时间:2024-04-01 15:04:16
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇重金属污染的影响范例。如需获取更多原创内容,可随时联系我们的客服老师。
中图分类号:TE08文献标识码: A
重金属污染时指由重金属及其化合物引起的环境污染,主要由采矿、废气排放、污水灌溉和使用重金属制品等人为因素所致。重金属的污染主要来源工业污染,其次是交通污染和生活垃圾污染。工业污染大多通过废渣、废水、废气排入环境,在人和动物、植物中富集,从而对环境和人的健康造成很大的危害。
重金属污染物是一类典型的优先控制污染物。环境中的重金属污染与危害决定于重金属在环境中的含量分布、化学特征、环境化学行为、迁移转化及重金属对生物的毒性。重金属污染与其他有机化合物的污染不同,不少有机化合物可以通过自然界本身物理的、化学的或生物的净化,使有害性降低或解除。而重金属具有富集性,很难在环境中降解。目前中国由于在重金属的开采、冶炼、加工过程中,造成不少重金属如铅、汞、镉、钴等进入大气、水、土壤引起严重的环境污染。对人体毒害最大的重金属有5种:铅、汞、砷、镉、铭。这些重金属在水中不能被分解,人饮用后毒性放大,与水中的其他毒素结合生成毒性更大的有机物。以各种化学状态或化学形态存在的重金属,在进入环境或生态系统后就会存留、积累和迁移,造成危害。如随废水排出的重金属,即使浓度小,也可在藻类和底泥中积累,被鱼和贝的体表吸附,产生食物链浓缩,从而造成公害。如日本的水俣病,就是因为烧碱制造工业排放的废水中含有汞,在经生物作用变成有机汞后造成的;又如痛痛病,是由炼锌工业和镉电镀工业所排放的镉所致。汽车尾气排放的铅经大气扩散等过程进入环境中,造成目前地表铅的浓度已有显著提高,致使近代人体内铅的吸收量比原始人增加了约100倍,损害了人体健康。
重金属污染在环境中难以降解,能在动物和植物体内积累,通过食物链逐步富集,浓度成千上万甚至上百万倍的增加,最后进入人体造成危害,是危害人类最大的污染物之一。国际上,许多废弃物都因含有重金属元素被列到国家危险废物名录,近些年随着我国工农业生产的快速发展,我国出现了重金属污染频发、常发的状况。2010 年4月至6月,浙江省政协组织成立调研组,通过召集省有关单位负责人座谈,向社会公众征集意见建议,并赴杭州、台州及所辖的路桥、温岭等部分县(市、区)进行实地调研,全面了解食品药品安全情况。调研结果显示,在浙北、浙中、浙东沿海三个区域中,城郊传统的蔬菜基地、部分基本农田都受到了较严重的影响。工业“三废”及城市生活污染物排放,引起重金属污染农田。调研组有关负责人表示,这些城郊重金属对土壤的污染,主要是近十多年造成的,主要是人为的污染,这会直接威胁到百姓的生命健康。2011年3月中旬,在浙江台州市路桥区峰江街道,一座建在居民区中央的“台州市速起蓄电池有限公司”(以下简称“速起蓄电池公司”)被曝出其引起的铅污染已致使当地168名村民血铅超标。由于重金属污染事件在我国频繁发生,使得我国开始重视重金属污染的治理。
常见的重金属土壤治理的方法包括化学法、生物法、物理法、热力学方法等,每种方法又包含不同的技术,每种技术又可以采用不同的施工方案实施。化学法主要通过将重金属污染土壤与化学稳定剂混合来实现重金属的稳定化,而石灰等稳定剂通常不能有长期的治理效果,分子键合是目前业界关注的一种以长期稳定性为特点的修复药剂。生物法一般有植物修复和微生物修复等。植物修复通过超积累植物吸收土壤中的重金属,比较安全但是修复周期长;微生物修复通过土壤中微生物降解重金属,但是影响修复效果的因素较多,目前应用较少。热力学方法可以通过高温来使重金属玻璃化,但是成本很高。
不同重金属胁迫对成熟期小麦株高、穗长的影响重金属胁迫下对小麦穗长的影响,与CK相比,重金属Pb在2种添加量下均抑制郑麦9023穗的生长,其他重金属则随添加量的高低对穗长的影响不尽相同,穗长大小依次为:Cd1>Hg2>Cr1>As2>CK>Pb1>Pb2>As1>Cd2>Hg1>Cr2。同样,重金属Cd、As、Cr在2种添加量均抑制小偃22的穗长,Pb胁迫则没有表现出抑制特性,穗长大小依次为:Pb2>Hg2>Pb1>CK>Cd1>As1>Hg1>As2>Cd2>Cr1>Cr2(表2)。此外,同一重金属胁迫对不同的基因型小麦穗长的影响效应存在差异,As、Cd、Cr胁迫对郑麦9023、小偃22的穗长均表现出抑制效应;Hg、Pb处理对9023表现为抑制效应,对小偃22表现为一定的促进作用。重金属胁迫对小麦株高的影响,与对照相比,重金属Pb1、Cd1、Cr2抑制了郑麦9023的株高,而其他处理则不存在抑制现象,株高大小依次为:Cr1>Hg2>As2>Cd2>Hg1>Pb2>As1>CK>Pb1>Cd1>Cr2(表2)。总的来看,As、Hg处理对郑麦9023的株高则表现为促进作用,Cd、Pb处理在低浓度条件下表现为抑制作用,高浓度条件下表现出促进作用,5种重金属的影响作用大小依次为:Cr>Hg>As>Pb>Cd(表3)。此外,5种重金属的胁迫均抑制了小偃22的株高,其中,As2处理抑制效果最小,其次为Pb2处理,Cr2处理抑制效果最大;重金属胁迫下小偃22的株高大小依次为:CK>As2>Pb2>Pb1>Hg1>As1>Hg2>Cd2>Cd1>Cr1>Cr2(表略)。Cd、Pb、As、Hg、Cr胁迫对小偃22的株高均表现为抑制作用,重金属Cr处理与对照相比达到显著(P<0.05)或极显著(P<0.01)水平;5种重金属对小偃22株高的抑制效应的大小依次为:Cr>Cd>Hg>As≥Pb。
不同重金属胁迫下对小麦成熟期颖壳质量、单穗籽粒质量的影响在重金属胁迫下,小麦颖壳的生长受到了较大影响。从表4可以看出,与对照CK相比,重金属Cr胁迫能显著(P<0.05)降低郑麦9023的颖壳质量,其他重金属胁迫对颖壳生长的影响则与其浓度有较大关系,颖壳质量大小依次为:Hg2>Pb1>As2>Cd1>Pb2>CK>Hg1>Cd2>As1>Cr1>Cr2;5种重金属对郑麦9023籽粒颖壳质量的影响效应大小也有所不同,Cr的影响效应最大,Cd的影响效应最小,影响效应大小依次为:Cd<Pb<As<Hg<Cr(表5)。对于小偃22来说,与CK相比,重金属As、Cd、Cr胁迫均抑制颖壳的生长,其中,Cr处理的颖壳质量显著(P<0.05)低于其他处理,而Pb、Hg的浓度不同对生长的影响也不同,颖壳质量大小依次为:Pb2>Hg1>CK>Pb1>Cd1>Hg2>As2>Cd2>As1>Cr1>Cr2。5种重金属对小偃22籽粒颖壳质量的影响效应最大的是Cr,其次是As,5种重金属的影响效应大小依次为:Pb<Hg<Cd<As<Cr。小麦的单穗籽粒质量直接影响到最终的产量,与CK相比,郑麦9023在重金属Cr1胁迫下的单穗籽粒质量最大,达到1.91g/穗,Pb1处理的单穗籽粒质量最小,为1.38g/穗;各处理的单穗籽粒质量大小依次为:Cr1>CK>Hg2>Pb2>Cd1>Hg1>As2>Cd2>Cr2>As1>Pb1(表4)。不同重金属对郑麦9023单穗籽粒质量的效应大小也不相同,从表5可以看出,Cr的影响效应最大,Hg的最小,5种重金属的影响效应大小依次为:Cr>Pb>As>Cd>Hg。同样,小偃22在重金属Hg1胁迫下的单穗籽粒质量最大,为1.90g/穗,其次为Cr2,Cd2处理的值最小,小偃22各处理的小麦单穗籽粒质量大小依次为:Hg1>Cr2>As2>Pb2>Cr1>As1>Hg2>CK>Pb1>Cd1>Cd2;5种重金属的影响效应大小依次为:Cr>Hg>Cd>As>Pb。不同重金属胁迫对小麦产量影响及阈值分析,不同重金属胁迫,对小麦籽粒产量产生了一定的影响。从产量上看,重金属Cr处理的2个小麦品种籽粒产量与CK相比显著(P<0.05)降低,均表现为高浓度Cr处理的抑制作用大于低浓度Cr处理;Cd、Hg、Pb、As处理的小麦籽粒产量均高于对照,其中Cd1、Pb2处理的郑麦9023小麦籽粒产量显著(P<0.05)高于CK,而Cd、Hg、Pb、As处理的小偃22小麦籽粒产量则没有达到显著水平。各处理郑麦9023的籽粒产量大小依次为:Cr2<Cr1<CK<Cd2<Hg1<As2<As1<Hg2<Pb1<Cd1<Pb2;各处理小偃22的籽粒产量大小为:Cr2<Cr1<CK<Hg1<As2<Hg2<Cd1<Cd2<Pb2<As1<Pb1。对5种重金属胁迫下的小麦产量与土壤重金属含量进行拟合分析,在本研究的土壤重金属浓度下,重金属Cr与郑麦9023、小偃22的产量均程直线线性关系;重金属Cd、Hg、Pb、As与小麦产量则呈二次线性关系。说明2种小麦产量受Cr影响较大,而受Cd、Hg、Pb、As的影响则相对较小。同时利用线性方程进行求解,得出2种小麦的产量受重金属胁迫的阈值(表6),由表6可以看出,不同基因型小麦品种的抗胁迫能力存在一定差异,郑麦9023抗As、Pb胁迫能力较强,小偃22抗Cd、Cr、Hg胁迫的能力相对较强。
