欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

人工智能网络教学优选九篇

时间:2024-01-31 16:35:49

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇人工智能网络教学范例。如需获取更多原创内容,可随时联系我们的客服老师。

人工智能网络教学

第1篇

【关键词】人工智能;诊断学教学;智能教学系统;智能组卷系统;智能阅卷系统;智能仿真教学系统

人工智能(artificialintelligence,AI)的概念最早是在1956年的Dartmouth学会上提出的,随着计算机核心算法的突破、计算能力的迅速提高以及海量互联网数据的支撑,目前已被广泛地应用于各个领域[1-2]。近年来,人工智能也给教育教学领域带来了机遇,人工智能+教育正如火如荼地开展和推进,改变着传统的教育形式及生态[3-4]。2018年教育部《高等学校人工智能创新行动计划》,各大高校在人工智能及其教育发展上有了纲领性的指导[5]。医学教育作为教育教学诸多领域的一隅,乘着人工智能发展的东风,各大高校在推进医学教学改革方面进行了大量积极的探索与尝试[6-8]。诊断学是由基础医学过度到临床医学的桥梁课,其教学质量的良莠直接影响到医学生的培养质量,传统的教学方法难以满足现代医学教学的要求,如何发挥人工智能的应用优势,让其更好地应用于诊断学的教学工作,也是诊断学课程教改的重要研究方向。

1传统的诊断学教学方法存在的问题

诊断学是学习临床基本技能最重要的一门课程,其内容包括症状学、体检检查、实验室检查及辅助检查等四大块,分为理论课和见习课,目前大多数医学院理论课采用的是以大班的形式在多媒体教室讲授,而见习课则采取分小组的模式进行,多年的教学实践发现该教学模式取得的教学效果不尽人意,尤其是近年来随着全国各大医学院校的扩招,出现了师资及教学资源配套的相对不足,上述教学模式的问题逐渐凸显。理论知识以老师讲授为主,采取的是“满堂灌”的教学模式,然而该部分教学内容知识点繁多,知识串联度不高,课堂灵活度、生动度较为薄弱,学生听完课以后对课程内容印象不深,知识掌握度差,同时由于学生的学习主观能动性差异大,不能进行课前充分预习的学生在课堂上更加难以跟上老师讲授的节奏。见习课是对理论知识进行实践,培养学生的实践操作能力,前期理论知识掌握度差又会影响见习的教学质量,导致教学过程形成恶性循环[9]。见习课主要采取老师讲授要领及演示操作流程,之后学生们互相练习的教学方法,该部分内容需反复加强练习,同样的动作要领反复锤炼才能熟练掌握,因课堂见习时间有限,而老师讲授及演示需占用大部分时间,学生动手实践机会不多,老师对学生的操作手法、操作内容、操作顺序等重要内容进行指导和勘误的时间少,学生操作的规范性难以保证,在以后的临床实践中,往往存在实践操作能力的缺陷。上述教学模式教师与学生们之间除了课堂时间,其余时间是脱节的,不能很好地沟通,学生们有疑问的知识点难以得到老师的及时解答,教学活动中没有充分反馈,各个教学环节难以进行教学反思,形成教学相长的良性循环。课后复习及阶段性总结复习是课堂知识内化及升华的重要方面,传统的教学模式通常是给学生布置课后作业,学生完成后上交由老师批改留档,这个环节学生与老师缺乏有效的沟通,且由于学生们学习主观能动性差异,课后没有老师的监督及针对性地辅导,课后作业的质量良莠不齐,教学质量欠佳是显而易见的。随着现代医学的发展及研究的开展,涌现了一大批新的诊断方法与手段,譬如关于肿瘤诊断的分子marker,评估预测疾病活动度及预后相关的指标,在临床上已经常规应用,但由于教材更新需要周期,很难跟新进展同步介绍,另外由于课时有限,难以全面地就学科前沿及新进展进行讲授[10]。

2人工智能应用于诊断学教学的重要意义

2.1教师方面

将人工智能应用于诊断学教学实践,削弱了教师的知识权威而强化了教师的价值引导,对教师的个人能力提出了更高的要求,促使教师踏实践行终身学习并持续更新自身知识结构。互联网高速发展的时代,知识呈几何指数更新并出现大爆炸,基于各种互联网即时通讯平台及手机APP,诊断学体格检查、理论知识讲授相关的小视频及研究进展不胜枚举,这就要求教师及时获取、更新知识并进行相应的知识储备。人工智能的应用促使教师从单人施教发展为团队施教,为开发更具个性化的课程教学注入团队的力量。基于大数据的人工智能可以减少诊断学教学过程中的机械性、重复性工作,如平时作业的批改、考勤统计等,减轻了教师的工作负担,教师可以将更多的精力投入到医德医风、医患沟通能力以及体格检查手法的规范化培养上,更多的心思放在丰富课程内容及教学形式上。同时大数据可以及时反应学生的学习动态,教师可以根据学生的反馈及课程评价有针对性地对学生进行相应的辅导。

2.2学生方面

将人工智能应用于诊断学教学实践,可以实时动态记录学生的学习情况及暴露的问题,如是否按时完成课程任务、测试中哪些知识点容易出错等,人工智能系统能够对这些数据进行关联分析和深度挖掘,并且可视化呈现相应的数据,有利于教师及时掌握学生的学习进度、参与度以及学习效果,并根据具体的学情分析数据来调整辅导和教学方案。基于人工智能强大的算法和分析,可以为学生定制个性化的教学内容及进度,提供更有针对性的课堂内容和随堂测试,并对测试及平时作业进行智能批改,真正做到查漏补缺。诊断学课程内容相对枯燥,学生们的学习兴趣有限,基于人工智能的教学方式可以寓教于乐,在课程中将一些比较零散的知识点可以设置成互动小游戏,营造出良好的课堂氛围,提高学生们的学习兴趣及学习效率。

2.3教学过程

针对教学过程,人工智能亦发挥着至关重要的作用。第一,诊断学作为桥梁课程,是一门必修课,包括临床医学五年制、八年制、法医学、基础医学等相应专业的学生均需要学习,人工智能拥有超强的计算能力和强大的“记忆力”,面对众多不同专业的学生,可以根据大数据进行分析,制定出适合不同专业学生的完备教学目标。教学活动开展过程中,人工智能还可以根据学生的课堂及课后测试表现,依据分层教学的要求自动设置梯次教学目标,帮助学生们逐步提升学习能力和知识掌握度。第二,人工智能可以凭借自身信息化的特点,对各种教学资源进行分析,为教师和学生选择更优质更合适的资源提供依据,促进个性化的教与学。第三,传统的教学方式、教学内容相对有限,人工智能基于大数据能够启发新的教学思路,创新教学方法,为诊断学教学提供更多的可能性。

3人工智能在诊断学教学中的应用

3.1智能教学系统

智能教学系统是教育技术学中重要的研究领域,其根本宗旨是使得学生的学习环境更加优良和谐,智能教学系统能够及时有效地调用最新最全的网络资源并充分优化后供学生学习,使得学生能够更加全方位、多角度地学习专业知识,提高学习效果[11]。智能教学系统大致由领域知识部分、教师部分及学生部分3个部分构成[12],其中领域知识部分又称为专家部分,这一部分既包含了需要讲授的内容及掌握的技能,又可以添加专家的学术成果,既能够保证学生对于基本概念、基本理论及基本技能的掌握,又能够拓宽知识面,增加知识的广度。智能教学系统的教师及学生部分主要是为设计和制定教学方案及策略服务,基于大数据基础上,根据课程的特点、历年教学情况、学生身心发展特点及学习实际情况,制定更加个性化、高效的教学方案,促成教师因材施教,取得更加理想的教学效果。

3.2智能网络组卷阅卷系统

诊断学教学内容包括理论和见习两大块,教学过程中教师的大量时间用于出题、阅卷、批改平时作业等与考核相关的工作,并且在出题过程中需要围绕相对固定的重难点内容不断创新题型,消耗教师大量的精力。智能网络组卷阅卷系统能够充分发挥其优势,将教师从繁冗的考核相关工作中解脱出来,使得教师的教学更高效,教师能够把更多的时间。智能网络组卷系统能够有效收集和分析知名高校教学团队编写的在线题库,实现教学资源的共享,通过随机抽题组卷、答案随机排序、题型随机排序以及设置避免与历年考卷重复等,显著提升试卷的质量,亦能改善考试作弊的顽疾,客观地考核学生对知识的掌握度。智能网络阅卷系统有简明的阅卷流程,能够更有效地识别试卷及答案,能够明显降低传统人工阅卷方式因疲劳带来的出错率,使得工作效率更高、考核结果更公正。

3.3智能仿真教学系统

诊断学教学的见习部分是学生提高技能的重要环节,常常采用分小组在病房完成的方式进行,在课程的开展过程也凸显出了各种各样的问题,譬如因学生分组进行询问病史、体格检查,重复次数多,患者难以多次配合;在教学时间段内病房缺相应的病种,无法对所学的症状进行直观的学习;传染病流行期间出于对学生健康安全的保护,无法进入病房见习等等,此时智能仿真教学系统能够发挥重要的补充作用[13]。人工智能可以根据提供的海量真实临床病例,由医学专家整合其临床特征,联合计算机专家,根据相应的教学要求,形成虚拟病人学习系统,学生在仿真诊疗环境中,进行问诊、体格检查、诊断以及给出治疗方案,同时系统能够自动发现学生在问诊及诊断过程中的错误,通过实践、纠错再实践,提高学生采集病史、体格检查的能力,同时能够加强学生的临床思维的训练,夯实临床基本功[14-16]。

4总结及展望

第2篇

1.1集先进性、实用性和前沿性为一体的教学内容改革对国内外优秀的人工智能教材[2-6]的内容进行整合,建立人工智能的知识体系,并提取人工智能课程的知识要点,确定集先进性、实用性和前沿性为一体的教学内容。人工智能的核心思想是研究人类智能活动规律和模拟人类智能行为的理论、方法和技术,因此人工智能应围绕“智能”这个中心。由于智能本身的复杂性,难以用单一的理论与方法来描述,因此可以通过建立人工智能的不同层次来刻画智能这个主题。人工智能的主要内容可按图1所示划分为最底层、抽象层、逻辑层和应用层这4个不同层次。在最底层,神经网络与演化计算辅助感知以及与物理世界的交互。抽象层反映知识在智能中的角色和创建,围绕问题求解对知识进行抽象、表示与理解。逻辑层提出学习、规划、推理、挖掘的模型与方式。应用层构造智能化智能体以及具有一定智能的人工系统。将人工智能划分为这4个层次可确定人工智能课程的教学内容,并保证教学内容的循序渐进。

1.2基于人工智能知识体系的教学案例库建设根据所确定的教学内容、知识重点和知识难点,从国内外经典教材、科研项目、研发设计、生产建设以及国内外人工智能网站等多种途径,收集案例素材,加以整理,撰写各知识要点的教学案例及其内容。表1给出基于人工智能知识体系的教学案例示例。

2人工智能课程教学案例的详细设计

在教学案例具体设计时应包括章节、知识重点、知识难点、案例名称、案例内容、案例分析过程、案例教学手段、思考/讨论内容等案例规范,分别从以下单一案例、一题多解案例和综合应用案例3种情况进行讨论。

