高效利用等方面发挥重要作用。2002年以来,随着国家“小型公益设施补助资金农村能源项 目”和国债沼气建设项目的实施,农村沼气建设标志着进入了一个新的发展阶段。2005年中 央安排10亿元国债资金继续实施农村沼气国债项目,并将沼气建设与改圈、改厕、改厨相结 合,将沼气技术与高效生态农业技术相结合,改变农民传统的生产和生活方式,形成良性循 环。

2 计算方法

2.1 沼气利用节约的能源量计算

刘?宇等:农村沼气开发与温室气体减排 2008年 第3期首先计算历年生产的沼气能源量,即:以1991年到2005年中 国农村户用沼气建设所产生的沼气量数据为基础,根据沼气的平均低位发热量(20 908 kJ/ m3)、折标煤系数(0.714 kg coal-e/m3)、沼气密度(1.22 kg/m3)依次换算成沼气 的热值、标煤当量、沼气质量。

其次,根据历年农村生活能源消费结构计算出不同能源所占比重,然后由第一步所得 的沼气 能源量按照每年的能源结构比例分配到不同能源,得到每年沼气所替代的能源量。由此可以 分析农村沼气利用对于减少煤炭、油品、秸秆、薪柴、电力等能源的消费情况。

具体来说,以2005年为例,沼气产气量为65.0亿m3,其热值、标煤当量、沼气质量分别为 135 902 TJ、4.64×106 t标煤、7.93×106 t。而根据农村生活能源消费结构,可以计 算出如果没有这部分沼气,农村将消耗更多的其它能源,也就是说,2005年沼气利用节约的 能源量为:秸秆(44 928 TJ)、薪柴(32 057 TJ) 、煤炭(43 839 TJ)、电力(10 220 TJ ) 、成品油(2 834 TJ)、液化石油气(1 279 TJ)、天然气(57.32 TJ)、煤气(38.26 TJ)。

2.2 温室气体减排量计算

沼气使用在节约能源消费的同时,还能够减少温室气体的排放。其一,煤炭、秸秆、薪柴等 农村普遍使用的生活能源的排放因子大于甲烷(沼气的主要成分),因此同样热量的能源消 耗,使用沼气所排放的温室气体较少,如果沼气能替代煤炭等高排放潜力的能源,自然 达 到减少温室气体排放量的效果,减少的这部分温室气体量为ERES(Emission Reductio n from Energy Substitution);其二,在农村利用沼气过程中,往往通过“一池三改” 实现了人 与牲畜粪便的集中管理,利用其在厌氧环境下产生的沼气,从而避免了分散或露天管理粪便 而逸散到大气中的甲烷,减少的这部分温室气体(主要是甲烷)为ERMM(Emission Reduct ion from Manure Management)。此外,沼气作为生活能源燃烧也会释放出二氧化碳等温 室 气体,这部分温室气体本文称为EBC(Emission from Biogas Combustion)。扣除EBC之后的 ERES与ERMM总和即为沼气利用净减少的温室气体排放量。

ERES的计算参考IPCC推荐的方法,即能源利用导致的温室气体的排放量由能源利用量(FS)及 其排放因子(EF)决定[7,8]:

ERESGHG,fuel=FSfuel×EFGHG,fuel(1)

ERES的计算关键在于排放因子的合理选取,由于不同国家和地区农村生活能源利用效率、炉 灶结构、农民生活习惯不同,因此IPCC推荐的默认值针对不同国家可能会产生较大误差,必 须采用本国甚至本地区的排放因子。Zhang J et al 公布了中国家庭炉灶温室气体的排放因 子 ,通过实验分析了不同能源使用过程中排放的温室气体[9],本文计算以他们确定 的排 放因子为主,此外,还搜集了其他一些国别的温室气体排放因子[10,11,12]及 2006年国家发改委(NDRC)公布的《关于确定中国电网基准线排放因子的公告》。