前人研究认为,重金属Cd[19-21]、Pb[22]、As[23-27]、Hg[28]、Cr[29-30]胁迫在较低浓度时对小麦的生长有一定的促进作用,而在高浓度下能够抑制种子的发芽势、发芽率和芽以及根的生长;Cd、Pb、As、Hg、Cr重金属对产量三要素的影响最大的是单位面积群体数,其次为穗粒数,对千粒质量的影响最小;单位面积群体穗数对重金属Cr、Pb最为敏感[31]。本研究条件下,As、Cd、Cr、Hg、Pb胁迫对郑麦9023、小偃22的穗长、株高、颖壳质量影响差异较大;如As、Cd、Cr、Hg、Pb胁迫对郑麦9023穗长表现为抑制效应;As、Cd、Cr胁迫对小偃22的穗长表现为抑制效应,Hg、Pb胁迫则表现为促进效应等。这些结论与前人的研究不完全一致,一方面可能与本研究设置的浓度有关;另一方面试验研究的水培、盆栽条件与大田之间的环境差异较大。与大田环境相比,水培、盆栽土壤缓冲能力和抗胁迫能力较小;而大田土壤条件则有较高的土壤库容、土壤微生物活性,对重金属胁迫的抵抗能力较强。小麦的生长是否受到抑制与重金属的种类、小麦品种等有很大关系,而且小麦基因型不同,对重金属的抗胁迫能力也存在较大的差异,特别表现在产量的差异上;说明在重金属污染土壤的修复过程中,可以筛选利用可胁迫能力强、吸收累积能力高的作物品种进行污染修复。同时也应注意重金属对人体的高危害性,合理处理富集作物。此外,本研究得出的土壤重金属产量阈值参照标准不同,As、Cd、Hg、Pb的阈值是限制达到相应品种对照产量时土壤的含量值,当土壤重金属含量达到这一含量水平时,就会造成减产;而Cr则是作物没有收获产量时的土壤含量值。本研究结果表明,在大田条件下,重金属对小麦生长因子的影响因小麦的品种和重金属种类及浓度的不同而不同,As、Cd、Cr、Hg、Pb胁迫对郑麦9023穗长表现为抑制效应;As、Cd、Cr胁迫对小偃22的穗长表现为抑制效应,Hg、Pb胁迫则没有表现出抑制效应。As、Cd、Cr、Hg、Pb胁迫对小偃22的株高均表现为抑制作用,抑制效应的大小依次为:Cr>Cd>Hg>As≥Pb。As、Hg胁迫对郑麦9023的株高则表现为促进作用,Cd、Pb胁迫则表现为“高促低抑”的特点,而Cr胁迫表现为“低促高抑”趋势。同时,Cr胁迫对郑麦9023颖壳质量的影响效应最大,Cd最小;对小偃22籽粒颖壳质量的影响效应最大的是Cr,其次是As;重金属Pb对小麦籽粒颖壳质量表现为促进效应;而Cd、Cr、As胁迫,则表现为抑制效应。研究表明,As、Cd、Cr、Hg、Pb5种重金属胁迫下,只有重金属Cr胁迫显著(P<0.05)降低了2个小麦品种的籽粒产量,而Cd、Hg、Pb、As胁迫则没有表现出抑制现象。通过对重金属胁迫浓度与产量的拟合分析,得出As、Cd、Cr、Hg、Pb5种重金属对郑麦9023的产量阈值分别为53.42,1.31,749.73,7.43,555.57mg/kg,小偃22的产量阈值分别为42.58,1.80,828.18,10.30,437.01mg/kg。表明郑麦9023抗As、Pb胁迫能力较强,而小偃22抗Cd、Cr、Hg胁迫的能力相对较强。此外,由于本研究结论是在大田条件下进行,研究的风险以及研究受到外界自然环境等因素的影响较大,所得的研究结论也有待于进一步研究和验证。
作者:聂胜委 黄绍敏 张水清 郭斗斗 张巧萍 程秀洲 单位:河南省农业科学院 河南农业大学 潢川县农业技术推广中心
从改革开放至今,广东省工业得到了快速发展,但由于缺少对环境的保护,特别是河道水体的保护。工业生产产生的许多有害物质未经处理就排入各河道,导致河道中的水受到严重的污染,而养殖业离不开水,当农民用了受污染的水体养殖像鹅,鸭,鱼等时,一方面疾病危害水禽健康,降低生产性能和养殖业的经济效益;另一方面给食品安全带来严重隐患,危害人类健康。当农业使用受污染的水灌溉时,使土壤也受到了污染。
水禽养殖业是中国的传统产业,特别是鸭跟鹅,由于其养殖成本低、周期短、见效快,因此取得了突飞猛进的发展,在农业产业结构调整中,已受到世界各国的高度重视,其中鸭为全世界饲养数量最多的水禽。2009年末我国肉鸭存栏已达10.96亿只,肉鸭出栏约35.2亿只(其中樱桃谷鸭20.6亿只),肉鸭的年存栏量和屠宰量占到世界总量的67.3%和74.7%,中国号称“水禽王国”是当之无愧的。随着经济的发展和人民生活水平的提高,市场对鸭、鹅产品的需求量越来越大,因此水禽的饲养量将不断增加,据统计中国水禽总量占世界的60%以上。估计在今后相当长的时间内,水禽的养殖数量也会稳定增长。
重金属污染指由重金属或其化合物造成的环境污染,主要由采矿、废气排放、污水灌溉和使用重金属制品等人为因素所致。随着经济的发展,人类活动导致环境中的重金属含量不断增加,许多经济发达地区早就超出正常范围,导致环境质量严重恶化。而许多水禽由于污染得病而死,或者受污染后被人身吸收进入人体内,不同于其他污染物的可降解特性,重金属污染物有着永远在环境里循环、无法降解的特点,这也就加重了其对人群的危害。由于重金属污染问题突出,2011年4月初我国首个“十二五”专项规划——《重金属污染综合防治“十二五”规划》获得国务院正式批复,防治规划力求控制5种重金属,目标是到2015年,中国将建立比较完善的重金属污染防治体系、事故应急体系和环境与健康风险评估体系,解决一批损害群众健康的突出问题。
由于鹅作为水禽在当前的养殖模式下是离不开水的,而近年来,重金属污染事件屡见不鲜,例如2005年广东省北江镉污染事件,该事件发生后不久,为了保障下游清远、佛山、广州等城市的供水安全,专家们决定,除了调水冲污外,还将实施工程技术措施,加聚合铁或聚合铝进行稀释。韶关的武水桥下,江水碧波荡漾,婀娜的水草群舞中游支流横石河,河水呈强酸性,即使稀释一万倍,水生物也难在其问存活24小时下游地区的清远石角镇,铜产业带来的污染,造成附近河底沉积物中铊含量严重超标。2008年,华南农业大学教授林初夏提供的测试数据显示,横石河水即使稀释1万倍,水生物还是不能在里面存活超过24小时;由于每吨废矿含有可产生相当200公斤浓硫酸的金属硫化物,从源头到50公里开外,,河水都可以测出酸性,直侵下游北江,还有像浏阳镉污染事件等等。
本试验在广东省内鹅的主要养殖地,需用不同养殖场内健康的2年龄成年马岗鹅种鹅为检测对象,通过测定鹅的水生环境和水生环境中的淤泥的重金属(铅Pb、镉cd、铬cr、砷As)含量,再与国家规定的标准进行对比,再通过测定鹅的四个组织(肝脏、胸肌、腿肌、胸骨)中的重金属(铅Pb、镉cd、铬cr、砷As)含量,从而-进行相关的研究,从而对鹅养殖环境中重金属污染对其的影响,为当前鹅养殖环境重金属污染的影响做出科学依据。
2、材料与方法
2.1 试验动物及场地
本试验在省内三个鹅主要养殖区各选择一家规模化鹅场,所用试验动物为健康的成年种鹅,2~3年龄。
2.2 实验设计
试验期在各养殖场的鹅群中随机选择6只鹅,分别在各个鹅上取肝脏、胸肌、胸骨等样品,保存于20℃,留待重金属指标测定。另外,从养殖地采集洗浴池的水体和水底土壤样品,保存于4℃样品,各动物样品和水体样品以及土壤样品均检测铅(Pb)、镉(cd)、铬(cr)和砷(As)等四种重金属的含量。
水样采集:在养殖鹅的水池中,分别选取三个点,使其呈等边三角形,然后分别将吸管深入离水面10厘米左右的地方,各收集300ml的水样;样品采集后,用0.22μm微孔纤维滤膜对水样进行过滤,滤液分装在洁净的聚乙烯瓶中,为避免样品在保存过程中产生感光分解和微生物降解等反应,样品避光冷冻保存到进样。