2.1单一案例设计以人工智能课程中神经网络课堂教学内容为例,介绍基于知识点的单一案例的设计。神经网络在模式识别、图像处理、组合优化、自动控制、信息处理和机器人学等领域具有广泛的应用,是人工智能课程的主要内容之一。教学内容主要包括介绍人工神经网络的由来、特性、结构、模型和算法,以及神经网络的表示和推理。这些内容是神经网络的基础知识。其重点在于人工神经网络的结构、模型和算法。难点是人工神经网络的结构和算法。从教学要求上,通过对该章节内容的学习,使学生掌握人工神经网络的结构、模型和算法,了解人工神经网络的由来和特性,一般性地了解神经网络的表示和推理方法。采用课件PPT和演示手段,由简单到复杂,在学生掌握人工神经网络的基本原理和方法之后,再讲解反向传播BP算法,然后运用“手写体如何识别”案例,引导学生学习理解人工神经网络的核心思想及其应用方法。从国外教材中整理和设计该案例,同时应包括以下规范内容。章节:神经网络。知识重点:神经网络。知识难点:人工神经网络的结构、表示、学习算法和推理。案例名称:手写体如何识别。案例内容:用训练样本集训练一个神经网络使其推广到先前训练所得结果,正确分类先前未见过的数据。案例分析过程:①训练数字识别神经网络的样本位图;②反向传播BP算法;③神经网络的表示;④使用误差反向传播算法训练的神经网络的泛化能力;⑤一个神经网络训练完毕后,将网络中的权值保存起来供实际应用。案例教学手段:手写体识别的神经网络演示。思考/讨论内容:①训练改进与权值调整改进;②过学习/过拟合现象,即在一个数据集上训练时间过长,导致网络过拟合于训练数据,对未出现过的新数据没有推广性。

2.2一题多解案例设计一题多解案例有助于学生把相关知识点联系起来,形成相互关联的知识网络。以人工智能课程中知识及其表示教学内容为例,介绍一题多解案例的设计。知识及其表示是人工智能课程三大内容(知识表示、知识推理、知识应用)之一。教学内容主要包括知识表示的各种方法。其重点在于状态空间、问题归约、谓词逻辑、语义网络等知识表示方法。难点是知识表示方法的区别及其应用。从教学要求上,通过对该章节内容的学习,使学生掌握利用状态空间法、问题归约法、谓词演算法、语义网络法来描述和解决应用问题,重点掌握几种主要知识表示方法之间的差别,并对如何选择知识表示方法有一般性的了解。通过讲解和讨论“猴子和香蕉问题”案例,来表示抽象概念。该案例从国内外教材中进行整理和设计,同时包括以下规范内容。章节:知识及其表示。知识重点:状态空间法、问题归约法、谓词逻辑法、语义网络法等。知识难点:知识表示方法的区别及其应用。案例名称:分别用状态空间表示法与谓词逻辑法表示猴子和香蕉问题。案例内容:房间内有一只机器猴、一个箱子和一束香蕉。香蕉挂在天花板下方,但猴子的高度不足以碰到它。猴子如何摘到香蕉?如何采用多种知识表示方法表示和求解该问题?案例分析过程:①状态空间法的解题过程。用n元表列表示该问题的状态;定义问题的操作算符;定义初始状态变换为目标状态的操作序列;画出该问题的状态空间图。②谓词逻辑法的解题过程。定义问题的常量;定义问题的谓词;根据问题描述用谓词公式表示问题的初始状态、中间状态和目标状态。案例教学手段:猴子和香蕉问题的演示。思考/讨论内容:①选择知识表示方法时,应考虑哪些主要因素?②如何综合运用多种知识表示方法获得最有效的问题解决方案?

2.3综合应用案例设计与单一案例、一题多解案例相比,综合应用案例能更加有效地启发学生全方位地思考和探索问题的解决方法。以机器人行动规划模拟为例,介绍人工智能综合应用案例的设计,该案例包括以下规范内容。章节:人工智能综合应用。知识重点:人工智能的研究方向和应用领域。知识难点:人工智能的技术集成。案例名称:机器人行动规划模拟。案例内容:综合应用行为规划、知识表示方法、机器人学、神经网络、人工智能语言等多种人工智能技术与方法,对机器人行动规划问题进行描述和可视化。案例分析过程:①机器人行为规划问题求解。采用状态归约法与分层规划技术,将机器人须完成的总任务分解为若干依序排列的子任务;依据任务进程,确定若干关键性的中间状态,将状态对应为进程子规划的目标;确定规划的执行与操作控制,以及机器人过程控制与环境约束。②基于谓词逻辑表示的机器人行为规划设计。定义表达状态的谓词逻辑;用谓词逻辑描述问题的初始状态、问题的目标状态以及机器人行动规划过程的中间状态;定义操作的约束条件和行为动作。③机器人控制系统。定义机器人平台的控制体系结构,包括反应式控制、包容结构以及其他控制系统等。④基于神经网络的模式识别。采用神经网络方法以及BP算法对桌面茶壶、杯子等物体进行识别,提取物体图形特征。⑤机器人程序设计语言。运用人工智能语言实现机器人行动规划行为的可视化。案例教学手段:机器人行动规划的模拟演示。思考/讨论内容:人工智能将会怎样发展?应该在哪些方面进一步开展研究?

3案例教学环节和过程的具体实施细节

人工智能案例教学的实施面向笔者所在学院软件工程专业三年级本科生展开。具体实施细节如下。(1)教学内容的先进性、实用性和前沿性。引进和整合国外著名人工智能教材内容,保证课程内容具有先进性。同时将前沿人工智能的研究成果与技术有机地融入课程案例教学之中。(2)案例教学的创新教学模式。在教师的引导下,将案例中涉及的人工智能内容推广到对人工智能的一般性认识。案例的教学过程,成为认识人工智能、初步运用人工智能的理论与方法分析和解决实际应用问题的过程,使学生具备运用人工智能知识解决实际问题的意识和初步能力。在课程教学中,打破国内常规教学方式,建立和实施开放式案例教学模式。采用动画课件、录像教学、实物演示、网络教学等多种多媒体教学手段,以及集中讲授与专题讨论相结合的教学方式将理论、方法、技术、算法以及实现有机结合,感性认识与理性认识相结合,理论与实际相结合,极大地激发学生自主和创新性学习的热情。(3)“课堂教学—实践活动—现实应用”的有机融合。在案例教学过程中,从传统教学观以学会为中心转化为创新应用型教学观以创新为中心,以及从传统教学的以课堂教学为中心转化为以课堂教学与实践活动并重为中心,构造具体问题场景以及设计教学案例在情境中的现实应用,加深学生对教学内容的理解,同时提高学生的思考能力和实际综合应用能力。

4结语

第3篇

关 键 词:Agent;智能网络;答疑系统

1 绪论

随着现代通信与信息技术的高速发展, 以网络教育为基础的现代远程教育系统得到了迅猛发展,并且取得了良好的社会效应和教育效应。然而一般的远程教育系统教育方法较为单一,用户和系统之间的交互性较差,用户界面也较为单一。Agent技术提供了一种网络智能程序设计方法,多Agent则放松对集中式、规划、顺序控制的限制,提供了分散控制和并行处理,该技术适用于多用户和并发处理,适用于网络教学系统的开发。基于Agent的智能网络答疑系统能够通过个性化分析准确了解用户学习中的难点重点,并且根据用户个性化信息推导问题的最佳答案。本论文论述了多Agent理论在网络智能答疑系统中的应用。

2 Agent技术概述

Agent技术是人工智能的一种,其概念是由麻省理工学院的著名计算机学家和人工智能学科创始人之一的Minsky首先提出。 Agent可以理解为计算社会中的一些特殊个体,它的体系结构就是用软件或硬件的方式来实现Agent的过程[2]。Agent的基本结构如图1所示[3]。

图1 Agent 基本结构

从图2.1中可知,Agent主要由环境感知模块、执行模块、通讯模块、信息处理模块、决策与智能控制模块以及知识库和任务表组成。环境感知模块、执行模块和通讯模块负责与系统环境和其它Agent 进行交互,任务表为该Agent 所要完成的功能和任务。信息处理模块负责对感知和接收到的信息进行初步地加工、处理和存储,决策与智能控制模块是赋予Agent 智能的关键部件。它运用知识库中的知识对信息处理模块处理所得到的外部环境信息和其它Agent 的通讯信息进行进一步的分析、推理,为进一步的通讯或从任务表中选择适当的任务供执行模块执行做出合理的决策。

3 网络智能答疑结构框图

基于多Agent理论的网络智能答疑系统的功能如下:

(1)用户通过登陆能对学习过程中遇到的问题,运用自然语言进行提问,并可对提问方式进行选择,也可选择系统自动回答的相关参数。

(2)系统可以通过常见问题库、知识库及课件素材库中搜索答案并自动回答用户所提问题,也可以通过e-mail、BBS或留言板等方式使用户的问题得以解答。

(3)系统呈现在用户浏览器上的答案应包括两方面内容:一是多媒体形式的问题解答;二是用户应巩固复习的知识点建议、少量练习题等。

(4)系统能够自动生成和维护常见问题库(FAQ库),并保持其结构良好性,同时还应该支持专任教师用户的人工维护(增加、删除和修改等)。

多Agent系统强调从整体上对多个Agent集体行为的性质进行分析与定义,因此Agent 是能自主学习、适应环境的实体,应用基于多Agent系统的网络教学模式,能克服一般系统的局限和不足,提高了系统的智能性,达到了个性化教育和改善教学效果的目的。基于多Agent思想的智能答疑系统结构框图如图2所示。

图2 答疑系统结构框图

智能答疑系统由接口层、功能实现层和数据服务器三层体系,其中接口层由学员Agent和教师Agent通过Internet与数据服务器进行交互,其中接口可以实现学员以多种方式连接系统并且提问;;功能实现层是整个系统的应用核心,由Agent自主进行学习、自动答疑、自动交互等功能;数据服务器主要是管理用户资料和存放知识库等大型数据,并且数据库Agent可以自动生成和维护常见问题库。

客户端Agent包括学习者、教师和管理员三类用户,每类用户均通过浏览器登录系统, 经过客户端的Agent处理, 与服务器端的Agent进行联系, 并从服务器端取回相应需要的数据。功能实现层就是各个Agent实体进行通信的过程,由Agent自主进行学习、自动答疑、自动交互;数据服务器Agent在接收到学习者Agent的描述后,会自动根据提取的特征词进行数据库匹配。由于一般数据库层所包含的数据量较大,因此必须使用高效快速的搜索算法进行结果匹配,才能满足多用户同时应用的需求。

4 主要Agent设计

在网络智能答疑系统的设计中,根据网络智能答疑系统的功能,把整个系统拆分为多个Agent系统,并且对主要的Agent进行设计。

总体来看,客户端Agent除了用户的权限有区别外,其他行为模型是一致的,在系统收到客户端信息匹配后,由通信层的Agent进行信息的提取、问题分类等工作。对于人机交互界面的Agents,主要功能是对身份信息的识别和提取,首先由系统提示用户输入个人信息,然后由交互界面的Agent进行判断,如果用户信息错误,则转到提示错误界面,如果用户信息正确,则转到系统的下层界面,流程图如图3所示。

图3 Agent 登录流程

通信层Agent包括用户管理Agent,用户模型Agent,答疑Agent,教学管理Agent,答疑信息Agent等Agent组件,分别负责用户管理、用户模型匹配、用户提问处理、答疑系统维护等,以答疑Agent为例进行说明。

在答疑Agent中,用户进入提问后,系统给出提问输入界面,等待用户输入。在用于确定提出来的问题后,点击“提交问题”,此时系统的答疑Agent开始工作,工作原理如图4所示。

图 4 答疑Agent 工作原理

答疑Agent通过与外界的交互感知了解用户的输入动作,得到用户输入的问题,通过目标分解,把用户问题分解为小问题。通过数据库对问题进行匹配,提取出问题的答案等知识信息。然后在输出层对问题整合,并且最终把整合后的信息传递给用户。

5 结论

本文论述了智能答疑系统在网络教育中的重要地位,介绍了Agent系统和主要结构,分析了多Agent系统在网络答疑中的作用,对整个答疑系统的功能及其功能实现进行了论述和剖析,最后结合系统中Agent的功能,分析了Agent的设计思想和设计思路。