由于不同作者提供的排放因子单位不一致,有的是以燃烧的能源量(g gas/kg)为单位,有 的是以消耗的能源热量(kg gas/TJ),在后者的计算中需要考虑到炉灶的能源利用效率问题 ,因此排放因子需要乘以能源利用效率得到单位能源排放的实际温室气体的量。

农村粪便主要排放的温室气体是甲烷,因此在粪便管理减少的排放量(ERMM)的估算中 ,N2O的排放量可以忽略。农村户用沼气池的原料以人畜粪便为绝大部分,因此,本文以如下公式计算粪便管理过程中甲烷的排放量[8],具体指标可参看 IPCC报告:

其中,1991-1999年农村每户平均养猪数从2000年中国统计年鉴数据获得,由于每年平均每 户有沼气池的农民家庭养猪数基本不变,故其它年份采用1991-1999年的平均值。对于MCF的 取值,根据中国所处的纬度及其气候特征,采用温带的最低值,农村采用的粪便管理方式一 般是液体/泥浆或者是粪池储存,因此采用IPCC 2006提供的数据MCF=27%[8]。由于 两种管理方式的MCF值相同,可以视为MS全部由一种管理系统,即MS=1。

此外,沼气的使用过程仍然会排放温室气体,主要的来源是作为生活能源提供者甲烷的燃 烧 会产生二氧化碳和甲烷(由于氧化亚氮的排放量极少本文没有计算),计算方法与ERES的计 算公式相同,由沼气燃烧量与其对应得排放因子决定(见公式1)。

以2005年为例,在各种能源节约量已知的基础上,根据每种能源对应的排放因子(表2), 并 结合其燃烧效率与低位发热值,利用公式(1)可以计算出CO2、CH4、N2O三种温室气体 的减排量,汇总可知ERES为:秸秆3 801.97 Gg、薪柴2 909.08 Gg、煤炭4 939.55 Gg、成 品油 213.77 Gg、液化石油气78.84 Gg、天然气3.88 Gg、煤气1.62 Gg、电力2 461.54 Gg, 合计2005年沼气利用因节约能源而减少14 410.25 Gg温室气体排放。

采用同样的计算方法,可知2005年沼气燃烧释放出5 931.64 Gg CO2与4.19 Gg二氧化 碳当量的CH4,共计5 835.83 Gg温室气体。

此外,利用公式(2)与公式(3)可计算出2005年1 700万拥有沼气池的农户由于粪便管理而减 少的温室气体为3 063.53 Gg,其中猪粪管理减少2 296.18 Gg CO2-eq CH4,人的粪便 管 理减排767.35 Gg CO2-eq CH4。因此,由以上2005年的ERES、ERMM及EBC数据可以计算 出全年净减少温室气体量(NER)为11 537Gg。

沼气池使用过程中,由于管道的老化和操作失误等原因,有可能会有甲烷的泄漏问题,如果 有详细的数据需要进一步考虑这个问题。不过这部分泄漏量非常少,农户为了 提 高沼气的利用率,会经常检查管道的密闭性,减少泄漏的可能性,因此计算时沼气泄漏量可 以忽略不计。

3 沼气利用效果分析

3.1 沼气利用节约的能源量

15年来,农村户用沼气产气量总计达398亿m3,提供能源量832 749TJ,由1991年 的23 251 TJ增加到2005年的135 902 TJ,年均供能55 517TJ,约占农村生活用能的0.4 8%。

由图1知,15年来,沼气利用节约的能源主要是秸秆273 199.24 TJ、煤炭270 292.99 TJ、薪柴19 7 492. 66 TJ、电力61 370.13 TJ、成品油17 619.04 TJ,其他能源节约量较少。秸秆、煤炭 、薪材、 电力的年平均替代量为18 213 TJ、18 020 TJ、13 166 TJ、4 091 TJ,而对于其它农 村生活用 能源,沼气的替代作用不明显。总体而言,由于沼气建设的推广,沼气产气量增加,使得沼 气在农村生活用能的比重逐渐增大。