土壤采集:在在养殖鹅的水池中,分别选取三个点,使其呈等边三角形,然后用铁铲铲其泥土的表层,各取适量的土壤;将样品在无菌条件下风干后保存好。
2.3 重金属指标测定方法
全部动物组织样品的重金属含量的测定,除砷的含量采用原子荧光光谱法,其余三种重金属含量的测定方法均按国标(GB/T5009.12-2003、GB/T 5009.15-2003和GB/T 5009.123-2003中的石墨炉原子吸收光谱法)进行。
(1)水样:全Pb、Cd:石墨炉原子吸收分光光度法(GB/T11901-1989):全cr:二苯碳酸二肼分光光度法(GB/T7466-1987):全As:二乙基二硫代氨基甲酸银分光光度法(GB/T7485-1987)
(2)土壤样:全Pb、cd、Cr:火焰原子吸收分光光度法(GB/T17137-1997);全As:二乙基二硫代氨基甲酸银分光光度法(GB/T 17134-1997)
(3)组织样:全cr:原子吸收石墨炉法(GB/T 5009.123—2003)[9];全Pb:石墨炉原子吸收光谱法(GB/T 5009.12-2003);全Cd:石墨炉原子吸收光谱法(GB/T 5009.15-2003);全As:原子荧光光谱法。
2.4 试验数据处理
对不同养殖地鹅组织样品肝脏、胸肌、腿肌、胸骨中各重金属指标含量作单因子方差分析;除注明外,各数值均用平均值(Mean)+SE表示。所有的数据分析均用SAN software version8.01完成。
3、结果与分析
3.1 养殖场水体中的重金属水平
对各鹅养殖地洗浴池水体中的铅、镉、铬和砷等四种重金属含量进行检测。测定结果显示,鹅养殖地洗浴池水体中铅、镉、铬和砷等四种重金属的含量很低,均仅10-4 mg/L级的含量。
3.2 养殖场水体池底土壤中的重金属水平
对各鹅养殖地洗浴池池底土壤中的铅、镉、铬和砷等四种重金属含量进行检测。测定结果显示,三个鹅场池底土壤中铅的含量介于25~50 mg/kg之间,最高的为鹅场c,次之为鹅场B,最低为鹅场A;三个鹅场池底土壤中镉的含量介于0.1~O.4 mg/kg之间,最高的为鹅场c,鹅场B和鹅场A均低于前者,水平相当;三个鹅场池底土壤中铬的含量介于7~28 mg/kg之间,最低的为鹅场B,鹅场A,而鹅场c要明显高于前两者;三个鹅场池底土壤中砷的含量介于1~2.5 mg/kg之间,鹅场B和c较高,两者水平较高,鹅场A则较低。
3.3 不同养殖场鹅机体各组织的重金属水平
对各鹅养殖地种机体内胸肌、骨骼、肝脏等组织中的铅、镉、铬和砷等四种重金属含量进行检测。测定结果显示,在三个养殖中,铅在不同组织中的含量均以骨骼最高,达到3.9~23.9mg/kg,而胸肌和肝脏中含量远远低于前者,仅0.01~0.1 mg/kg之间;三个养殖地鹅相同组织间比较,鹅场c的水平均高于鹅场A和B,后两者胸肌和肝脏的水平相关,除鹅场A骨骼的水平高于鹅场B外。在三个养殖中,镉在不同组织中的含量均肝脏最高,均可以检出,0.08~0.3 mg/kg之间,其中鹅场A和鹅场c的水平相当,明显高于鹅场B;而三个鹅场中鹅胸肌和肝脏中均检不出镉。在三个养殖中,铬的含量无明显组织分布特点,在鹅场A中的含量为肝脏>胸肌>骨骼,在鹅场B中的含量为胸肌>骨骼>肝脏,在鹅场c中的含量为骨骼>肝脏>胸肌;三个鹅场相同组织间进行比较,以鹅场B较高,高于鹅场A和c,后两者水平相当。在三个养殖中,三种组织中均检不出砷。
4、讨论
鹅各养殖地洗浴池水体中铅、镉、铬和砷等四种重金属的含量很低,水体还没有受到重金属的污染。而各养殖场水体池底土壤中,铅的含量很高,远远超过正常水平;铬的含量也很高,特别是鹅场C远远超过正常水平,砷的含量也属于正常水平,镉的含量很低。不同养殖场鹅机体各组织的重金属水平,由试验可知:镉、铬和砷等三种重金属的含量很低或较低,而铅在胸肌和肝脏里的含量都很低,但在骨骼里的含量较高,特别是鹅场c远远超过正常水平。因些我们得知:各养殖场水体池底土壤受到铅跟铬金属的污染,而各养殖场鹅受到了铅金属的污染(特别是鹅场C)。
铅对环境的污染,一方面来自冶炼、制造和使用铅制品的工矿企业,特别是来自有色金属冶炼过程中所排出的含铅废水、废气和废渣造成的。另一方面由汽车排出的含铅废气造成的。而在诸如铁冶炼、电镀、制革工业、颜料制造与化工镀膜等工业都可产生大量的含铬废水与废渣。因此我们估计,有可能是吃进受污染含铅的饲料,也有可能是本身土壤已严重受铅重金属的污染,当开挖水塘后注入的水是没受污染的,而鹅期生活在跟受污染的土壤接触后也受到了污染。
要保证鹅的安全生产,避免受铅、铬等重金属的污染,除了政府要切实加强铅蓄电池(包括铅蓄电池加工(含电极板)、组装、回收)及再生铅行业的污染防治工作,保护群众身体健康,促进社会和谐稳定,另外还要对铅蓄电池企业采取有效措施,建设完善铅烟、铅尘、酸雾和废水收集、处理设施,并保证污染治理设施正常稳定运行,达标排放,减少无组织排放。而养殖作为场要尽量选择远离那些工业厂房排放污水的下游,要用正规厂商生产的饲料,同时最好远离市区饲养鹅。
重金属污染与其他有机化合物的污染不同,重金属具有富集性,不易在环境中降解。当前我国由于在重金属的开采、冶炼、加工过程中,造成不少重金属如铅、汞、镉、钻等进入大气、水、土壤引起严重的环境污染。废水排出的重金属,即使浓度小,也可在藻类和底泥中积累,继而被鸭、鹅体表吸附。当受重金属污染的水禽例如鸭、鹅被人类吃用后,重金属在人体内能和蛋白质及各种酶发生强烈的相互作用,使它们失去活性,也可能在人体的某些器官中富集,如果超过人体所能耐受的限度,会造成人体急性中毒、亚急性中毒、慢性中毒等,对人体会造成很大的危害。例如,日本发生的水俣病(汞污染)和骨痛病(镉污染,等公害病,都是由重金属污染引起的。
重金属在大气、水体、土壤、生物体中广泛分布,而底泥往往是重金属的储存库和最后的归宿。当环境变化时,底泥中的重金属形态将发生转化并释放造成污染。鸭、鹅的生活环境离不开水,它们一般要生活于水塘或河道中,这大大增加了它们受污染的机会。重金属不能被生物降解,但具有生物累积性,可以直接威胁高等生物包括人类,有关专家指出,重金属对土壤的污染具有不可逆转性,已受污染土壤没有治理价值,只能调整种植品种来加以回避。因此,底泥重金属污染问题日益受到人们的重视。科技是一把双刃剑,20世纪以来科学技术迅猛发展,促进了经济的发展,提高了人民的生活水平,然而,与此同时,人类也付出了惨重的代价。多数金属在体内有蓄积性,半衰期较长,能产生急性和慢性毒性反应,可能还会有致畸、致癌和致突变的潜在危害。目前,我国儿童铅污染较为严重。
关键词:润草1号;镉胁迫;生理生化指标
中图分类号:Q945 文献标识码:A 文章编号:0439-8114(2016)19-4952-04
DOI:10.14088/ki.issn0439-8114.2016.19.013
Abstract:Nourishing Grass 1 is a new type of lawn grass bred in 2012. The method of pot experiment,effects of heavy metal cadmium in soil on physiological and biochemical indexes of Nourishing Grass 1 were studied. The results showed that,with the increase of the concentration of heavy metal cadmium solution,free proline content and chlorophyll content of Nourishing Grass 1 were increased first and then decreased,but the vitality of root system was gradually decreased,cell membrane permeability was gradually increased.