参考文献

[1] 绕涛,林育曼.基于Agent技术的智能答疑系统的研究与设计[J].佛山科学技术学院学报,2008.1.1

[2] 李英.多Agent系统及其在预测与智能交通系统中的应用[D].上海:华东理工大学出版社,2004

第4篇

【关键字】人工智能;教育;进展

【中图分类号】G40-057 【文献标识码】A 【论文编号】1009―8097(2008)13―0018―03

人工智能是一门综合的交叉学科,涉及计算机科学、生理学、哲学、心理学、哲学和语言学等多个领域。人工智能主要研究用人工的方法和技术,模仿、延伸和扩展人的智能,实现机器智能,其长期目标是实现人类水平的人工智能。[1]从脑神经生理学的角度来看,人类智能的本质可以说是通过后天的自适应训练或学习而建立起来的种种错综复杂的条件反射神经网络回路的活动。[2]人工智能专家们面临的最大挑战之一是如何构造一个可以模仿人脑行为的系统。这一研究一旦有突破,不仅给学习科学以技术支撑,而且能反过来促使人脑的学习规律研究更加清晰,从而提供更加切实有效的方法论。[3]人工智能技术的不断发展,使人工智能不仅成为学校教育的内容之一,也为教育提供了丰富的教育资源,其研究成果已在教育领域得到应用,并取得了良好的效果,成为教育技术的重要研究内容。

人工智能的研究更多的是结合具体领域进行的,其主要研究领域有:专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、博弈、智能决策支持系统、人工神经网络和分布式人工智能等。[4]目前,在教育中应用较为广泛与活跃的研究领域主要有专家系统、机器人学、机器学习、自然语言理解、人工神经网络和分布式人工智能,下面就这些领域进行阐述。

一 专家系统

专家系统是一个具有大量专门知识与经验的程序系统,它使用人工智能技术,根据某个领域中一个或多个人类专家提供的知识和经验进行推理和判断,模拟人类专家的决策过程,以解决那些需要专家决定的复杂问题。[5]专家系统主要组成部分为:知识库,用于存储某领域专家系统的专门知识;综合数据库,用于存储领域或问题的初始数据和推理过程中得到的中间数据或信息;推理机,用于记忆所采用的规则和控制策略的程序,使整个专家系统能够以逻辑方式协调地工作;解释器,向用户解释专家系统的行为;接口,使用户与专家系统进行对话。近几十年来,专家系统迅速发展,是人工智能中最活跃、最有成效的一个研究领域,广泛用于医疗诊断、地质勘探、军事、石油化工、文化教育等领域。

目前,专家系统在教育中的应用最为广泛与活跃。专家系统的特点通常表现为计划系统或诊断系统。计划系统往前走,从一个给定系统状态指向最终状态。如计划系统中可以输入有关的课堂目标和学科内容,它可以制定出一个课堂大纲,写出一份教案,甚至有可能开发一堂样板课,而诊断系统是往后走,从一个给定系统陈述查找原因或对其进行分析,例如,一个诊断系统可能以一堂CBI(基于计算机的教学,computer-based instruction)课为例,输入学生课堂表现资料,分析为什么课堂的某一部分效果不佳。在开发专家计划系统支持教学系统开发(ISD)程序的领域中最有名的是梅里尔(Merrill)的教学设计专家系统(ID Expert)。[6]

教学专家系统的任务是根据学生的特点(如知识水平、性格等),以最合适的教案和教学方法对学生进行教学和辅导。其特点为:同时具有诊断和调试等功能;具有良好的人机界面。已经开发和应用的教学专家系统有美国麻省理工学院的MACSYMA符号积分与定理证明系统,我国一些大学开发的计算机程序设计语言、物理智能计算机辅助教学系统以及聋哑人语言训练专家系统等。[7]

目前,在教育中,专家系统的开发和应用更多的集中于远程教育,为现代远程教育的智能化提供了有力的技术支撑。基于专家系统构造的智能化远程教育系统具有以下几个方面的功能:具备某学科或领域的专门知识,能生成自己的提问和应答; 能够分析学生的特征,评价和记录学生的学习情况,诊断学生学习过程中的错误并进行补救教学;可以选择不同的教学方法实现以学生为主体的个别化教学。[8]目前应用于远程教育的专家系统有智能决策专家系统、智能答疑专家系统、网络教学资源专家系统、智能导学系统和智能网络组卷系统等。

二 机器人学

机器人学是人工智能研究是一个分支,其主要内容包括机器人基础理论与方法、机器人设计理论与技术、机器人仿生学、机器人系统理论与技术、机器人操作和移动理论与技术、微机器人学。[9]机器人的发展经历了三个阶段:第一代机器人是以 “示教―再现”方式进行工作;第二代机器人具有一定的感觉装置,表现出低级智能;第三代机器人是具有高度适应性的自治机器人,即智能机器人。目前开发和应用的机器人大多是智能机器人。机器人技术的发展对人类的生活和社会都产生了重要影响,其研究和应用逐渐由工业生产向教育、环境、社会服务、医疗等领域扩展。

机器人技术涉及多门科学,是一个国家科技发展水平和国民经济现代化、信息化的重要标志,因此,机器人技术是世界强国重点发展的高技术,也是世界公认的核心竞争力之一,很多国家已经将机器人学教育列为学校的科技教育课程,在孩子中普及机器人学知识,从可持续和长远发展的角度,为本国培养机器人研发人才。[10]在机器人竞赛的推动下,机器人教育逐渐从大学延伸到中小学,世界发达国家例如美国、英国、法国、德国、日本等已把机器人教育纳入中小学教育之中,我国许多有条件的中小学也开展了机器人教育。

机器人在作为教学内容的同时,也为教育提供了有力的技术支撑,成为培养学习者创新精神和实践能力的新的载体与平台,大大丰富了教学资源。多年来,我国中小学信息技术教育的主要载体是计算机和网络,教学资源单一,缺乏前瞻性。教学机器人的引入,不仅激发了学生的学习兴趣,还为教学提供了丰富的、先进的教学资源。随着机器人技术的发展,教学机器人种类越来越多,目前在中小学较为常用的教学机器人有:能力风暴机器人、通用机器人、未来之星机器人、乐高机器人、纳英特机器人、中鸣机器人等。

三 机器学习

机器学习是要使计算机能够模仿人的学习行为,自动通过学习来获取知识和技巧,[11]其研究综合应用了心理学、生物学、神经生理学、逻辑学、模糊数学和计算机科学等多个学科。机器学习的方法与技术有机械学习、示教学习、类比学习、示例学习、解释学习、归纳学习和基于神经网络的学习等,近年来,知识发现和数据挖掘是发展最快的机器学习技术。机器学习(自动获取新的事实及新的推理算法)是使计算机具有智能的根本途径,对机器学习的研究有助于发现人类学习的机理和揭示人脑的奥秘。[12]

随着计算机技术的进步和机器学习研究的深入,机器学习系统的性能大大提高,各种学习算法的应用范围不断扩大,例如将连接学习用于图文识别,归纳学习、分析学习用于专家系统等,大大推动了在教育中的应用,例如在建构适应性教学系统中,用机器学习与朴素的贝叶斯分类器动态了解学生的学习偏好,有较高的准确率[13]。基于案例的推理(case-based reasoning,CBR)是一种新兴的机器学习和推理方法,其核心思想是重用过去人们解决问题的经验解决新问题,在计算机辅助教育方面,已经出现了基于CBR的图形仿真教育系统,并且,针对个体特征的教育教学方法研究也有所突破。[14]另外,数据挖掘和知识发现在生物医学、金融管理、商业销售等领域的成功应用,不仅给机器学习注入新的生机,也为机器学习在教育中的应用提供了新的前景。

四 自然语言理解

自然语言理解就是研究如何让计算机理解人类的自然语言,以实现用自然语言与计算机之间的交流。一个能够理解自然语言信息的计算机系统看起来就像一个人一样需要有上下文知识以及根据这些上下文知识和信息用信息发生器进行推理的过程。[15]自然语言理解包括口语理解和书面理解两大任务,其功能为:回答问题,计算机能正确地回答用自然语言提出的问题;文摘生成,计算机能根据输入的文本产生摘要;释义,计算机能用不同的词语和句型来复述输入的自然语言信息;翻译,计算机能把一种语言翻译成另外一种语言。由于创造和使用自然语言是人类高度智能的表现,因此对自然语言处理的研究也有助于揭开人类高度智能的奥秘,深化对语言能力和思维本质的认识。[16]

自然语言理解最早的研究领域是机器翻译,随着应用研究的广泛开展,也为机器人和专家系统的知识获取提供了新的途径,例如由MIT研制的指挥机器人的自然语言理解系统SHRDLU就可以接收自然语言,进行人机对话,回答关于桌面上积木世界中的各种问题。同时,对自然语言理解的研究也促进了计算机辅助语言教学和计算机语言设计等方面的发展,例如“希赛可”网络智能英语学习系统,这个基于网络的“人-机”语境的建立,突破了普通英语教师和传统的单机的多媒体教学软件所能具备能力限制,也比建立于网络的“人-人”语境更具灵活性,可以为远程学习者提供良好的英语学习支持,在国内第一次系统地将用自然语言进行的人机对话系统应用在计算机辅助外语教学上,在国际上也是一种创新。[17]

五 人工神经网络

人工神经网络就是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能的元件(即人工神经元),按各种不同的联结方式组织起来的一个网络,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能,例如可以用于模仿视觉、模式识别、声音信号处理、控制、故障诊断等领域,人工神经元是人工神经网络的基本单元。[18]人工神经网络有两种基本结构:递归(反馈)网络和多层(前馈)网络,两种主要学习算法:有指导式学习和非指导式学习。

人工神经网络从模拟人类大脑神经网络的结构和行为出发,具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合于处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题,[19]这使人工神经网络具有更大的发展潜能,目前已经开发和应用的人工神经网络模型有30多种。人工神经网络在教育中的应用大多是与教学专家系统相结合,以此来改进教学专家系统的性能,提高智能性,使其在教学过程中对突发问题具有更好的应对能力。人工神经网络在学校管理中也得到应用,例如采用误差反传算法(BP)的多层感知器已应用于高校管理之中。

六 分布式人工智能(Distributed Artificial Intelligence,DAI)

分布式人工智能是分布式计算与人工智能结合的结果,研究目标是要创建一种能够描述自然系统和社会系统的精确概念模型,主要研究问题是各Agent之间的合作与对话,包括分布式问题求解和多Agent系统两个领域。[20]分布式人工智能系统一般由多个Agent组成,每个Agent又是一个半自治系统,Agent之间及Agent与环境之间进行并发活动并进行交互来完成问题求解。[21]由于分布式人工智能系统具有并行、分布、开放、协作和容错等优点,在资源、时空和功能上克服了单智能系统的局限性,因此获得了广泛的应用。

分布式人工智能中的Agent和多Agent技术在教学中的应用逐渐受到关注。在教学中引入Agent可以有效地提高教学系统的智能性,创造良好的学习情境,并能激发学习者的学习兴趣,进行个性化教育。目前,Agent和多Agent技术多用于远程智能教学系统,通过利用其分布性、自主性和社会性等特点,提高网络教学系统的智能性,使教学资源得到充分利用,并可实现对学习者的学习行为进行动态跟踪,为学习者的网络学习创造合作性的学习环境。在网络教学软件中应用Agent技术的一个典型是美国南加利福尼亚大学(USC)开发的教学Adele(Agent for Distance Education - Light Edition) [22]。Agent技术在网络教学软件中取得的良好效果,促进了研究者对分布式人工智能在教育中的应用研究。

综上所述,科学技术的发展将会推动人工智能技术在教育中应用的广度和深度。从人工智能的应用趋势来看,人工智能在教育中应用的扩展可以通过以下三个方面进行:一是人工智能与其他先进信息技术结合。人工智能已经与多媒体技术、网络技术、数据库技术等有效的融合,为提高学习效率和效度提供了有力的技术支持,而引起教育技术界广泛关注。[23]例如人工智能技术通过与多媒体技术相结合,可以提高智能教学系统的教学效果;与网络通讯技术相结合,可以提高和改进远程教育的智能性。二是人工智能应用研究领域间的集成。人工智能应用研究领域之间并不是彼此独立,而是相互促进,相互完善,它们可以通过集成扩展彼此的功能和应用能力。例如自然语言理解与专家系统、机器人的集成,为专家系统和机器人提供了新的知识获取途径。三是人工智能的研究和应用出现了许多新的领域,它们是传统人工智能的延伸与扩展,这些新领域有分布式人工智能与Agent、计算智能与进化计算、数据挖掘与知识发现以及人工生命等[24],这些发展与应用蕴藏着巨大潜能,必将对教育产生重要的影响。

技术发展不断发挥着引导教育技术研究的作用,一种新兴技术的出现总是会掀起相应的研究热潮, 引发对技术在教育中应用的探讨、评价以及与传统技术的对比。[25] 人工智能作为一门交叉的前沿学科,虽然在基本理论和方法等方面存在着争论,但从其研究成果与应用效果来看,有着广阔的应用前景,值得进一步的开发和利用。

参考文献

[1] 史忠植,王文杰.人工智能[M].北京:国防工业出版社,2007:1.