3.2 沼气利用减少的温室气体排放量

3.2.1 能源替代减少排放量(ERES)

1991-2005年15年中沼气利用减少的温室气体共计88 064.02 Gg(千吨)二氧化碳当量,其 中 ,各种替代的能源减排量分别为:秸秆23 119.30 Gg,薪材17 921 Gg, 煤炭30 455.46Gg,油 品1 328.87 Gg, 沼气181.51 Gg, LPG494.58 Gg,NG24.42 Gg,煤气9.59 Gg,电力14709.89 Gg 。可见,煤炭的减排量最大,其次为秸秆、薪材、电力。每年沼气替代能源减排量由1991年 的2 467.24 Gg增加到了2005年的14 410.25 Gg,增长了484.06%。

由于煤炭在农村生活用能中的比重大,加上其二氧化碳的排放因子也大,导致其减排量最大 。秸秆的二氧化碳排放因子虽然小于煤炭,但是其消费量大,而且甲烷和氧化亚氮的排放系 数都大于煤炭,使得它的减排量也加大,居第二位。薪材和电力的减排量随后,而其它能 源在农村生活用能中份额很少,故其减排量比重不大。[KH+5mmD]注:N2O为7.24~42.32 Gg二氧化碳当量,相对于CO2和CH4,数值太小 ,图中显示不明显。[KH+2.5mmD]从ERES不同温室气体的组成来看,CO2占绝大部分,15年间CO2减排量为84 243.94Gg,占总 排放量的95.66%,CH4减排量为3 560.01 Gg(4.04%),N2O的减排量最少,为26 0.08 Gg,只相当于总减排量的0.30%(图2)。

据《中国应对气候变化国家方案》公布,1994年中国温室气体排放总量为40.6亿 t二氧 化碳当量(4 060 000 Gg),2004年排放总量约为61亿t二氧化碳当量(6 100 000 Gg)。本文数据表明, 在ERES中,1994年农村户用沼气建设避免了2 976.54 Gg温室气体排放,约占全国总排放量 的 0.07%,2004年沼气利用减少排放量为14 410.25 Gg,减排比重达到全国的0.24%,也就 是说 ,随着农村沼气的推广,节约的农村生活能源不断增加,减少的温室气体在全国总排放量的 比重越来越大,1994至2004年11年间增长了两倍多。

3.2.2 粪便管理减少排放量(ERMM)

由于将粪便集中在沼气池中处理,15年间总共避免了13 409.24 Gg二氧化碳当量的甲烷 直 接排放到空中,ERMM由1991年的383.05 Gg增加到2005年的1 932.00 Gg,平均每年减排 量为894 Gg CO2-eq(图3)

3.2.3 沼气利用过程排放量(EBC)

沼气在农民生活使用过程仍然会排放温室气体,主要是二氧化碳和少部分甲烷,氧化亚氮的 排放量很小,可以忽略不计。由表3可知,沼气燃烧过程排放的主要为二氧化碳,随着沼气 产气量的增加,排放量逐渐增大,2005年达到了5 931.64 Gg,而甲烷当年的排放量仅仅为4 .19 Gg,为二氧化碳排放量的0.07%。总共的温室气体排放量在这15年间为36 372.25 Gg 。

3.2.4 净减排量(NER)

净排放量为能源替代减排量与粪便管理减排量之和减去沼气利用排放量的值,由图4可见,1 9 98年以前净减排量增速较缓,1998年到2001年增加幅度加大,2001年以后迅速增加,达到了 2005年的11 537.94 Gg,年均净减排量为4 877.17 Gg,十五年总共减排量为73 157.59 Gg 。单位沼气产量的年平均净减排量为1.88 kg/m3,变化范围为1.76-2.11 kg/m3(图4)。 从绝对值来看,ERES最大,EBC其次,ERMM最小。以往的文献一般仅仅考虑了ERES[1,1 3], 但实际上,ERMM