Key words:Nourishing Grass 1;cadmium stress;physiological and biochemical indexes
润草1号是一种新型的草坪草品种,于2012年由江苏农林职业技术学院培育而成。润草1号属于低矮型草种,坪用性状优良。润草1号具有较强的耐荫、耐热性能,抗倒伏和抗病能力强,适宜南方地区露地栽培,是中国草坪绿化常用的草坪植物之一,主要用于观赏草坪的建植,对于降低环境污染、城市绿化及美化起着非常重要的作用。
重金属镉不是植物生长所必需的营养元素,对环境造成的污染和危害大。越来越多的重金属镉,随着工业和交通不断地发展,被释放到了人们赖以生存的环境中,并大量地积累在土壤中。土壤被重金属镉污染后,不仅会造成土壤的质量下降、使土壤丧失正常的功能,还会毒害生长的植物,进而给人类身体健康带来危害。在南方地区的土壤中,重金属镉是最常见的污染元素,其含量在土壤中已超过正常值的3~4倍[1]。土壤中重金属镉污染可以利用草坪来修复,不仅净化了土壤,而且对人类的生产、生活条件和环境条件都产生了有益的影响。本试验通过研究土壤中不同浓度重金属镉对润草1号生理生化指标的影响,以期为重金属污染地区的土壤中重金属含量标准的制定、草坪绿地建设规划提供有利的参考。
1 材料与方法
1.1 供试材料
试验所用的材料为润草1号,由江苏农林职业技术学院提供。盆栽土壤取自江苏农林职业技术学院花房土质较好的表层土壤,测得pH为7.2,土壤重金属镉含量为0.056 g/kg。重金属镉添加形式为3CdSO4・8H2O,分析纯。
1.2 试验设计
于2014年9月15日,将供试土壤充分粉碎后过0.5 cm筛,再将作基肥的5%草炭按1∶3的体积比拌入供试土壤中,充分混合。将混合后的土壤称重5.5 kg,分别装入20只塑料花盆中,其中所用花盆的上口直径、下口直径和高分别为25.8、16.3、22.5 cm。试验时以不使用重金属镉的处理作为对照,重金属镉的胁迫浓度分别设定为5、20、50、100 mg/kg(不含背景值,重金属镉的胁迫浓度以Cd2+计),每次处理重复4次。
按照设定的重金属镉的胁迫浓度,在每只花盆中添加4种不同浓度的重金属镉溶液各1 000 mL,每天喷施清水100 mL。平衡14 d后,播种用蒸馏水浸泡24 h的润草1号种子,播种量为每盆中300粒,保持土壤含水量为田间最大持水量的70%。种植1个月后,分别取样分析。
1.3 测定方法
生理生化指标的测定按照张治安[2]的方法,叶绿素采用95%乙醇提取,UV-2100型紫外/可见分光光度计测定;根系活力测定采用氯化三苯基四氮唑(TTC)法;细胞膜透性测定采用电导法,使用DDS-12AW型电导仪测定;游离脯氨酸采用磺基水杨酸提取法测定。
2 结果与分析
2.1 重金属镉胁迫对根系活力的影响
根系不仅是植物吸收水分、矿物质营养的主要器官,也是合成氨基酸、激素等物质的重要部位,同时合成并输送感受外界刺激的信息物质。根系的生长状况和活力对于地上部的营养、生长和最终产量的形成至关重要。根系活力是指植物根系自身具有的合成、吸收、还原及氧化能力等,可以用来衡量植物根系长势优劣和标示植物生长情况的重要生理指标。根系活力大小反映了植物根系代谢强度的大小。如果根系活力越大,则表明根系组织的代谢能力越强,根系长得越粗壮,这对整个植株的生长发育是十分有利的[3]。从图1可以看出,不同浓度重金属镉处理后,润草1号的根系活力低于对照组,随着重金属镉浓度的逐浙增大,根系活力表现为逐渐降低。当重金属镉浓度小于5 mg/kg时,根系活力是与对照组相近的,这说明该浓度对润草1号的影响很小。重金属镉胁迫使根系活力降低,可能是由于较强的呼吸代谢作用导致了润草1号过多地消耗了能量,进而抑制了润草1号的生长发育。
2.2 重金属镉胁迫对细胞膜透性的影响
生物体内的细胞膜是一种具有选择性的半透膜,对细胞内外物质的运输和交换起着重要的调节和控制作用。外界环境对细胞产生胁迫时最敏感的部位是细胞膜,细胞膜透性的改变或丧失都是因为细胞受到各种逆境伤害引起的。因此,在植物抗逆性研究中常把细胞膜透性作为重要的生理指标。从表1可以看出,不同浓度重金属镉处理后,润草1号的电导率都比对照有所增加。在5、20 mg/kg时细胞膜透性变化较小,对润草1号影响较小。当重金属镉浓度达到50 mg/kg时,细胞膜透性明显增大。由伤害率可以看出,随着重金属镉浓度增大,伤害率逐渐增加。重金属镉浓度为100 mg/kg时,对润草1号的伤害率最大,达到29.56%,对润草1号影响明显。
2.3 重金属镉胁迫对脯氨酸含量的影响
脯氨酸是一种水溶性最大的氨基酸,也是一种小分子渗透物质。脯氨酸可以调节植物细胞的渗透平衡,提高植物细胞结构的稳定性[4],并能有效地阻止植物细胞内氧自由基的产生,以缓解或修复逆境对其造成的伤害。因此,游离脯氨酸的含量可以作为润草1号对重金属镉胁迫的一个重要生理生化指标。从图2可以看出,不同浓度重金属镉处理后,润草1号的游离脯氨酸含量随重金属镉浓度增大呈先升高后降低的变化。重金属镉浓度为5 mg/kg时升高较小,对润草1号影响很小。重金属镉浓度为50 mg/kg时达到最大值,是对照组的3.02倍,因此对润草1号影响明显。
2.4 重金属镉胁迫对叶绿素含量的影响
植物体内的叶绿素是植物进行光合作用的重要物质基础,叶绿素含量和叶绿素a/b是衡量植物叶片长势如何的重要指标[4]。在逆境胁迫下,植物体内叶绿素含量的多少说明了植物抗逆境胁迫能力的大小,因此,叶绿素含量可以作为植物抗逆境胁迫程度的重要生理指标[5]。不同浓度的重金属镉处理后,润草1号叶片内所含的光合色素含量发生了明显变化。从表2中可以看出,润草1号的叶片内所含的叶绿素总量、叶绿素a/b、叶绿素a、叶绿素b以及类胡罗卜素均随着重金属镉浓度的增加而呈先升高后降低的变化趋势,且当浓度为20 mg/kg 时均达到了最大值。类胡萝卜素含量的增幅分别为各处理后对照组的13.79%、24.14%、-8.62%和 -17.24%,叶绿素总量的增幅分别为各处理后对照组的2.29%、11.43%、-3.71%和-10.29%,这说明不同浓度的重金属镉处理后,润草1号的适应机理存在显著差异,造成润草1号的类胡萝卜素含量和叶绿素总量的不同。
3 小结与讨论
植物根系是活跃的吸收器官和合成器官。当重金属污染土壤时,首先是植物的根系受到伤害,其主要表现为植物主动吸收能力的降低和根系活力的降低。本试验中,润草1号的根系活力随着重金属镉处理浓度的增大而逐渐下降,且重金属镉处理浓度越高根系活力下降程度越大。原因可能是在重金属镉胁迫下,润草1号自身抗氧化系统酶不能将产生的氧自由基及时清除掉,根系代谢中的琥珀酸脱氢酶就会受到多余的氧自由基的伤害,从而使根系活力下降[6]。此时润草1号要缓解镉胁迫对其造成的伤害,就要消耗大量的代谢产物,这样就会影响润草1号的生长发育。在试验过程中还发现,润草1号侧根的生成速率是随着重金属镉处理浓度的增大而减小,这恰好与润草1号根系生物量随浓度变化的情况相一致。
细胞膜系统是植物细胞和外界环境相联系的界面,也是植物细胞和外界环境进行物质交换和信息传递的屏障。植物细胞具有正常的生理功能是以细胞膜具有较高的稳定性为基础的[7]。在重金属镉胁迫下,润草1号的细胞膜受到了破坏,使其通透性增加。细胞膜的损伤不但会导致细胞内一系列生理生化过程的紊乱,而且会导致细胞膜上结合酶和细胞内酶失去平衡,使细胞内大量的可溶性物质外渗,进而造成润草1号的死亡[8]。在重金属镉的胁迫下,随着重金属镉处理浓度的增大,润草1号叶片组织外渗液的电导率逐渐升高,而且呈明显的正相关。究其原因可能是重金属镉进入润草1号叶片组织后,与细胞膜的蛋白质分子中的-SH或细胞膜的磷脂分子层中的磷脂类物质发生了化学反应,造成细胞膜蛋白和磷脂分子层的结构发生改变,进而使细胞膜的结构也发生了改变,这样细胞膜系统受到破坏,细胞膜的通透性增大,从而使细胞内的盐类或有机物出现不同程度的渗出,最终导致电导率的增大[9]。
植物体内的脯氨酸是重要的渗透调节物质,其至作用是维持植物细胞的渗透压,当外界不良环境对植物胁迫时能起到很好的指示作用[10]。润草1号叶片内游离脯氨酸含量,随着重金属镉处理浓度的增加而增大,当胁迫浓度为50 mg/kg时达到最大值,这是受到重金属镉胁迫时,润草1号表现出的正常生理反应。当受到重金属镉胁迫时,润草1号叶片组织内物质的代谢路径会发生相应的改变,使脯氨酸的氧化过程受到抑制,从而减慢蛋白质的合成速度,造成细胞内脯氨酸含量的升高。细胞内存在的大量脯氨酸能维持润草1号叶片内的水分平衡,保持细胞内原生质与外界环境的渗透平衡,增大细胞内各种蛋白质的溶解性,也使各种生物大分子的结构与稳定性受到保护[4]。
绿色植物进行光合作用的主要色素是叶绿素,植物光合作用的强弱直接受到叶绿素含量的影响,植物同化物质能力的大小可以通过叶绿素含量的多少来反映。叶绿素受到外界环境影响时其含量发生变化,叶绿素含量的变化又会引起植物光合性能的改变,甚至影响植物正常的新陈代谢[11]。本试验中,在低浓度重金属镉胁迫下,润草1号叶片中叶绿素的含量缓慢地增大,这是润草1号叶片中叶绿素合成系统主动表现出的应激性反应。当重金属镉胁迫浓度大于20 mg/kg时,润草1号叶片中叶绿素含量开始明显地减小,其原因可能是过量重金属镉破坏了润草1号叶片的细胞膜,使细胞膜受到损伤而透性增大,从而造成叶绿素分子大量地渗漏出来;也可能是催化叶绿素合成所需要的3种蛋白酶(胆色素原脱氨酶、原叶绿素脂还原酶和氨基乙酰丙酸合成酶)与重金属镉结合,使蛋白酶的结构发生了改变,这样就降低了蛋白酶的活性,从而影响了叶绿素的合成;还可能是重金属镉破坏了润草1号叶片细胞中线粒体的结构,导致叶绿素降解而使其含量降低,抑制了光合作用,使润草1号代谢产生紊乱,造成润草1号的抗逆性降低[11]。
需要强调的是,衡量草坪植物应用价值的最重要指标是根系的生长与叶片的绿色度[12],而对润草1号根系生长起显著抑制作用的、对润草1号的建植及对污染地区润草1号的生产起重要限制作用的都是重金属镉。因此,在实际应用过程中,为了使润草1号的根系生长不受到影响,应该严格控制土壤中重金属镉的浓度小于20 mg/kg。由于重金属镉不是润草1号生长发育所必需的营养元素,且具有较大的毒性,所以更应该严格控制重金属镉的使用浓度。
参考文献:
[1] 廖自基.环境中微量重金属的污染危害与迁移转化[M].北京:北京科学技术出版社,1989.