[2][11][18][19] 《计算机与信息科学十万个为什么》丛书编辑委员会,计算机与信息科学十万个为什么(8):人工智能[M].北京:清华大学出版社,1998:5,189,78-79,84.

[3] 任友群,胡航.论学习科学的本质及其学科基础[J].中国电化教育,2007,(5):1-5.

[4][21] 蔡瑞英,李长河.人工智能[M].武汉:武汉理工大学出版社,2003:12-13.

[5][12][15][20][24] 蔡自兴,徐光.人工智能及其应用(第三版)――研究生用书[M].北京:清华大学出版社,2007: 12-14,19-20.

[6] [荷]山尼•戴克斯特拉,[德]诺伯特•M. 西尔,[德]弗兰兹•肖特,等.任友群,郑太年主译.教学设计的国际观第2册:解决教学设计问题[M].北京:教育科学出版社,2007:67.

[7] 任友群.技术支撑的教与学及其理论基础[M].上海:上海教育出版社,2007:42-43.

[8] 路利娟.应用专家系统提升现代远程教育的智能化[J].中国教育技术装备,2007,(12):79-80.

[9] 陈恳,杨向东,刘莉等.机器人技术与应用[M].北京:清华大学出版社,2007:6.

[10] 关注机器人幼儿教育――访鲍青山博士[DB/OL].

[13] 柏宏权,韩庆年.机器学习在适应性教学系统中的应用研究[J].南京师范大学学报(工程技术版),2007,7(4):76-79.

[14] 杨健,赵秦怡.基于案例的推理技术研究进展及应用[J].计算机工程与设计,2008,29(3):710-712.

[16] 自然语言理解[DB/OL].

[17] 贾积有.人工智能技术的远程教育应用探索――“希赛可”智能型网上英语学习系统[J].现代教育技术,2006,16(2):26-29.

[22] Erin Shaw, W. Lewis Johnson, and Rajaram Ganeshan, Pedagogical Agents on the Web[DB/OL].

第5篇

关键词:人工智能;创新性教学;精品课程;课程建设;教学改革

人工智能课程是计算机类专业的核心课程之一,也是智能科学与技术、自动化和电子信息等专业的重要课程,其知识点具有不可替代的重要作用。该课程内容广泛,具有很强的综合性、应用性、创新性和挑战性[1],其开设能够更好地培养学生的创新思维和技术创新能力,为学生提供了一种新的思维方法和问题求解手段。同时,本课程能够培养学生对计算机前沿技术的前瞻性,提高他们的科技素质和学术水平。通过课程的学习,学生对人工智能的定义和发展、基本原理和应用有一定的了解和掌握,启发了对人工智能的学习兴趣,培养创新能力。

中南大学人工智能课程开设于20世纪80年代中期。1983年,蔡自兴作为访问学者赴美国普度大学研修人工智能,并与美国国家工程科学院院士傅京孙(K. S. Fu)教授及清华大学徐光v教授合作研究人工智能。在傅京孙院士教授的指导下,蔡自兴和徐光v教授执笔编著《人工智能及其应用》一书,并于1987年5月在清华大学出版社问世,成为国内率先出版的具有自主知识产权的人工智能教材。本教材不仅为我校人工智能课程提供了一部好教材,而且促进了国内高校普遍开设人工智能课程。此后,又陆续编著出版了《人工智能及其应用》第二版、第三版“本科生用书”和“研究生用书”、第四版等,修读该课程的学生也与日俱增。该书第二版还获得国家教育部科技进步一等奖。经过近20年建设,该我校人工智能课程于2003年评为国家精品课程,并在2008年评为国家双语教学示范课程。这是至今国内唯一同时获得国家级精品课程和双语教学示范课程的人工智能课程。同时,我们还开发了人工智能网络课程,具有网络化、智能化和个性化等特色,被国家教育部评为优秀网络课程,供兄弟院校人工智能教学参考使用,受到普遍欢迎[2]。

作为国内第一门人工智能精品课程,我们按照教育部精品课程标准建设《人工智能》课程,尤其是在教学内容、创新性教学方法和教学模式上进行不断进行改革与探索,取得了很好的效果。本文即为我校人工智能精品课程建设与改革经验的初步总结。

1教学内容优化

1.1课堂教学内容优化

教学内容的确定是课程的首要任务。如何选好教学内容,使学生既能了解本领域的概貌,又能适合学生的基础,便于他们在有限的时间完成学习任务,是一件难事。教学内容除了包含基础理论外,还应该反映人工智能领域的新发展和新动态,跟上学科发展的步伐。本课程最初设定的教学内容分基础部分和扩展应用部分。基础部分主要包括人工智能的定义和发展、知识的表示以及推理,而扩展应用部分主要包括专家系统、机器学习、机器规划、机器视觉等。

近年来人工智能科学的快速发展,涌现出了大批新的方法和算法,研究热点问题也从符号计算发展到智能计算和Agent等。

学内容,既能使学生了解本领域的概貌,又能适合学生的基础,便于他们在有限的时间完成学习任务,是一件难事。教学内容除了包含基础理论外,还应该反映人工智能领域的新发展和新动态,跟上学科发展的步伐。本人工智能课程最初设定的教学内容分基础部分和扩展应用部分。基础部分主要包括人工智能的定义和发展、知识的表示以及推理,而扩展应用部分主要包括专家系统、机器学习、机器规划、机器视觉等。

近年来人工智能科学的快速发展,涌现出了大批新的方法和算法,研究热点问题也从符号计算发展到智能计算和Agent等。

随着科学技术的不断进步,在科学研究和工程实践中遇到的问题变得越来越复杂,传统的计算方法无法在一定时间内获得精确的解。为了在求解时间和求解精度上取得平衡,很多具有启发式特征的智能计算算法应运而生。这些算法通过模拟大自然和人类的智慧来实现对问题的优化求解。计算智能作为人工智能的一个新的分支是目前的研究热点,它主要涉及神经计算、模糊计算、进化计算和人工生命等领域,在如模式识别、图像处理、自动控制、通信网络等很多领域都得到了成功应用。另一个近10年来人工智能的研究热点是Agent和多Agent系统,其理论最早来自分布式人工智能,并随着并行计算和分布式处理等技术的发展而逐渐成为热点。

以上两个内容都是人工智能的重要分支。因此,我们在《人工智能及其应用》第三第3版[3]和第四第4版教材[4]中已经顺应形势加入了这方面的内容,并将教学内容也进行了相应的扩展,加入了计算智能、分布式人工智能与Agent。由于不确定性推理和基于概率的推理方法应用也越来越广泛,我们也将此类非经典推理方法单独作为一章来进行教学。另外,还增加了一些新的内容,如本体论和非经典推理、粒群优化和蚁群计算、决策树学习和增强学习、词法分析和语料库语言学,以及路径规划和基于Web的专家系统等。图1给出本课程的教学内容大纲。

人工智能的教学内容涉及面广且内容较多,要在有限课时内完成教学计划并让学生掌握,具有一定难度。因此需要根据教学对象的需求有所取舍。中南大度。因此需要根据教学对象的需求有所取舍。中南大学在智能科学与技术、计算机、自动化三3个专业中均开设了人工智能课程,根据相关专业课程教学对象,对学时和教学内容进行适当调整。对于智能科学与技术专业,人工智能课程为必修课,共48个学时含实验8个学时。表1表示为相关专业的人工智能课程教学内容分配情况。对于计算机和自动化专业,人工智能课程为选修课,共32个学时含实验8个学时。许多兄弟院校的计算机专业都把人工智能定为必修课,课程学时也在50学时左右。因此,我们一再强烈建议我校的计算机专业把人工智能列为必修课,并适当增加学时。由于智能科学与技术专业开设有专家系统和智能计算选修课程,因此在人工智能教学内容中只将这两部分做简要阐述,而将重点放在知识表示和推理以及扩展应用上。对于计算机专业学生来说,除基本的知识表示和推理外,计算智能和Agent技术也是他们在软件开发和通讯技术理论学习中需掌握的重要概念。同时,计算智能、专家系统对自动控制和电气工程也十分重要,对自动化专业则应掌握该方面的内容。

1.2实验实践教学创新

国内人工智能课程在开设之初大多没有安排实验内容,仅为理论基础和概念讲授。由于理论比较抽象,很难理解,学习效果不理想,学生们对于其应用实现也十分困惑。此后,各高校也逐步在该课程中分配了实验学时,大多数采用prolog语言和专家系统作为实验语言和对象[5]。为了改进该课程的教学,我们也从没有实验到将实验学时从零调整为设置4个学时的实验课时,然后到现在的8个学时的实验课时。随着课堂教学内容的改革,实验内容也进行了优化和更新。

人工智能课程实验的目的是帮助学生掌握基本理论,发挥主动性,研究探讨人工智能算法和系统的运行和实现过程,提出思路并验证自己探索的思路,从而更好的地掌握知识,培养研究能力和创新能力。因此,在实验教学内容的设计上,实验项目应具备研究性和综合性。实验项目目标明确,要求学生带着问题和任务进行实验,但实验过程又要有一定的灵活性,学生可以根据自己的思考进行适当的调整。再者,充分采用虚拟实验方式进行实验,大大提高了学生的兴趣,提供了分析和探讨智能算法的很好平台。同时,学生的实验数据和实验结果分析既有格式要求,又给学生报告自己的研究的过程和结果留有空间,并在评分时加以充分考虑。这些做法能够鼓励学生,特别是鼓励优秀学生进行独立性研究,满足他们学习的需求。

1) 人工智能课程的实验环节不足和课时分配问题。

中南大学的人工智能课程的实验环节经历了从精品课程建设前没有到开设,一直到其内容和形式上的不断改进过程。但目前实验还主要处于演示性和编程的实验阶段,而非设计和训练阶段。此外,由于人工智能课程涵盖范围广、内容多,而课程所设置的学时有限。,如何分配好课堂教学与实验课时也是一个需要在今后课程建设中不断探索的问题。

对于某些专业的人工智能课程,可以考虑单独开设人工智能实验课程或人工智能程序设计与实验课程。

2) 人工智能技术发展迅速情况下如何保持该精品课程持续发展的问题。

人工智能作为一门高度融合的交叉科学,其发展速度迅速,不断有新理论、新问题涌现出来。我们的

人工智能教学既要注重基础理论知识,又要紧跟学科发展的步伐,势必要求对课程内容进行不断更新,这对我们的教学资源和教师素质都提出了更高的要求。

4结语

本文介绍了中南大学的精品课程――人工智能课程教学内容和创新性教学方法的一些探索,已在课堂教学内容的优化、实验环节的改进、教学方法的创新的实施上取得了很好的效果,充分激励了学生的学习积极性和主动性,多方位培养学生发现问题、分析问题和解决问题的能力。我们的想法和做法可供兄弟院校同行参考。不过,仍然存在一些不足之处。随着智能科学与技术的发展和更为广泛的应用,人工智能课程的重要地位必将更加突显,我们也需要继续努力,与时俱进,不断完善人工智能精品课程的建设。

注:本文受教育部质量工程国家级精品课程人工智能(2003)、全国双语教学示范课程人工智能(2007)项目支持。

参考文献:

[1] 薛莹. 创新教育新途径人工智能与机器人教育:哈尔滨市教育研究院张丽华院长访谈录[J]. 中国信息技术教育,2010(1): 20-22.