仍然不能忽略,其对净排放量的贡献约为21.42%(18.52%~28.44%), 由此说明,如果仅仅考虑沼气的利用 能减少温室气体排放量只是由于能替代煤炭、石 油、天然气、秸秆、薪材等燃烧的排放是不够的,将会产生较大的误差。

与全国现有的两个总排放量数据对比来看,1994年沼气利用净减少温室气体2692.16Gg,2004年为9906.12 Gg,分别占当年全国总排放量的0.07%与0.16%,表明仅农村 户用沼气建设这 一项内容就能减少全国0.07%~0.16%的温室气体,充分显示了沼气开发在保护农村生态环境 、遏制全球气候变化的重要作用。

3.2.5 各省市自治区沼气利用中的温室气体减排量根据各省市区的农村生活能源消费量和户用沼气总产气量,按照同样的计算方 法计算出各省 市自治区1991-2002年的沼气利用导致的温室气体减排量(由于缺少2003-2005年的各地 农村生活能源消费量故只计算到了2002年)。

1991-2002年,全国各省市总净减排量为38 623.35 Gg,其中,四川、湖南、广西、湖 北、云 南、江西、江苏等省区减排量均超过了2 000 Gg,特别是四川省一支独秀,总减排量高达10 268.44 Gg,占全国总减排量的26.59%。受气候条件制约,、新疆、黑龙江、青海、内 蒙古等地的沼气开发很少,历年减排量之和都在24Gg以下(图5)。图5 1991-2002年各省市区净减排量

Fig.5 Net GHG emission reductions in China from 1991 to 2002 4 温室气体减排前景分析

2005年,农村户用沼气建设沼气总产气量达到了65亿m3,拥有沼气池的农户达1 700多万 ,为农民提供了135 902 TJ,即相当于4.64×106 t标准煤的热量,部分的满足了农 村对于优 质燃料日益迫切的需求,适应了富裕起来的农民从满足人的“生存需求”向“享受需求”转 变的形势[14]。根据王效华等人在江苏和安徽农村调查的结果,由于能源利用效率 的提高,建设了沼气池的农户家庭耗能要比没有沼气池的农户家庭耗能少40%以上[15 ],按照2005年沼气提供的能量为4.64×106 t标准煤计算,如果不利用沼气的话,这 1 700万户农民需要使用6.50×106 t其它能源来替代沼气。

“十一五”期间,中国通过实施生态家园富民行动,将在500个县(场)建设10 000个资源良 性循环的生态新村。根据中国农村沼气建设发展规划,到2010年,全国农村户用沼气达到4000万户,适宜农户普及率达到28.4%,到2020年力争使适宜农户普及率达到70%,基本普及 农村沼气。《规划》实施后,将有效提高农村优质能源的用能水平,使5 000多万农户使用 清洁燃料的比重达到80%以上,受益人口超过2亿。

由前文分析可知,单位沼气产量的年平均净减排量约为1.88 kg/m3,随着沼气建设和管理 技术的提高,户均产气量将会逐渐增加,取保守值2005年的390 m3/户,则2010年农村户 用 沼气总产气量将达到156亿 m3,温室气体净减排量将达到29 328 Gg,2020年户用沼气将 会到385亿m3,减排的温室气体将达到72 380 Gg。

5 结 论

农村沼气开发能提供清洁的非商品能源,节约煤炭、石油等化石燃料和秸秆、薪柴等低效率 生物质能的使用,缓解农村能源短缺困境,保护农村生态环境和保证农业可持续发展。在全 球气候变化形势越来越严峻的情况下,沼气开发还成为减少温室气体排放的一种途径。但是 ,目前的农村沼气普及率还不够(2005年为12%),需要多方面筹集资金,加大技术推广力 度和对农民扶持力度,以农村沼气建设为纽带,积极开展生态家园富民行动,并站在应对气 候变化的国家高度,促进户用沼气技术的发展,控制温室气体排放,不断提高应对气候变化 的能力,为保护全球气候做出新的贡献。(编辑:徐天祥)

参考文献(References)

[1]Zhang P D G Jia et al. Contribution to Emission Reduction ofCO2 and SO2 by Household Biogas Construction in Rural China [J]. Renewableand Sustainable Energy Reviews, 2007, 11 (8):1903~1912.