[2] 张治安,陈展宇.植物生理学实验技术[M].长春:吉林大学出版社,2008.
[3] 吴泽富,周运超,张 静,等.粗壮女贞(苦丁茶)生理特性对pH胁迫的响应[J].贵州农业科学,2012,40(1):47-50.
[4] 郭艳丽,台培东,韩艳萍,等.镉胁迫对向日葵幼苗生长和生理特性的影响[J].环境工程学报,2009,3(12):2291-2296.
[5] 唐 迪,徐晓燕,李树炎,等.重金属镉对茶树生理特性的影响[J].湖北农业科学,2013,52(12):2839-2843.
[6] 努扎艾提・艾比布,刘云国,宋华晓,等.重金属Zn、Cu对香根草生理生化指标的影响及其积累特性研究[J].农业环境科学学报,2010,29(1):54-59.
[7] 畅世勇,王 方,晰建春.重金属对值物的毒害及值物的耐性机制[J].环境科学报,2004(1):71-72.
[8] 刘万玲.重金属污染及其对植物生长发育的影响[J].安徽农业科学,2006,34(16):4026-4027,4030.
[9] 刘俊祥,孙振元,韩 蕾,等.草坪草对重金属胁迫响应的研究现状[J].中国农学通报,2009,25(13):142-145.
[10] 朱志国,周守标.铜锌复合胁迫对芦竹生理生化特性、重金属富集和土壤酶活性的影响[J].水土保持学报,2014,28(1):276-280,288.
一、土壤重金属污染及其来源
土壤重金傥廴炯次人类在生产生活等社会活动中使得重金属进入土壤的行为,使得土壤中的重金属含量超标,进而导致危害生态环境。一般土壤重金属污染中重金属的种类主要有砷、锰、铬、铜、镉等,通常为多种重金属的复合污染情况。一旦土壤出现了重金属污染情况则会严重影响农作物的生长与收获,导致农作物产量减少、质量下降,严重者会危害人类健康。另外,土壤重金属还会对大气环境、水资源造成污染,影响范围十分广泛。因此,土壤重金属污染已经成为了世界各国重视的重大环保课题。
土壤重金属的来源包括以下几个方面:第一,在矿产开发过程中和冶炼过程中,由于矿区没有安设完善的环保治理装置,大量冶炼矿产废物直接抛弃户外,从而导致土壤出现重金属污染;第二,化肥农药的过度使用导致土壤出现重金属污染,重金属含量较多的磷肥、农药会导致土壤胶质结构改变,营养成分降低;第三,农作物肥料添加剂中含有大量的铜、锌,金属元素会伴随着肥料一同进入土壤,从而导致土壤出现重金属污染。
二、土壤重金属污染的修复技术
(一)生物修复技术
常见的生物修复技术有植物修复技术、动物修复技术等。植物修复技术主要是针对土壤重金属污染进行植物降解处理、植物挥发处理等,不同的处理方式拥有不同的处理机制。其中,植物降解主要是让重金属进入植物内部,通过植物生长机体演化过程转变重金属离子形态,从而降低其危害性。植物根系钝化是植物根系中的有机酸、多肽等物质与重金属离子融合,从而缓解重金属的移动性,降低重金属通过地下水或空气对土壤造成进一步污染的分析。并且,植物中富有的金属硫蛋白含有半胱氦酸,其能够与重金属结合形成无毒的络合物质,以改变重金属的离子形态。动物修复技术即为利用土壤动物经过吸收、分解等形式来转变土壤理化性质,丰富土壤肥力,使得植物与微生物在土壤中的生长,进而产生修复土壤重金属污染的作用。动物修复技术通常都是将土壤动物包括线虫、虹蝴饲养在受到重金属污染的土壤当中。
(二)化学修复技术
常见的化学修复技术有电力修复技术、土壤淋洗技术等。电力修复技术,其原理即为在土壤中插入电极,给土壤通电,从而使得土壤中存在的重金属物质能够在电力的作用下形成氧化还原反应,并且在迁移的作用下达到电极的阴极,进而实现去除土壤污染物的目的。电动修复技术在去除土壤重金属污染的过程中拥有能源消耗低、后续处理便捷、不会导致二次污染等优势,但是该技术仅仅适合在面积较小的土壤污染区域中应用,对于大面积的被污染土壤在技术可行性上仍然有待提升。土壤淋洗技术就是通过使用淋洗药剂来去除土壤中的重金属物质。此技术适用于大面积、污染程度严重的土壤,特别是在土质为轻质土与砂质土的土壤处理中效果更优。
(三)物理修复技术
常见的物理修复技术有改土技术、玻璃化技术等。改土技术包括客土、深耕翻土等方式。通常来说,土壤重金属污染一般都附着在土壤表层,而客土法则是将大量干净无污染的土壤与被污染的土壤相混合,以尽量降低土壤污染物的浓度,并且减少重金属污染物与土壤植物根系的直接接触,从而实现降低土壤重金属对植物的损伤。深耕翻土法则是将土壤进行深耕翻覆,让位于土壤表面的重金属能够在土壤中扩散,从而综合降低土壤中重金属的整体浓度。虽然改土技术是一种有效的土壤重金属污染修复技术,但是在实施过程中需要投入较大的人力物力,经济效益不佳,无法从本质上去除重金属,是一种非理想的修复技术。玻璃化技术,即为把重金属污染的土壤放置在高温下进行玻璃化处理,在完成处理温度下降冷却后变成坚硬的玻璃体物质,土壤中的重金属完成固定处理,将其从土壤中清除即可。经过玻璃化处理技术后,土壤中的重金属物质将会始终处于稳定状态,重金属将会被永久固定。
三、结语
关键词:重金属;污染;土壤;
Abstract: At present, the soil heavy metal pollution research in our countries is a rather hot topic. In a broad range of data collection, based on the prevention and control of soil heavy metal pollution, the paper put forward some Suggestions and ideas.