[2] 蔡自兴,肖晓明,蒙祖强,等. 树立精品意识搞好人工智能课程建设[J]. 中国大学教学,2004(1):28-29.

[3] 蔡自兴,徐光佑. 人工智能及其应用[M]. 3版. 北京:清华大学出版社,2003.

[4] 蔡自兴,徐光佑. 人工智能及其应用[M]. 4版. 北京:清华大学出版社,2010.

[5] 韩洁琼,闫大顺. 人工智能实验教学探讨[J]. 计算机教育,2009,(11):135-138.

[6] 刘丽珏,陈白帆,王勇,等. 精益求精建设人工智能精品课程[J]. 计算机教育,2009,(17):69-71.

Exploration of Innovative Teaching Mode of Artificial Intelligence Elabrate Course

――Construction and Reformation in Elaborate Course of Artificial Intelligence

CHEN Bai-fan, CAI Zi-xing, LIU Li-jue

(Institute of Information Science and Engineering, Centnal South University, Changsha 410083, China)

第6篇

关键词:教学改革;智能科学;精品课程群;人才培养

智能科学精品课程教学团队长期坚持“严肃对待教育工作、严格要求学生、严密组织教学过程”的先进教育理念,履行“严谨教学改革是教育发展的动力”的指导思想[1]。本教学团队围绕“人工智能”和“智能控制”国家精品课程、“人工智能”国家级双语教学示范课程、“人工智能PK人类智能”国家级精品视频公开课、“智能控制”国家级精品资源共享课程、“智能科学基础系列课程教学团队”(国家级)、“人工智能网络课程”教育部国家新世纪网络课程建设工程以及“智能控制”、“人工智能”、“机器人学基础”和“智能系统原理与应用”等省级和校级智能科学系列课程群建设,潜心教学改革,建立了以师生互动、多维交叉、强化实践为特点的创新型人才培养模式,取得一些获得同行首肯的教学改革成果[2-7]。

本文着重介绍教学团队在智能科学精品课程群建设方面的基本情况。

一、智能科学精品课程群的建立

该团队逐步推进智能科学精品课程群建设,不断积累教学改革成果。首先,利用颇具特色的优秀教材群,建立起国内首个立体交叉的智能科学教材体系。其次,把多元智能理论和本体论的知识组织方法用于课程群建设,并建立了智能科学课程群之间的内在联系,建成国家级智能科学精品课程群。再次,增强实验教学,整合多元资源,创建开放式软硬件训练环境,促进智能科学精品课程群的进一步建设与发展。

(1)率先建设立体交叉的智能科学教材体系

智能科学具有高度交叉、多学科融合的特点,结合这些特点研究了不同课程、不同学历层次、不同学科门类之间的交叉链接关系。建设以信息学科类本科生教育为主,兼顾硕士和博士研究生的教材体系,并辐射到管理类、机械类等专业。教学团队与时俱进,对教材不断更新,自1987年以来共出版人工智能、机器人学、智能控制等教材共20个版本[8-13]。例如,《人工智能及其应用》、《机器人原理及其应用》和《智能控制》均为我国相关课程的第一部具有自主知识产权的著作,被誉为“智能三部曲”,为国内高等院校广泛使用。

(2)建立多层次智能科学精品课程群

团队把多元智能理论和本体论的知识组织方法运用于课程群建设,并依据个性化元素特征和个体差异构建模块化课程体系及系列化课程设置,并据此设计课程群及课程相关的实践环节。

设计出各课程间的横向关系和专业间的纵向关系,即建立智能科学课程群之间在知识、技能、素质三个维度上的横向联系,以及在本科生、硕士研究生、博士研究生三个学历层次与专业基础课、专业课专业层次上的纵向关系。

经过长期建设,10年来共获准12项各级质量工程等立项,建立与形成了国家级智能科学精品课程群。其中包括国家级精品课程、全国双语教学示范课程、国家级教学团队、全国优秀网络课程、国家级规划教材、国家级精品视频公开课和国家级精品资源共享课程以及省级和校级精品课程等。

(3)整合资源,加强实验,创建开放式训练软硬件教学环境

教学改革没有最好,只有更好。教学团队不断增加与逐步完善智能科学精品课程群的实验和实践环节,开设智能科学相关培训课程和专题讲座。注重整合各种资源,增强智能学科与其他学科的交叉,创建开放式训练环境和训练中心,建设智能科学与技术创新实验室、大学生程序设计竞赛训练中心、大学生智能移动机器人科技创新平台等。此外,还积极参与智能类学科竞赛,如“飞思卡尔”大学生智能车竞赛、全国大学生智能设计大赛、ACM/ICPC程序设计大赛,以及多种智能机器人和智能小车大赛等。

经过多年精品课程建设与积累,目前,教学大纲、教学日历、教案或演示文稿、重点难点指导、作业、参考资料目录和课程全程教学录像等教学必需资源均进行了持续建设与更新补充。其中一些特色资源得到建设与共享。首先,共享国家级教学名师积累的丰富教学资源。通过建立名师工作室、名师示范项目实验室和名师图书室,形成多元化的带教制度,使老教师的教学理念和经验得以传承。这样就能够加快年轻教师的培养与成长。其次,共享网络课程资源。各门网络课程均采用智能技术中的知识推理和智能算法来实现编程、答疑和虚拟实验,具有智能化、个性化、情境化和形象化等特色,以及导航系统多样化、向导学习个性化和情景化学习等功能。促进了各课程教学改革,提高学生培养质量,深受学生欢迎。再次,共享实验资源。教学实验从无到有,从弱到强,逐步建立教学实验室和科研实验室,全面向学生开放,使广大学生共享实验资源。通过实验,学生发挥了主动性,提出并积极验证和探索自己的思路,从而更好地掌握知识,培养学生的理论联系实际能力和创新能力。

二、改革课程教学,建设精品课程群

着力课程教学改革,建立以精品课程群为核心、以课堂教学为基础、以实践训练深化教学效果的课堂教学与实践教学创新体系。为了实现教学目标,保证课程群的教学和教改的顺利进行,加强了教师队伍建设和教学管理,建立教学质量评价系统,保证课程群的教学质量。

(1)建立以精品课程群为核心,以课堂教学为基础,以实训深化教学效果的课堂教学与实践教学创新体系。

提出“以趣导课、以疑启思、以法解惑、以律求知”的“四以”教学方法。建立“课堂讲授+启发互动+创新实践”三位一体的教学模式,探索出“项目驱动教学”(Project-orientedlearning)和“做中学、趣导思”的主动教学方法和学生培养途径。开发双语教学平台,改进与强化双语教学模式,完善双语教学的方法和手段,提高教学质量。

(2)加强教师队伍建设,改进管理,改革考试,促进课程群的教学和教改的顺利进行。

总结并推行“严肃对待教学工作,严格要求学生,严密组织教学过程,严谨施行教学改革”的“四严”教育思想,指导教师队伍思想建设[1]。注重对青年教师的业务培养,提高他们的授课水平。改革考试制度和方法,培养学生思维、分析能力和创造创新能力。

(3)建立教学质量评价系统,监控课程教学全过程,保证课程群的教学质量。

将控制论(Cybernetics)中的闭环控制信息反馈和故障诊断理念引入教学质量评估过程,建立教学质量的诊断、分析与校正评价系统DIACES (Diagnosis,Analysis and Correction Evaluation System)。

(4)利用教师试讲、督导听课、网上评教、同行评议、讲课竞赛、质量评优、师生座谈、公开示范课等一系列措施,反映教学中的存在问题和成功范例。然后通过集体讨论分析,提出对存在问题的纠正措施或对成功范例的推广意见,实现评估监控过程的自动化、智能化与常态化,保证教师授课技能、教学效果和人才培养质量的提高。

三、经验与结论

在智能科学精品课程群建设过程中,取得了丰硕成果,探索与积累了丰富经验。主要体会如下:

(1)在该精品课程群建设中,始终贯彻“以人为本”的育人理念,把多元教学理论和本体论的知识组织方法用于课程群建设,创建因材施教和探索性的学习环境。以“教书育人”为根本任务,坚持“严肃对待教学工作,严格要求学生,严密组织教学过程题,严谨施行教学改革”(“四严”)教育指导思想,奠定创新型人才培养的理论基础。

(2)注重“课程核心”教育定位,总结出“以趣导学、以疑启思、以法解惑、以律求知”(“四以”)的教学方法和“做中学、趣导思”的综合素质培养方法。做到师生互动,理论联系实际,深化教学,摸索出创新型人才培养的有效途径。

(3)建立覆盖多层次、多专业、多语种、立体配套的智能科学精品课程群系列教材体系,实现课程群系列教材的“精品化”。建立网络化、个性化、智能化的多维教育网络课程体系。建立一种教学质量评估系统,即质量诊断、分析与校正闭环评价系统。这些措施为课程教学和创新型人才培养提供了有力保障。

参考文献:

第7篇

先给大家重点推荐一本期刊:中国职业技术教育

中国职业技术教育杂志征稿信息

《中国职业技术教育》杂志是由中华人民共和国教育部主管,教育部职业技术教育中心研究所、中国职业技术教育学会和高等教育出版社共同主办的一份综合性中文期刊,集政策指导性、学术理论性和应用服务于一身,是教育部指导全国职业教育工作的重要舆论工具,是服务各级各类职业教育机构的主要阵地。

中国职业技术教育投稿栏目:主要有职教要闻、专稿专访、综合管理方略、课程教材、教研与教学、师资队伍建设、研究与探讨、职业指导、职业培训、高等职业教育等栏目。

再给大家推荐职业教育范文:人工智能背景下职业教育变革及模式建构

董文娟1,黄尧2(1.天津大学教育学院,天津300350;2.北京师范大学国家职业教育研究院,北京100875)

摘要:顺应人工智能时代的浪潮,基于新兴技术的职业教育变革及新模式建构势在必行。该文从职业教育智慧化、经济发展、政策保障、信息化生态重构四个方面,剖析了人工智能时代职业教育变革的现实诉求,并进一步分析了当前职业教育外部环境及其自身发展的困境。人工智能背景下职业教育的变革体现出融合、创新、跨界、终身化的新特征。基于此,从课程、教学、学习、环境、教师发展、评价、教育管理及组织等方面,探究职业教育的变革路径及模式建构。最后探讨了职业教育模式变革还面临回归教育本质、规避技术弊端等挑战,并提出“适应—引领人工智能”的发展目标。

关键词:人工智能;职业教育变革;模式建构;智慧化

“人工智能的迅速发展将深刻改变人类社会生活、改变世界。特别是在移动互联网、超级计算等新理论、新技术及经济社会发展强烈需求的共同驱动下,人工智能发展呈现出深度学习、跨界融合、人机协同、群智开放、自主操控等新特征。”[1]人工智能作为新一轮产业变革的核心驱动力,为我国供给侧结构性改革下的“新常态”经济发展注入新动能,使人们的思维模式和生活方式发生了深刻变革。近年来,国家高度重视与社会经济发展联系最为密切的职业教育,积极推进职业教育信息化,运用人工智能改革教学方法和人才培养模式,构建新型智能职教体系,提升信息技术引领职业教育创新发展的能力。