[2]Bhattacharya S C , Thomas JM et al. Greenhouse Gas Emissions and the M i tigation Potential of Using Animal Wastes in Asia [J]. Energy, 1997, 22(11): 1 079~1085.

[3]MontenyG J ,Bannink A et al. Greenhouse Gas Abatement Strategies for A animal Husbandry [J]. Agriculture Ecosystems & Environment, 2006, 112(2~3):163~170.

[4]Hou J, Xie Y et al. Greenhouse Gas Emissions from Livestock Waste: C hina Evaluation[J]. International Congress Series, 2006, 1293: 29~32.

[5]王效华, 冯祯民. 中国农村生物质能源消费及其对环境的影响[J]. 南京农业大学学 报, 2004, 27(1) :108~110.[Wang Xiaohua, Feng Zhenmin. Biofuel Use and Its En vi ronmental Problems in Rural Areas of China[J].Journal of Nanjing AgriculturalUniversity, 2004, 27(1):108~110.]

[6]方炎. 我国农村沼气建设发展战略研究[A]. 王锡吾. 农村沼气发展与农村小康建设 研讨会论文选编[C], 2003.[Fang Yan. The Development Stratagem for Rural BiogasConstruction[A]. Wang Xiwu. Analects of Rural Biogas Development and Rural We ll-off Construction Proseminar[C], 2003.]

[7]IPCC. Second Assessment on Climate Change[M]. Cambridge UK: Cambridge Un iversity Press,1996.

[8]IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories [R], I GES, Japan, 2006.

[9]Zhang J,Smith K R et al. Greenhouse Gases and Other Airborne Pollutantsfrom Household Stoves in China: a Database for Emission Factors[J]. Atmospher ic Environment, 2000, 34(26): 4537~4549.

[10]IPCC. Revised 1996 IPCC Guidelines for National Greenhouse Gas In ventories[R]. Bracknell, 1997.

[11]Bhattacharya S C S. Abdul P et al. Emissions from Biomass EnergyUse in Some Selected Asian Countries[J]. Energy, 2000, 25(2): 169~188.

[12]Bhattacharya S C , S Abdul P. Low Greenhouse Gas Biomass Options for Cooki ng in the Developing Countries [J]. Biomass and Bioenergy, 2002, 22(4): 305~ 317.

[13]Purohit P ,Kandpal T C. Techno-economics of Biogas-based Water Pumpingin India: An attempt to internalize CO2 Emissions Mitigation and Other Economi c Benefits[J]. Renewable and Sustainable Energy Reviews, 2007, 11(6): 1208~1 226.

[14]Yan L,Min Q et al. Energy Consumption and BioEnergy Developmentin Rural Areas of China[J]. Resources Science, 2005, 27(1): 8~14.

[15]Wang X,Di C et al. The Influence of Using Biogas Digesters on Fam ily E nergy Consumption and Its Economic Benefit in Rural Areas-Comparative Study Betw e en Lianshui and Guichi in China [J]. Renewable and Sustainable Energy Reviews,2007, 11(5): 1018~1024.

Rural Biogas Development and Greenhouse Gas Emission Mitigation

LIU Yu1,2 KUANG Yaoqiu1 HUANG Ningsheng1

(1.Key Laboratory of Marginal Sea Geology, Guangzhou Institute of Geochemistry,Chinese Academy of Sciences, Guangzhou

Guangdong 510640, China; 2.GraduateUniversity of Chinese Academy of Sciences, Beijing 100049, China)

相关文章
相关期刊