Key Words: heavy metal; pollution; soil;
中图分类号:[TE991.3]文献标识码:A 文章编号:
一项由原国家环保总局进行的土壤调查结果显示,广东省珠江三角洲近40%的农田菜地土壤遭重金属污染,其中10%属严重超标。由于土壤重金属污染具有隐蔽性、不可逆性和持久性,对生态环境和人类健康影响深远,所以土壤重金属污染问题越来越受到人们的关注和重视。
一、土壤质量的涵义与土壤重金属污染
根据联合国粮食及农业组织(FAO)相关专家对土壤质量的定义,结合国内外尤其是美国、澳大利亚、欧盟等一些国家学者对土壤质量的普遍看法,所谓土壤的质量,与土壤中的重金属含量是决不可能画上等号的。我们不能认为土壤中重金属的含量低就认定土壤的质量高,反之亦然。根据对土壤质量的比较权威的定义,土壤的质量并不就是指土壤的质地,也不是指土壤为植物提供P、N、K等一些营养成分的能力,而是指能够支撑农产品的生产能力、保护生态环境、保护动物以及人类的健康与保护食品的安全等综合能力。FAO对土壤质量的定义主要是从测定土壤的生物、物理和化学性质的大概100多种指标而来。其中生物参数的指标是比较重要的。也就是说,代表土壤的生命活力主要是土壤中生物以及生物的多样性,其中土壤中的生物多样性就是土壤质量的核心组成,也就是土壤质量的内涵。
土壤具有同化和代谢外界环境进入土体的物质的能力,也就是常说的自净能力。当土壤中重金属的含量超过土壤的自净能力或者明显高于土壤环境基准或土壤环境标准,并引起土壤环境质量的恶化,这就是土壤重金属污染。
二、土壤中重金属污染的危害
(1)在自然生态系统中,大气环境、水环境和土壤环境的物质循环联系紧密,土壤的污染物会随着土层的迁移与地表径流,从而污染地下水、地表水,也会污染其他新的土壤,甚至会通过挥发产生大气污染。
(2)土壤中的重金属污染让紧张的耕地越来越短缺。由重金属污染造成土壤质量下降而导致耕地面积的减少,更加剧了对我国耕地红线的冲击。目前这种情况并没有出现减缓的趋势。
(3)重金属污染物通过影响土壤中某些微生物的数量与活性,从而影响土壤的活性。另外,重金属污染物大多对生物具有一定的毒害作用,因此土壤重金属的含量对农作物的产量有很大的影响,甚至会导致农作物的减产,所以土壤的重金属污染影响到农业生产的可持续发展。
(4)大多数重金属污染物难以降解,在生态系统中,生物富集现象显著,将直接或间接危害到处于食物链顶端的人类的身体健康。
(5)土壤的重金属污染物在迁移和转化的过程中,除了浓度的累积,毒性也可能会增加,例如汞的生物甲基化,这更加剧了土壤污染带来的危害。
三、土壤重金属污染的来源
(1)污灌。在缺水地区,污水灌溉解决了农用供水不足的问题,起着保证农作物产量的作用,同时也带来了土壤污染及地下水污染等问题。
(2)化肥、农药以及塑料薄膜的大量使用。不合理的农药和化肥的使用会使土壤被重金属所污染,某些化肥含有过量的重金属Zn、Cd、Pb等。农用塑料薄膜释出的Cd、Pb也会造成土壤重金属污染
(3)大气的沉降。工厂排放的烟气、粉尘等气体污染物经大气环流扩散,以干、湿的沉降方式进入到水体与土壤中。
(4)含重金属固体废弃物。工业废弃物、矿产的开采与冶炼产生的废渣、涉重金属企业污水处理系统产生的污泥等含重金属危险废物是土壤重金属污染的主要来源。
(5)交通运输的污染。交通运输中重金属的污染来源于汽车排放的尾气及轮胎磨损产生粉尘。
四、政府对防治土壤中重金属污染采取的措施
(1)提高涉重金属建设项目的准入门槛,有效控制新增污染源。对不符合产业布局、行业发展规划、环保规划的建设项目坚决不予上马。符合产业政策的涉重金属项目实行入园建设、统一规划布局、统一管理。
(2)摸清管理辖区地域,特别是农作物产地土壤质量状况,强化土壤重金属污染物的跟踪监测,划分种植功能区,对超标受污染的土壤进行修复。落实环保目标责任考核、行政问责制度,对超标区域实行挂牌督办、区域限批。
(3)推行清洁生产,加快涉重金属行业转型升级。通过实施清洁生产审核,从源头上削减重金属污染物的排放,提高资源利用效率,减少污染物末端治理的压力。
(4)加密对涉重金属企业污染物排放情况的监督性监测,对国控、省控重点企业至少每两月监测一次。强化企业自行监测,适时推行涉重金属污染源、重点流域在线监测监控。
(5)加强环境监管,严格环境执法。严厉打击涉重金属行业违法排污行为,对环保设施运行不正常、偷排、超标超总量排放等环保违法行为从严处罚,严格执行含重金属危险废物转移联单制度。
五、治理土壤中重金属污染的方法
(1)生物修复法。这种方法主要是通过一些特殊的微生物与植物把土壤中的重金属利用新陈代谢的作用去除或者转化其形态,降低重金属的毒性,使土壤得到一定程度的净化。
(2)热处理方法。热修复处理法的原理其实就是运用了污染物的热挥发性,利用高频电压所产生出来的电磁波,把土壤进行加热,使土壤中的污染物能够解吸出来,由此达到修复的目的。该方法对重金属汞的治理效果显著。
(3)排土、客土和水洗法。排土就是剥去表层受污染的土壤,客土就是在被污染的土壤上覆盖未受污染的土壤。水洗法是通过清水灌溉稀释或洗去重金属离子从而降低重金属污染物的含量。
(4)化学修复方法。这个方法是利用某些化合物与土壤中的重金属反应所形成的络合物,很容易和酸根离子发生反应产生沉淀的特点,通过投加一些改良剂到土壤里来降低土壤中重金属的迁移性,减少其含量,从而达到修复以及治理土壤的目的。
六、结束语
土壤中重金属污染问题隐蔽、危害大,难以治理。国土资源部曾公开表示,中国每年有1200万吨粮食遭到重金属污染,直接经济损失超过200亿元。经济发达地区普遍存在着土壤重金属污染问题。随着产业转移,一些东部地区的高能耗、高污染项目开始往中西部省份转移,中西部欠发达地区的土壤环境也面临着重金属污染的威胁。近年来频繁见报的重金属污染事故,时刻警醒着人们要重视土壤中的重金属污染的问题。
参考文献:
[1]李泽琴 程温莹 罗丽.地质灾害与环境保护,2002(12)
[2]陈志良 仇荣亮 张景书.重金属污染土壤的修复技术[J].环境保护,2002(06)
[3]华珞 陈世宝 白玲玉.有机肥对重金属锌污染土壤改良效应[J].农业环境保
护,1998(11)
[4]王凯荣.我国农业重金属污染现状及其治理利用对策[J].农业环境保护,1997(02)
[5]夏星辉 陈静生.土壤重金属污染治理方法研究进展[J].环境科学,1997(05)
>> 土壤重金属污染及修复的研究现状 重金属污染土壤修复技术的研究现状分析及展望 土壤重金属污染现状及修复技术研究进展 土壤重金属铬污染分析及修复技术 土壤重金属污染及修复技术 农田土壤重金属污染及修复技术分析 论重金属污染土壤修复技术的研究 重金属污染土壤植物修复技术研究 土壤重金属的污染现状及生物修复技术 浅谈我国土壤重金属污染现状及修复技术 解析土壤重金属污染的现状与危害及修复技术 土壤重金属污染特点及修复技术研究 论土壤重金属污染现状与修复 浅谈金属矿山土壤重金属污染现状及修复治理措施 浅谈土壤重金属污染与修复技术 重金属污染土壤修复技术应用 浅析土壤重金属污染与修复技术 重金属污染土壤修复技术探讨 浅析土壤重金属污染及修复措施 土壤重金属污染修复研究进展 常见问题解答 当前所在位置:l,2013-07-12.
[2] 骆永明,腾应.我国土壤污染退化状况及防治对策[J].土壤,2006,38(5):505 - 508.
[3] 魏树和,周启星. 重金属污染土壤植物修复基本原理及强化措施探讨[J]. 生态学杂志,2004 ,23 (1) :65~72.
[4]Yao Z T, Li J H, Xie H H et al.Review on remediation technologies of soil contaminated by heavy metals Procedia Environmental Sciences.2012;16:722-729.
[5]Aresta M, Dibenedetto A, Fragale C, et al. Thermal desorption of polychlorobiphenyls from contaminated soils and their hydrodechlorination using Pd- and Rh-supported catalysts. Chemosphere, 2008; 70(6): 1052-1058.
[6]Tokunaga S, Hakuta T. Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemosphere,2002;46(1)31-38.
[7]Li G D, Zhang Z W, Jing P, et al. Leaching remediation of heavy metal contaminated fluvio-aquatic soil with tea-saponin. [J]Transactions of the Chinese Society of Agricultural Engineering,2009;25(10)231-235.
[8]周启星,吴燕玉,熊先哲.重金属Cd-Zn对水稻的复合污染和生态效应[J].应用生态学报,1994,5(4):438-441.
[9]黄益宗,郝晓伟,雷鸣,等.重金属污染土壤修复技术及其修复实践[J].农业环境科学学报, 2013,32(3):409-417.