一、人工智能背景下职业教育变革的现实诉求

人工智能对传统教育理念产生了革命性冲击,职业教育结构不断调整,劳动力素质与市场需求的矛盾、学习方式与自我价值实现的矛盾等促使职业教育向智慧化、智能化发展。目前,我国处于教育信息化2.0、工业4.0的新时期,全球范围内新一轮的科技革命和产业变革正在加速进行。“一带一路”“中国制造2025”人工智能等重大国家战略的提出,及以新技术、新产业为特征的新兴经济模式要求教育领域,尤其是职业教育培养行业、产业急需的技术技能型、智慧型人才,具备更高的创新创业能力和跨界整合能力,促进智慧化发展,助力经济转型升级。

(一)职业教育智慧化诉求:职业教育信息化发展的必然选择

“智慧教育是以物联网,大数据等信息技术为依托,创造智慧教学环境,转换教育方法,内容与手段,注重教育网络化,个性化和智能化的一种教育新模式。”[2]智慧教育作为“一种由学校、区域或国家提供的高学习体验、高内容适配性和高教学效率的教育行为(系统)”,被视为教育信息化发展的高端形态[3]。因此,职业教育的智慧化并非简单的数字化,强调信息技术推动职业教育教学模式和方法的变革,改变思维模式,创建价值等方面共享的学习共同体,培养创新型、智慧型人才。

职业教育智慧化是职业教育信息化发展的必然选择。目前,我国的职业教育信息化水平正在稳步提高,投入持续增加,各种智能信息技术应用于教育教学、实习实训、测量评价等领域,并逐步成熟,正在努力打造一个信息化、智慧化的现代职业教育生态系统。新时期我国很多地区及职业院校积极提升现有信息化系统的智慧化水平,积极创建智慧校园、智慧社区等,逐步实现了组织管理的智慧化、资源环境的智慧化和服务评价的智慧化。

(二)经济发展诉求:人工智能时代的新兴经济需要高技能智慧型人才

人工智能时代职业教育运用移动互联网、大数据等新兴技术,与经济及其他部门跨界融合,不断创造新产品、新业务,推动职业教育模式创新,形成了以互联网为基础设施、人工智能为实现手段的经济发展新常态。人工智能时代是以现代科学技术为支撑的新时代,各行各业的运作发展和对知识技术的掌握要求达到了更高层面,相应的教育需求也有所提升,市场环境渴求勇于创新、个性化的高技能智慧型人才。职业教育要应对行业上升发展的劳动力需求问题,基于人工智能应用,提高技能培养层级,以适应新的社会劳务需求。现代企业生产依托互联网科技,与智能化设备直接联接,通过数据分析和应用,促进科技成果转化为生产力。劳动密集型企业已不适应现代行业、产业发展,需升级为网络智能型,与此同时,职业院校的课程模式、专业设置、实习实训、师资结构等也做出相应的调整和革新,既促进了职业教育的智慧化、智能化,又推动了产业升级和工业变革。

(三)政策保障:国家从宏观层面保障人工智能时代的职业教育发展

2016年是我国人工智能元年,2017年我国颁布了《新一代人工智能发展规划》,提出了“将发展人工智能放在国家战略层面进行系统谋划和布局”,这预示着我国人工智能时代的全面到来,为我国职业教育的发展提供了良好的宏观政策环境。人工智能给职业教育带来了符合时代精神的新内容,积极融合信息技术,整合职业教育资源,提升公共服务水平,影响和改变了原有的教育生态。紧密依托信息共享平台,突破时空限制,让学习者自我选择,更加人性化和智能化。我国很多职业院校已经开启了智慧校园的行动计划,一些大中城市也在积极制定实施智慧城市的发展规划,在良好的政策保障中提升智慧化水平。

(四)信息化生态重构诉求:人工智能时代的职业教育变革是对职业教育信息化生态系统的重构

“依据《2006-2020年国家信息化发展战略》,我国正在有序推进数字教育向智慧教育的跃迁升级和创新发展。”[4]在新兴智能信息技术的催促下,技术变革带来了职业教育系统的颠覆性创新改革,打破现有的条条框框,改革传统教育模式,再造教育业务新流程。在职业教育领域创新应用物联网、大数据、人工智能等先进技术,提升各科各门教育教学业务,打造各级各类智能实训部门、培训机构,覆盖贯通中高职院校,整合系统内外现有资源,推进智慧教育生态有序发展,为各类用户提供最适合、最智能的职业教育资源和服务,完成对职业教育信息化生态系统的重构。

二、当前职业教育发展的现实困境

人工智能对各行各业的影响具有革命性和颠覆性,可能带来新的发展机遇,也可能带来不确定性的挑战,比如可能会改变就业结构、影响政府管理、威胁经济安全等,还可能会冲击法律与社会伦理,影响社会稳定乃至全球治理。当前,人工智能与“大众创业、万众创新”浪潮席卷而来,职业院校既是人工智能应用的战场,又是培养技术创新型人才的“梦工厂”[5]。人工智能时代的职业教育信息化发展迅速,影响是广而深的,对职业教育外部环境及其本身都造成了极大的冲击。

(一)职业教育外部环境发展困境

“据联合国教科文组织预测,到2020年,人工智能将替代20亿个工作岗位”[6],那些技术含量低、重复性强的技能将被智能机器、数码设备所替代,工业机器人也将大面积应用。智能设备替代行业劳动力,能够降低劳动成本,且具有高效、易操作等竞争优势。传统职业教育培养模式很难适应未来行业、产业的发展需求,人工智能冲击职业教育就业岗位,撼动其所依附的岗位基础,对职业教育的生存与定位产生了威胁。因此,根据智能时代职业教育的岗位特征与需求,提升职业人才的知识结构和专业技能,是新形势下职业教育的发展方向。

(二)职业教育自身发展困境

近年来,人工智能在职业教育领域内的应用和提高是目前职业教育的发展趋势。我国重视职业教育信息化、智能化发展,各级各类职业院校在信息化基础设施建设、校园信息化管理等方面都有了显著提升,但信息技术与职业教育的深度融合仍不够紧密,表现出信息化管理效率低、科学决策水平低等现象。人工智能背景下职业教育自身发展的困境表现在:

1.课程与教学困境

职业院校新课程改革提倡构建智慧课堂,制定个性化学习计划,注重课堂实施效果。但目前的实际课程教学仍是以教师为中心,强调知识的灌输,重视统一性和计划性,与教育改革提倡的个性化教学相去甚远。教学方法、教学理念更新慢,很难激发学生的内在学习动力,创新性思维弱,使得个性化教育的无法实现。近年来,中央、省、市、县四级教育平台逐步建立起来,课程与教学的层级设计逐步完善,但在实施的过程中,各级平台之间存在沟通不畅等问题,各级资源内容不系统,不衔接,导致无序叠加和资源的重复浪费,“精品课程”等项目丰富了课程资源,但质量不高。在线课程与教学以传统的科目、章节为单元,构建系统性的在线教育内容,为用户提供专业化的知识选择,但由于受时间条件等限制,大多数受教育者习惯于碎片化学习,连贯性和整体性差,缺乏对课程与教学体系的系统性学习。

2.认知困境

随着人工智能时代的到来,许多职业院校将“未来教室”“智慧课堂”定位为未来发展方向,进行了多种尝试和改革,如MOOC混合教学、翻转课堂、多屏教学等,但“管理者和施教者对智慧教育的理解多停留在‘智慧课堂=多媒体+传统教学的层面’,教学观念和思维依然固化,并没有因为新技术的参与而得到实质改变”[7],缺乏对多媒体网络架构和智能学习平台的深层认识,更缺乏对管理评价和互动交流等模块的理解与掌握,虽投入大量人力财力采购了数量巨大、设备精良的多媒体设备和智能服务设备,但没有充分有效使用,大大限制了智慧教育的发展潜力。

3.用户困境

传统教学以群体教育为基本单元,教师和学习者作为学习共同体,在管理、学习的互动过程中形成强大的群体约束力,促进双方共同进步。在信息化教育时代,学习者自由掌握学习时间和进度,遇到问题可能无法及时解决并获得反馈,无法进行面对面交流,因此,基于人工智能网络化学习平台,学习者需要高自控力、高学习能力才能适应这种全新的学习方式。

4.评价困境

传统的评价方式多依靠经验和观察,智慧型评价则是基于学习过程的一种发展性评价,以采集到的学习数据为客观基础。在人工智能、数字信息化环境下教育效果的评价实际要受到很多因素的影响和局限,在信息技术与职业教育融合的过程之中,许多智能技术应用于教育教学实践,难以进行定性定量的智慧评价,如互动交流及深层次的学习评价等。

三、人工智能背景下职业教育变革的新特征

人工智能带来了思维模式的创新,改变了人们认识问题、思考和解决问题的方式,越来越多地依赖人与智能网络的协同创新。人工智能背景下的职业教育变革围绕经济社会发展大局,“主动服务国家重大发展战略,加大虚拟现实、云计算等新技术应用,体现校企合作、知行合一等职教特色,以应用促融合、以融合促创新、以创新促发展。”[8]人工智能背景下职业教育的变革必将加速推进职业教育的现代化、智能化进程,表现出了融合、创新、跨界和终身化的新特征。

(一)融合

人工智能技术科学应用于当前职业教育,在最短的时间内整合、重组大量的知识信息,形成科学的技术技能知识体系,为职业教育资源、企业资源、产业资源、社会资源等一切有可能联结的资源融合提供了可能。为促进职业教育的智慧化发展,在现有的合作模式、集团模式、产教融合模式等实体协作发展的基础上,建立智能互动的智慧教育供给平台、常态化智慧课堂和大数据化智慧教育生态系统,为我国新兴经济发展提供高技能、智慧型人才支撑。

(二)创新

信息化时代下“变”为创新立足之要点。创新时代最需要提升的就是创造智慧。“由知识的理解记忆,转向知识的迁移、应用并最终指向创造发明”[9],以提高学习者的学习能力和应用能力,提升其创新思维和智慧思维,不断开拓人类社会发展的高度和宽度。智能化、信息化的时代是创新不断的时代,是原有知识不断被更新、技术不断被升级的时代。人工智能促使社会化协同大规模发展,促进职业教育体系核心要素的重组与重构,创新生产关系,呈现出新的协作架构,开创了新的教育供给方式,增加了教育的选择性,推动了教育的民主化。学习者能够按照自己的价值观、兴趣与爱好等选择适合自己个性发展的学习方式和学习内容,促进学习者个性化、多样化发展,最终实现教育公平。

(三)跨界

智能科学与职业教育连接起来,搭建起两者沟通的桥梁,跨越了人工智能虚拟教育和线下实体教育的界限,实现了两者之间的融合。教育供给由竞争资源转变为协同合作,直线型的中心组织管理转向去中心化、泛化管理。通过大数据智能技术平台、远程教育平台等对职业教育资源进行整合共享,跨越教育边界,与市场、行业、企业以及职业教育培训机构对接,提供更加便捷的智慧化服务。

(四)终身化

人工智能时代职业教育的变革坚持“以人为本”的教育理念,满足学习者在任意时间、任意地点、以任意方式、任意步调终身学习的需求[10]。打破了地域和时间的限制,体现了教育的泛在化、个性化和终身化,与终身教育理念的发展目标不谋而合。人工智能时代社会经济发展加快,人们追求高层次自我价值的实现,充分体现出终身学习的必要性和紧迫性。目前,我国正在积极创建泛在学习环境,致力于构建终身化学习型社会,努力创造有利条件向全民提供终身教育与学习的机会。