关键词:铜陵市 重金属污染 研究进展
中图分类号:X5 文献标识码:A 文章编号:1672-3791(2013)07(c)-0137-03
随着我国工业化的不断加速,开发利用的重金属种类、数量和方式越来越多,涉及重金属的行业越来越多,再加上一些污染企业的违法开采、超标排污等问题突出,使重金属污染呈蔓延趋势,污染事件出现高发态势,表现出长期积累和近期集中爆发、历史遗留问题和新出现问题相交织的特点[1]。2011年2月,国务院批复了《重金属污染综合防治“十二五”规划》。体现了我国对重金属污染防治的高度重视。
铜陵市是一个有着三千多年开采历史的极具特色的有色多金属矿区,是我国重要的有色金属工业基地,有着悠久的采冶铜历史[2]。目前已形成以采、选、炼、加工为一体的“铜”产业链,对推动铜陵地区社会经济发展发挥了巨大作用.但也带来了一系列的重金属环境污染和生态破坏问题,对公众身体健康构成了潜在或现实的危害。铜陵县、铜官山区是国家60个重金属砷控制区之一,46家企业被列为环保部重点监控企业,重金属污染防治任务十分艰巨[3]。
1 铜陵重金属污染研究分布
目前有关铜陵重金属污染的研究,主要集中在矿区土壤、尾矿库、水及水体沉积物污染、大气沉降物及城区表土与灰尘和潜在生态风险的评估。
1.1 矿区土壤
土壤中的重金属,在自然情况下,主要来源于成土母岩和残落的生物物质。但是近代以来,工农业的快速发展,人类活动加剧了土壤重金属的污染,污染程度越来越重,范围越来越广。胡圆圆等[4]对铜陵铜官山铜矿区土壤重金属含量进行了研究。研究结果表明,铜官山铜矿区土壤Cu、Zn、As、Hg平均含量高于铜陵市土壤背景值,土壤已受Cu、Zn、As重污染,受Hg轻污染。
杨西飞[5]运用Matlab软件模糊推理系统(FIS)对铜陵矿区农田表层土壤重金属污染进行了评价,发现该矿区农田表层土壤普遍受到了重金属不同程度的污染,其中Cd污染最严重,其次是Cu,其它各元素依次为Pb>As>Zn>Hg。土壤中Hg、Cd、Cu和Pb元素在表层明显富集,各元素总量在不同深度均明显高于土壤自然背景值,Hg、Cd、Cu、Pb和Zn在垂向上呈递减趋势,且在横向上主要以洋河、顺安河和新桥河为中心向四周递减。不同形态重金属在总量中的百分含量随深度变化明显不同。
王嘉[6]对铜陵的两个矿区(狮子山区朝山金矿主井和铜陵县顺安镇新桥矿业公司主井)土壤重金属污染问题进行了较详细的研究,运用内梅罗指数法和地质累积指数法对研究区进行了现状评价,研究表明,As和Cd为严重超标污染物;As的致癌风险和非致癌风险都大,Cr的致癌风险最大;Cd、Hg、As对生态危害的潜在风险很大;所研究的两矿区均存在很高的致癌风险和生态风险,朝山金矿区相对更高些。
白晓宇等[7]运用地统计学分析手段对铜陵矿区土壤中若干重金属元素进行空间变异分析及空间插值和污染分析,结果表明,As、Cd、Pb、Zn元素的变异函数表现为各向异性,其方向性可能主要受矿床分布控制;Hg元素因受小尺度因子影响较大而呈现块金效应较大。As元素污染的主要是由于铜矿、铅锌矿、褐铁矿矿床及其开发;Cd元素的污染与铅锌矿床及其开发,以及农业污灌有关;Pb、Zn元素的污染与铅锌矿床及其开发密切相关。
1.2 尾矿库
铜陵市是安徽省境内重要的铜生产基地。在铜矿生产的同时,产出了大量尾矿堆存于附近的尾砂库中。尾矿库多建于山间谷地、河流上游地区,其下游是经济、农业发达地区。近几年来,随着经济发展和城市的扩容,部分郊区的尾矿库已经进入市区,尾矿库的环境效应及其安全性令人关注。徐晓春等[8]对安徽铜陵林冲尾矿库复垦土壤采样检测的结果表明复垦土壤中Cu的污染极其严重,As、Zn、Pb的污染较轻。徐晓春[9]还对铜陵凤凰山矿林冲尾矿库中重金属元素的空间分布特征及相关土壤、水系沉积物和植物中重金属元素含量变化进行了研究,发现长期堆存的尾矿会发生元素的次生淋滤与富集。
惠勇[10]等对铜陵市凤凰山尾矿库三个不同凤丹种植地进行了研究,结果表明,尾矿土壤中的Cu、Zn、Cd含量均较高,其中Cu、Cd的含量分别是国家土壤环境质量二级标准的1.04~1.30倍和6.58~9.34倍。矿区近年来种植的作物对重金属的吸收富集作用不明显。
王少华[11]等采集了铜陵市杨山冲尾矿库、尾矿库周边及较远距离土壤、水、植物样品,测定了其中的重金属含量,发现所采集的土壤、水和植物中都存在不同程度的As,Hg,Cu,Zn和Pb等元素的富集现象,且不同元素之间的富集程度也有所差异;重金属元素含量随着远离尾矿库,有逐渐递减的趋势。周元祥[12]等对杨山冲尾矿库尾砂重金属元素的迁移规律进行了研究,发现在自然风化条件下,Cu、As、Hg、Cd和Pb的淋滤迁移速度相对较快,Zn略慢;Zn、Pb、Hg和Cd在50~60 cm深处会发生二次富集;风化后尾砂中Cu、Pb、As和Hg以残渣态为主要赋存形式,其次为铁锰氧化态,其中Zn和Cd以铁锰氧化态含量在表层最高。
1.3 水及水体沉积物
水体及沉积物因其独特的环境特点,往往会成为重金属元素的“源”和“汇”,学者们也因此对其进行了众多研究。张敏[13]等通过测定长江铜陵段枯、丰水期江水中Cu、Pb、Zn和Cd不同形态的含量,分析了四种金属在江水中的存在形态分布,不同水期含量变化,水中悬浮物对金属吸附能力大小,以及近20年来含量的变化情况。发现长江铜陵段江水中各重金属总量丰水期时大于枯水期,重金属各形态含量之间均有差异。与近20年江水中的重金属背景值比较,长江铜陵段重金属含量有普遍升高的趋势。
徐晓春[14]等对相思河的重金属污染情况进行了调查和研究,采用潜在危害指数法对沉积物中重金属进行了评价。研究表明,相思河中下游受到的重金属污染明显比上游严重,Cu和Cd的富集系数和生态危害高。
李如忠[15]等对惠溪河滨岸带土壤重金属形态分布及风险评估进行了研究,研究表明,惠溪河滨岸带土壤中Cd和As达到极高风险等级,Cu为中等风险等级;根据综合污染及潜在生态风险贡献率水平,初步判定As和Cd为惠溪河滨岸土壤重金属污染治理和修复的优先控制对象。
王岚[16]等对长江水系表层沉积物重金属污染特征及生态风险性评价的研究中表明,安徽顺安河位点为极强生态危害范畴。
叶宏萌[17]对铜陵矿区的新桥至顺安河沉积物中五种重金属的全量和形态进行了研究,并结合环境条件分析了它们的横向和纵向迁移变化特征,研究表明该区域沉积物重金属中Cu、Zn、Pb、Cd的均值皆远超长江下游沉积物背景值,其中以Cu和Cd最显著。对重金属横向迁移分析发现,矿山重金属会随着沉积物的距离增加而显著降低,新桥河沉积物的迁移变化显著高于顺安河沉积物。在迁移过程中,Cu、Zn、Cr残渣态逐步增加,毒性减弱,Pb、Cd的活性态比例增大。重金属的纵向迁移分析结果表明,离矿山的位置远近对沉积柱金属的总量和形态起决定作用,矿区下游河流沉积物既受尾矿的影响,也受河流流域物质本身的影响。
1.4 大气沉降物及城区表土与灰尘
随着城市化进程的加快,而带来的交通污染以及其他方面的污染使得大气环境质量越来越差,大气环境污染问题越来越引起人们的注意。李如忠[18]利用美国国家环保局(US EPA)推荐的健康风险评价模型对铜陵市区表土与灰尘重金属污染健康风险进行了研究。研究表明,铜陵城区土壤和地表灰尘已遭受较为严重的重金属污染;不同功能用地的致癌风险均显著超过US EPA推荐的可接受风险阈值范围和国际辐射防护委员会(ICRP)推荐的最大可接受风险值;铜陵市表土与地表灰尘已对公众身体健康构成危害;其中主导致癌与非致癌风险效应的主要污染因子是As,主要暴露途径是手-口摄入途径。
吴开明[19]用藓袋法对铜陵市大气重金属污染进行了研究,发现铜陵市Cu污染最严重,有色金属冶炼工业是铜陵市最主要的污染源,交通运输对大气重金属污染也日趋严重。
殷汉琴[20]对铜陵市大气降尘中铜元素的污染特征进行了研究,采用富集因子法定性地判断各采样点铜元素的来源,研究表明,铜陵市大气降尘中铜元素污染严重并且形成了以铜开采和冶炼企业为中心的污染区域。研究发现铜矿石的开采和冶炼对大气降尘中的铜元素污染贡献较大, 是主要的污染源。
2 重金属污染修复技术与控制措施研究
重金属在土壤、水体、大气、生物体中广泛分布。由于大气和生物体中重金属的特殊性及其主要直接或间接来源于土壤和水体,所以对于重金属的污染修复技术主要集中在对土壤和水体中的重金属污染进行修复。
重金属在土壤中不易随水淋溶,不能被微生物分解,具有明显的生物富集作用且土壤污染具有较长潜伏期;由于土壤、污染物及地域的复杂性,土壤一旦受到污染,其治理不仅见效慢、费用高,而且受到多种因素的制约。目前,治理土壤重金属污染的途径主要有两种:(1)改变重金属在土壤中的存在形态、使其固定,降低其在环境中的迁移性和生物可利用性;(2)从土壤中去除重金属[21]。围绕这两种途径展开的土壤重金属治理措施有物理及物化措施、化学措施、农业生态措施、生物修复等[21~23]。
王华等[24]对我国底泥重金属污染防治研究做了相应综述,提出目前我国底泥重金属污染治理的常用方法有工程治理方法、生物治理方法和化学治理方法。
重金属污染物进入水生生态系统后对水生植物和动物均产生影响,并通过食物链发生富集,引起人体病变,危害人类。目前水体重金属污染治理修复方法主要有物理方法、化学方法、物理化学方法、集成技术、生物方法等[25]。
为控制铜陵市重金属污染、提高环境质量,铜陵市环保局组织编制了《铜陵市重金属污染综合防治“十二五”规划》,该规划以国家《重金属污染综合防治“十二五”规划》为指导,落实源头预防、过程阻断、清洁生产、末端治理的全过程综合防治理念,提出了一系列重金属污染防治措施,以求能遏制重金属污染趋势,改善区域环境质量,保护人民身体健康和环境权益。
3 结语
对铜陵市重金属污染研究情况进行了介绍,对重金属污染防治措施与修复技术经行了总结。根据目前研究结果表明,铜陵市重金属污染已比较严重。Cd、As、Cu和Pb为主要的污染元素,Hg虽然含量较低,但因为其毒性较大,亦当引起足够的重视。矿石的开采和冶炼以及尾矿的堆积成为铜陵市重金属污染的主要来源,所以首先应控制源头,治理矿石的开采和冶炼,清理尾矿的堆积。由于植被等生物体对重金属具有良好的吸附阻拦作用,可在采矿厂四周设置重金属吸收强防护带,阻止污染向更远扩散。对于已经受到污染的土壤,可以采用生物方法、物理或化学方法去除。
健全重金属污染防治法律体系、做好污染综合防治规划和强化行政管理是防治重金属污染的重要管理手段。《铜陵市重金属污染综合防治“十二五”规划》的提出对铜陵市重金属污染防治具有重要的指导和实践意义。健全重金属污染防治法律体系,实施清洁生产,监督实施环境影响评价验收工作,开发研究重金属污染防治技术等是目前重金属污染防治的重要任务。
参考文献
[1]罗吉.我国重金属污染防治立法现状及改进对策[J].环境保护,2012(18):24-26.