四、人工智能背景下职业教育发展的模式建构

人工智能背景下职业教育的变革预示着全新思维意识形态、社会发展形态的变革,重塑职业教育可持续发展的新思维,重构信息时代职业教育的价值链和生态系统。智能化技术科学将现代职业教育内部各要素,以及内部要素与外部环境之间,通过虚拟技术和智能化手段互联贯通,突破传统教育价值的链状模式,使职业教育由传统模式走向“人工智能+职业教育”模式的建构。人工智能对职业教育课程、教学、评价、管理、教师发展等方面产生系统性影响,为职业教育提高教育质量和提升服务水平提供了技术支持和现实路径,解决不能兼顾职业教育规模和质量的矛盾问题。下面将从课程、教学、学习、环境、教师发展、评价、教育管理及组织等方面来探究职业教育的变革路径及模式建构。

(一)人工智能背景下职业教育的课程模式

人工智能时代的信息知识、科学技术正在以前所未有的速度增长、更新和迭代,呈现出了碎片化、多元化、创新性、社会性的特征。人工智能背景下职业教育的课程模式是为学习者提供按需可随时选择的知识储备智能模式,解决了传统职业院校课程教学的滞后性,呈现的是现代职业教育的前沿信息和内容。课程革命愈演愈烈,灵活多样的微课、慕课等形式层出不穷,在线课程将成为常态,信息传播媒介、知识获取方式等都发生了巨大改变,课程内容和结构的表现形态、呈现方式、实施及评价等也都进行了相应变革。智能化信息科学技术为课程的设计、架构、实施提供了快捷和便利,为学习者的个性化、终身化选择提供了多种渠道。人工智能背景下职业教育的课程模式的建构表现为:首先,线上线下融合的大规模开放课程融入现代职业教育,课程的表现形态和实施途径呈现出智能化、数字化、立体化的特征,成为学校常态课程的有机组成部分,为学习者提供了更多的可选择机会,使实施个性化课程成为可能。现代职业教育的课程内容强调学术性与生活性相互融合与转化,融入社会资源,立足于我国社会经济的新常态和学习者的全面发展,实现社会化协同发展,共赢共创;其次,课程实施的空间得以拓展,跨越了社会组织边界、职业院校边界,将从班级、年级、全校扩展到网络社区以及更大的空间。课程的整体结构从分散走向整合,以技术为媒介,形成跨学科、多学科整合的课程;最后,课程内容的组织、课程的实施逐步模块化、碎片化、移动化与泛在化,社会化分工更加精细,教师也将承担教学设计、技术开发、在线辅导等不同的角色。

(二)人工智能背景下职业教育的教学模式

人工智能时代将信息技术有效地融合于职业教育各学科的教学过程,从知识的传递转变为认知的建构,从注重讲授和内容,转变成重视学习过程[11],构建“以教师为主导,以学生为主体”的以数字化、智能化为特征的智慧教学模式,重视学生的主体地位,引导学生“自主、探究、合作”。人工智能背景下职业教育的教学模式的建构表现为:首先,人们的学习方法、认知方式和思维模式已经发生了巨大的转变。信息化教学使得信息技术已成为学习者认知的必要工具,认知方式也由“从技术中学”转型为“用技术学”。其次,信息化教学的重点从“面向内容设计”转变到“面向学习过程设计”,更加重视学习者发现问题、分析和解决问题能力的培养,关注学习者的学习过程,以及其获得学习活动的体验。同时,信息化教学要将课堂内的学习知识和课堂外的实践活动联结互动,按照学习者的个性化需求和认知方式自主选择学习内容。第三,智慧教学将成为课堂教学的新重点。日常教学工作形态不再是点线面的连接,而是呈现为智能化、立体化的教学空间,智慧课堂将会促进学习者的深度学习、交互学习和融合学习,智能备课、批阅以及个性化指导等也将成为教育者新的教学工作形式。从机械评价学习结果转变成适应性评价学习结果。第四,在线教学、整合技术的学科教学法将成为新的教学形态,促进教育均衡发展,实现跨学校、跨区域的流转。移动学习、远程协作等信息化教学模式,能够实现教师的“教”与学生的“学”的全面实时互动,最大限度地调动学习者的主观能动性,提升教学质量与人才培养质量。

(三)人工智能背景下职业教育的学习模式

智能系统和互联网络为学习者提供了丰富多元的学习资源和环境,推进了教育教学活动与学习环境的融合发展,人工智能背景下职业教育的学习模式也逐步建立起来,具体表现为:首先,智能时代的互联网络全面覆盖每一个人、每一个角落,活动空间由课堂内拓展到课堂外,学习与非正式学习正在互相补充、互相与融合,导致学习者的学习行为变化、学习方式的革新。其次,基于互联网出现了一批创新的学习方式,借助情景感知技术及智慧信息技术,进行真实过程体验的情境学习,促进学习者知识迁移运用的情境化和社会化。第三,借助互联网云技术和各种应用工具,学习者可根据自身学习需求,选择最优学习方式,也可利用数据分析技术,追踪记录学习路径和学习交互过程,随时随地获取个性化教学服务和量身定制的学习资源,拓宽了智慧教育视野。第四,各职业院校开始拓展校园智慧学习的时间和空间,以实现虚拟和现实相互结合的智慧校园育人环境。推进网络学习空间建设,加强教与学全过程的数据采集和分析,“引导各地各职业院校开发基于工作过程的虚拟仿真实训资源和个性化自主学习系统”[12],强化优质资源在学习环境中的实际应用。

(四)人工智能背景下职业教育的环境模式

智慧教育环境是以大数据、多媒体、云计算等智能信息技术为基础而构建的虚实融合、智能适应的均衡化生态系统。信息技术与职业教育的深度融合,为师生的全面发展提供了智慧化的成长环境,如智慧云平台、智慧校园。人工智能背景下职业教育的环境模式的建构表现为:首先,智慧教育环境将信息技术与职业教育服务结合、面对面教学和在线学习结合,形成数字化的、虚实结合的职业教育智能服务新模式。其次,智慧教育环境将促进各种智能化、数字化信息技术融入职业院校的各个业务范围和业务领域,与系统内的其他业务横向互联、纵向贯通,且信息能够适时生成和采集,全过程实现数字化与互联化。第三,智慧教育环境能够感知学习者所处的学习情境,理解学习者的行为与意图,满足学习者的个性化需求,提供多元化的适应服务和智能感知的信息服务。互联网应用基于智能数据分析,实现智能调节与自动监控,为学习者提供定制式的学习服务和个性化的学习环境。未来教室必将变成“虚拟+现实”的智慧课堂,在网络空间中参与线上课程、线下活动,实现线上线下互动交流。同时,智慧校园的创建和管理,能够对每个班级、学区进行动态管理,构建出一个以问题、任务为线索,学生实现自主学习的知识体系和促进师生互动、生生互动的智慧管理平台。到2020年,“90%以上的职业院校建成不低于《职业院校数字校园建设规范》要求的数字校园,各地普遍建立推进职业教育信息化持续健康发展的政策机制”[13],以学习者为中心的自主、泛在学习普遍开展,精准的智能服务能够满足职业教育的终身化定制。

(五)人工智能背景下职业教育的教师发展模式

人工智能背景下职业教育的变革对教师的专业发展、素质能力提出了新要求,改变了教师的能力结构和工作状态。教育信息化大背景下,互联网技术、多媒体手段的产生、智能化设备的使用极大提高了教师的专业发展和能力素养,以适应新课程改革与教育信息化的要求。人工智能背景下职业教育的教师发展模式的建构表现为:首先,新时代教师专业发展的内在要求和外在环境都要求教师能够认识、了解和应用互联网新技术工具,促使教师专业发展能力和素养的提升和丰富。其次,教师的专业发展要面向实际、情境化、网络化的教学问题,教师需要在多变的教育情境中综合运用核心教学技能,将信息技术知识、学科内容知识、教学法知识很好地融合并迁移运用。新时代的教师要学会掌握使用智能化设备和数字化网络资源,积极加强与其他专家、教师的合作,或远程工作,形成基于智慧教育技术的多元化的学习共同体。教师的工作状态由个体的单独工作转变为群体的共同协作,大大提升了教师的工作效率。第三,信息化背景下教师的教学理念要发生转变,由促进学生“接受学习”转变为“主动建构”,由“被动适应”转变为“主动参与”,越来越强调以学生为中心的过程体验,从了解信息技术转变为掌握智慧教育技术,保持学科知识,教学方法,核心技术的动态平衡,促进学生智慧学习的发生。第四,信息化教师要学会使用智能化教育技术,积极开发数字化学习资源,创设丰富多元的教学活动,鼓励学生掌握智能信息工具,学会探究和解决问题,发展提升学生的创新思维能力和信息化学习能力。教师的信息化教学能力和素养全面提升,信息技术应用能力实现常态化。

(六)人工智能背景下职业教育的评价模式

现代教育价值趋于多元,以互联网为基础的智能化信息技术使教育评价在评价依据、评价内容、评价主体等多个方面实现了全面转变。人工智能背景下职业教育的评价模式的建构表现为:首先,互联网信息技术应用于学习过程使得伴随式评价成为可能,更加关注学习者的个体差异和特点。强调过程评价和多元共同评价,更加客观全面,重视评价过程的诊断与改进功能,以促进学习者的个性化发展。其次,互联网、大数据、智能云技术的出现使得评价的技术和手段多样化、智能化,节省人力物力财力,提高了评价的科学性、针对性。第三,以大数据为基础的适应性评价因人而异,可获得及时反馈,可真实地测评学习者的认知结构、能力倾向和个性特征等,从知识领域扩展到技能领域、情感、态度与价值观,构建以学习者核心素养为导向的教育测量与评价体系,促进学习者发展。

(七)人工智能背景下职业教育的管理模式

智能化信息技术、云计算技术、大数据技术等能够促进大规模社会化协同,拓展教育资源与服务的共享性,提高教育管理、决策与评价的智慧性,因此,基于互联网的教育管理必将逐步走向“智慧管理”模式。人工智能背景下职业教育的管理模式的建构表现为:首先,互联网将家庭、学校、社区等紧密、方便地联系在一起,拓宽了家长和社会机构参与学校管理的渠道,各利益相关者可共同参与现代职业院校的学校管理,协作育人。其次,新时代的职业院校管理模式通过可视化界面进行智能化管理,业务数据几乎全部数字化,能有效降低信息管理系统的技术门槛,使管理工作更加轻松、高效。通过深度的数据挖掘与分析,能够实现个性化、精准资源信息的智能推荐和服务,为管理人员和决策者提供及时、全面、精准的数据支持,以提高决策的科学性。第三,通过互联网信息技术可以实现全方位、随时的远程监督与指导,从督导评估转变为实时评估,可以实现大规模的实时沟通与协作,促进社会化分工,促进职业院校内部重构管理业务流程,使管理智能化、网络化、专业化。

(八)人工智能背景下职业教育的组织模式

人工智能时代信息科学技术的蓬勃发展冲击着学校内部的组织结构向智能化、网络化的方向发展,各职业院校需要合理调整内部组织结构和资源分配,通过互联网加快信息流动等方式,提高各职业院校组织管理的效率和活力。人工智能背景下职业教育的组织模式的建构表现为:首先,当今时代人工智能的产生不可能替代学校教育,但可以改变学校教育的基本业务流程。人工智能推动了学校组织结构向网络化方向发展,教学与课程是提供信息数据的重要平台,学校组织则构成了教育大数据生态系统。其次,“互联网+职业教育”的跨界融合将打破学校的围墙的阻隔,互联网将学校组织与企业、科研院所等社会机构紧密联系起来,提供优质教育资源供给,共同承担知识的传授、传播、转化等功能,促进学校组织体系核心要素的重构。第三,建设“智慧校园”,实现线上线下融合的智慧校园育人环境,实施一体化校园网络认证,推动智能化教育资源共建共享,实现职业教育信息化建设的均衡发展。

五、人工智能背景下职业教育的模式变革面临的挑战及发展目标

人工智能将推进大数据、云技术等智能信息技术深层次融入职业教育课程与教学、组织与管理、评价与反馈等领域,形成社会化多元供给,为学习者提供多样化的参与方式、自主选择的学习形式和及时获得反馈的评价途径,有利于实现职业教育的共建、共享、共治。但其全面实现,还面临着诸多挑战。

(一)挑战

首先,职业教育的新模式建构需要充足的资金支持。各职业院校积极建构智慧校园,努力实现智慧化产学研环境,打造一体化智慧城市网络等核心技术的开发,都需要资金的根本保障。政府要给予资金政策保障并加强监管,资金管理部门要合理规划,合理利用,专款专用,落到实处。其次,职业教育的新模式建构的成果表现离不开学习者对技术的理解、掌握和应用。在实际实施过程中,教育工作者既要利用信息技术优势变革职业教育,也要避免技术中心主义倾向,“避免一味追赶技术新潮而不顾学生身心健康等,技术本身是一个祸福相依的辩证法。”[14]第三,“目前的教育实践中,仍未能充分实现人机合理分工和双边优势互补。人工智能终端系统擅长逻辑性、单调重复的工作,而人类则更适合情感性、创造性和社会性的工作。”[15]现阶段,信息化技术水平还有待提高,智能机器不能完全胜任知识传播、数据处理等工作,有待于进一步开发和完善,绝对依赖互联网络和设备,还存在一定的风险。

(二)发展目标

人工智能时代职业教育变革重新架构了职业教育发展模式,完成了对资源的重新整合配置,改变了人的思维方式、学习方式和生活方式。人工智能时代下没有职业教育模式的改革,就不可能建构真正的现代化职业教育。人工智能背景下职业教育的发展目标可以概括为个三方面:

1.“智慧脑”与“智能脑”融通

随着第四次产业革命的到来,信息技术爆发式发展,造就了以电脑、互联网为基础的智能脑。职业教育智慧化发展的一个目标就是如何让学习者发挥人脑“智慧脑”与机器设备“智能脑”的“双脑”共同协作[16]。人工智能时代职业教育与信息技术的深度融合,就是要通过“智慧脑”和“智能脑”的协同作用,发挥互补优势,进行融通式学习,而不是简单地人脑与电脑的技术对接。

2.“现实世界”与“虚拟世界”结合

在人工智能时代,网络虚拟技术的发展使人类拥有了真实与虚拟两个世界,虚拟信息技术的兴起在一定程度上会影响职业教育的实体教育,实体教育的发展也需要虚拟技术的支撑。但在具体的学习实践中,还会存在利用这两个世界时顾此失彼、难以平衡的问题。目前,虚拟化教育技术在职业教育领域不断应用与推广,职业教育的发展模式不断优化,使得职业院校线上线下的边界逐渐消融,“现实世界”与“虚拟世界”更好地结合。人工智能时代职业教育的本质没有发生根本改变,学习者要学会利用这两个世界虚实融合、高度互动,充分发挥出自身的优势,更好地学习与生活。

3.职业教育“适应人工智能”发展为“引领人工智能”

人工智能为职业教育带来了强大的技术支持,为职业教育带来了便利。初始阶段的职业教育基本知识和技能被数字化和智能化,通过人工智能相关课程,云教育模式,个性化学习计划等,适应并应用人工智能,以提高职业教育的效率和质量。职业教育重在技术创新,对于行业技术发展具有一定的引领性作用。未来人工智能将成为职业院校快速发展和转型的技术支撑。“如某些职业院校基于自身优势专业与相关行业的智能自动化企业合作,实现以职业教育发展引领人工智能。”[17]目前,人工智能处于适应性大发展阶段,随着信息化技术的提高和智能化设备的普及,人工智能时代必将由专用人工智能时代步入通用人工智能时代。在通用人工智能时代,人工智能与职业教育深度融合高效协作,职业教育完全适应且完美应用于人工智能,进一步引领人工智能发展,由“人工智能+职业教育”发展为“职业教育+人工智能”的时代。

第8篇

>> 智能小区的宽带网络基本概念 关于旅游学科基本概念的共识性问题 谈谈旅游学科中基本概念的“可靠性”问题 智能社会的智能战 函数的基本概念 运动概念智能眼镜 中职乐理教学中的基本概念问题分析 家具包装的基本概念及其设计问题 智能电视真的智能吗? 智能城市中智能交通的构建 人工智能与人的智能 “伪智能”的智能家居 智能家庭系统的智能网关设计 论智能交通建设 旅游社会学科建设的基本理论问题研究 民族传统体育学科建设的基本理论问题 关于经济学学科建设的三个基本问题 “中国近现代史基本问题研究”学科建设的再思考 学科建设管理的基本职能 智能的,无线的 常见问题解答 当前所在位置:l.

Basic Concept Problems of Academics Construction of “Intelligence”

WEI Shize

(Hebei University of Science and Technology, Shijiazhuang 050021, China)

第9篇

[关键词]:智能教学 多媒体 特点 设计方法

在当前,计算机技术发展引起的智能化普遍应用的情况下,深入探索智能教学环境下的教育理念、教学模式和教学方法,充分利用现有信息技术成果,研究更加先进的智能网络教学模型,不仅可行,而且也是智能网络教学系统研究、开发和应用中的一项重要内容。文章拟主要分析当前智能化教学系统的特点与设计方法。

一、智能化教学系统的特点

智能教学系统是以认知科学为理论基础,综合利用人工智能技术、教育心理学、计算机科学等多门学科的成果而形成的一种对学生实施有效教学的技术。系统的智能性主要表现为能够实现“一对一”的教学,这种教学模式被誉为是最有效果的教学方式。“一对一”的教学方式可以归结为以下三点:(1)指导教师可以采用测试和问题的方式来探测学生实时的知识状态。(2)在学生开始学习某个知识之前,指导教师能够为他设计一条从最基础知识到某一个具体知识的学习路径。(3)在教师和学生的交互过程中,教师能够了解潜在的探测此学生所具有的学习风格,并且提供风格匹配的教学材料给学生进行学习。

基于以上的实践经验以及人工智能技术,设计和开发一个基于计算机的智能教学系统来模拟人类教师的教学方式和行为已经成为可能,并且很有前景。使用具有智能性的智能教学系统,将可以有效地弥补其教育教学上的缺陷和不足,改善学生的学习效果,提高教学效率,对教育具有极大的推动作用。

二、智能教学系统的设计方法

1.智能教学系统的设计原理

进行科学的教学系统设计,必须从了解学习的发生机制和学习的本质问题入手。教学系统设计,是架设于学习理论与教育教学实践之间的一座桥梁。纵观教学系统设计的发展轨迹,可以清晰地看到学习理论对教学系统设计的影响最为深刻。每一次学习理论的发展,都必然为教学系统设计带来巨大的触动和冲击。学习理论的发展大致可以分为行为主义学习理论、认知广义学习理论、建构主义学习理论和人本主义学习理论等,所以相应地出现了基于行为主义的教学系统设计理论、基于认知主义的教学系统设计理论、基于建构主义的教学系统设计理论和基于人本主义的教学系统设计理论。

2.智能教学系统的的主要功能

智能教学系统关键在于能够对学习者的学习效果进行检验并能够给出相应的学习建议,从而实现学习过程的智能化。主要功能包括:

(l)建立教学内容的智能知识库。根据不同的教学内容,按知识体系结构进行知识点的划分,并建立学习要素的数据库。

(2)对学习过程进行评价。学习效果是学习质量的重要标志,学习过程包括在线学习、在线练习、在线测试、实践教学,收集学习过程信息,进而对学习效果进行合理评价。

(3)学习指导和建议。根据学习情况给出学习效果评价,然后根据学习效果给出学习指导和学习建议,从而使学习过程具有更强的针对性,以达到提高学习质量的目的。

(4)学习导航。及时收集学生的应答信息,并加以分析处理,评判学生的成绩;为不同的学生选择不同的教学内容,将学生不具备学习条件的知识过滤掉;帮助学生分析错误原因,判断并标示出学生当前最需要学习的知识点,提供针对性的个别辅导和适当的补充材料。

(5)教学方法。允许学生用自然语言与计算机导师进行交流,这样就突破了传统的学法指导和教法,并且教法还可以针对特定学生进行,即“一对一”教学模式。

3.智能教学系统的组成

(1)领域模型。存放传授给学生的课程专业知识,还能生成问题,提供对问题的正确解答以及求解问题的过程。领域模型一般包含两方面的知识:一是有关课程的内容,二是有关应用这些知识来求解问题的知识,即过程知识。知识表示方法有语义网络、规则等。

(2)诊断模型。利用诊断规则来分析学生的响应,判断学生己经懂得的知识或学生产生的错误概念,并传递到学生模型的当前状态中去。

(3)学生模型。准确反映学生的知识水平、学习能力等,为系统实现个别化教学提供依据。

(4)教师模型。结合教学策略和课程结构方面的知识,为学生选择问题供他们解答,监督和评价他们的行为,当学生需要时为他们选择适当的补习材料。教师模型中,交叉和解释模式以及学生模型是实现“面向个人以交互方式进行教学”的具体手段。教师模型中采用的教学策略主要有诊断或排错法、苏格拉底法、教练法等。

(5)人机接口。人机接口作为学生与系统之间交流信息的媒介,它所提供的表达知识和信息的手段必须是学生熟悉并便于使用的。

4.智能教学系统的使用

学生使用教学系统进行学习活动时,可以自己选择学习内容,也可以在教师模型的作用下由系统引导进入某一教学单元。教师利用测试结果,通过诊断模块和诊断规则来判断学生当前的认知能力,通过学生的总体认知能力来决定学生下一步的行为。

(1)教学诊断模块。主要负责判断学生对某一知识点的掌握情况,进而能判断学生的当前知识水平,为判断学生的认知能力提供依据。

(2)能力测定模块。主要负责评价学生的学习能力。在教学之前、教学期间和教学之后都要进行。通过评价取得反馈信息以修正、完善教学计划,为教师模型制定正确的教学策略提供条件,保证教学的顺利完成。它是本系统的重要部分。

(3)学生行为评定。对学生行为的评价,依据评价的目的不同,分绝对评价和相对评价两种方法,系统中以教学目标为基准进行绝对评价,以掌握学生达到教学目标的程度和诊断学生知识、能力结构中的缺欠,即根据专家知识库中的测试题目信息及学生的回答情况,给出分析结果及相应各认知能力不同层次的分数比重,为制定相应的教学策略提供数据依据。

(4)试题评定。主要是对试卷的要求进行综合评价,包括学生测试的内容是否是学习过的,是否符合教学大纲的要求,试题分数的比例是否符合难度比例、认知层次比例和各章节的分配比例。

(5)教学内容生成。系统根据学生的认知能力、当前的知识水平和学习历史,利用教学策略生成个性化教学内容。

三、结语

智能教学系统能监控学生的学习过程,实现教学各环节的知识共享与交互,从而实现学生的按需学习和教师的因材施教,体现“以学习者为中心”的教学思想。但是,目前的智能教学系统的研究可以说仍然处于基础理论的研究阶段,其主要的研究方法就是将远程教学技术与传统的智能教学系统相结合,运用人工智能技术来更加有效地实现教学的个性化和智能化。

参考文献:

[1]谢忠新,王林泉,葛元.智能教学系统中认知型学生模型的建立[J].算机工程与应用,2005,(3):229-232.

[2]张荣梅,李福亮.基于Agent的网络智能教学系统的研究[J].现代电子技术,2007,(6):83-85.

相关文章
相关期刊