[2]张鑫.安徽铜陵矿区重金属元素释放迁移地球化学特征及其环境效应研究[D].合肥工业大学博士学位论文,2005.
[3]铜陵市重金属污染综合防治“十二五”规划[R].
[4]胡园园,陈发扬,杨霞,等.铜陵铜官山矿区土壤重金属污染状况研究[J].资源开发与市场,2009,25(4):342-344.
[5]杨西飞.铜陵矿区农田土壤及水稻的重金属污染现状研究[D].合肥:合肥工业大学,2007.
[6]王嘉.铜陵矿区土壤重金属污染现状评价与风险评估[D].合肥工业大学,2010.
[7]白晓宇,袁峰,李湘凌,等.铜陵矿区土壤重金属元素的空间变异及污染分析[J].地学前缘,2008,15(5):256-263.
[8]陈莉薇,徐晓春,黄界颖,等.铜陵林冲尾矿库复垦土壤重金属含量及污染评价[J].合肥工业大学学报:自然科学版,2011,34(10):1540-1544.
[9]徐晓春,王军,李援,等.安徽铜陵林冲尾矿库重金属元素分布与迁移及其环境影响[J].岩石矿物学杂志,2003,22(4):433-436.
[10]惠勇,张凤美,王友保,等.铜陵市凤凰山尾矿区重金属污染研究[J].安徽农业科学,2011,39(23):1426-1426.
[11]王少华,杨劫,刘苏明.铜陵狮子山杨山冲尾矿库重金属元素释放的环境效应[J].高校地质学报,2011,17(1):93-100.
[12]周元祥,岳书仓,周涛发.安徽铜陵杨山冲尾矿库尾砂重金属元素的迁移规律[J].环境科学研究,2010(4):497-503.
[13]张敏,王德淑.长江铜陵段表层水中重金属含量及存在形态分布研究[J].安全与环境学报,2003,3(6):61-64.
[14]徐晓春,牛杏杏,王美琴,等.铜陵相思河重金属污染的潜在生态危害评价[J].合肥工业大学学报:自然科学版,2011(1):128-131.
[15]李如忠,徐晶晶,姜艳敏,等.铜陵市惠溪河滨岸带土壤重金属形态分布及风险评估[J].环境科学研究,2013,26(1):88-96.
[16]王岚,王亚平,许春雪,等.长江水系表层沉积物重金属污染特征及生态风险性评价[J].环境科学,2012,33(8):2599-2606.
[17]叶宏萌,袁旭音,赵静.铜陵矿区河流沉积物重金属的迁移及环境效应[J].中国环境科学,2012,32(10):1853-1859.
[18]李如忠,潘成荣,陈婧,等.铜陵市区表土与灰尘重金属污染健康风险评估[J].中国环境科学,2012,32(12):2261-2270.
[19]吴明开,曹同,张小平.藓袋法监测铜陵市大气重金属污染的研究[J].激光生物学报,2008,17(4):554-558.
[20]殷汉琴,周涛发,张鑫,等.铜陵市大气降尘中铜元素的污染特征[J].吉林大学学报:地球科学版,2009,39(4):734-738.
[21]夏星辉,陈静生.土壤重金属污染治理方法研究进展[J].环境科学,1997(3):72-76.
[22]佟洪金,涂仕华,赵秀兰.土壤重金属污染的治理措施[J].西南农业学报,2003 (S1):37-41.
[23]顾红,李建东,赵煊赫.土壤重金属污染防治技术研究进展[J].中国农学通报, 2005,21(8):397-408.
[关键词]重金属污染 存在问题 防治对策
重金属污染是指由重金属或其化合物造成的环境污染,主要由采矿、废气排放、污水灌溉和使用重金属制品等人为因素所致。因人类活动导致环境中的重金属含量增加,超出正常范围,并导致环境质量恶化。近年来,关于重金属污染事件屡见不鲜,从湖南儿童血铅超标、陕西风翔数百儿童铅超标、福建紫金矿业含铜酸性废水渗漏到重金属污染“菜篮子”等事件的发行,重金属污染已影响到我们的生活环境。该问题已经引起了世界各国科学家的高度重视,解决这个问题迫在眉睫。
1 厦门市重金属污染现状
厦门市重金属污染主要是金属表面处理加工业(电镀行业)、金属结构制造业、皮革及其制品业等行业发展过程中污染物排放逐渐累积形成的。根据全国污染源普查结果,2010年厦门市废水中汞、镉、总铬、铅、类金属砷等5种重金属排放量以区域来划分的话,集美区占全市的72.75%;同安区占全市的17.59%;海沧区占全市的7.96%;思明区占全市的1.09%;翔安区占全市的0.57%;湖里区占全市的0.05%。5种重金属污染物按排放量大小排序为:总铬占全市总排放量的94.83%;铅占全市的3.78%;砷占全市的1.24%;镉占全市的0.05%;汞占全市的0.1%。从2010年污染源普查数据看,我市主要重金属污染元素是铬,重金属污染集中区域是集美区,主要污染来源为工业废水污染。总铬排放量较大的行业有:金属表面处理加工业(电镀)、金属制厨房调理及卫生器具制造业、金属结构制造业等行业。主要涉铅行业有:钨、钼冶炼业等行业。
重金属污染具有隐蔽性、潜伏性、不可逆性和长期性等特点,污染危害大,持续时间长、治理成本高。重金属污染物通过大气、水体、土壤的迁移转化和食物链的生物放大作用污染环境,危害粮食、食品安全和人体健康。
2 厦门市重金属污染防治存在的问题
2.1布局分散,发展方式粗放
由于厦门市涉重金属的企业入驻较早,粗放型增长方式尚未根本改变,改革开放初期环境准入制度几乎空白,项目环境影响评价中未对环境与健康风险评估进行评估,地方引进企业仅从经济发展角度考虑,造成涉重金属行业和企业无序发展,布局分散,结构污染比较突出,对环境造成一定程度的污染。
2.2企业对重金属污染防治工作重视不够
近年来,厦门市不断加强对涉重金属企业的监管,并建立了先锋电镀企业集中控制区,但重金属排放企业依然比较分散,监管难度大,源头预防控制未能全面落实。企业对重金属污染防治重视不够,有些企业对现有排放标准执行不严,一些中小企业不严格执行环评和环保“三同时”等环保制度。企业自我监测措施不完善,尚未建立特征污染物日监测报告制度;重金属污染突发事件的应急装备和技术水平不高。
2.3环境监管能力不足,基础工作有待进一步加强
当前,厦门市环保队伍人员不足,环境监察与环境监测力量有待加强,重金属污染物在线监控能力相对薄弱,尚末建立重金属污染预警应急体系。通过近几年的摸排调查,全市重金属污染物整体排放情况基本摸清,但对环境影响程度尚未进行全面评估,污染治理技术产业支撑不够,重金属污染的基础调查、科学研究、技术政策等还滞后于污染防治。
3 主要重金属污染防治对策
3.1加大结构调整力度
坚持以“调结构、促减排”为手段,严格执行国家有关产业政策和产业调整振兴规划,建立落后产能淘汰机制,分区域制定和实施重点防控行业落后产能淘汰措施,明确淘汰进度。对于重金属排放企业主动淘汰落后产能的,安排财政资金予以支持。
3.2严格项目准入条件
3.2.1严格区域准入
禁止在饮用水源保护区等重要生态功能区新建涉及重金属污染物排放的项目。非工业区和食品、生物医药等有特殊要求的产业园区以及工业区通用厂房原则上不再审批有重金属污染物排放的项目,其它区域按行业准人要求审批。改建、扩建项目要达到厦门市“十二五”,重金属减排和增产不增污的要求。
3.2.2严格产业准入
凡涉及重金属排放的新建项目,除高科技(科技局批文)及高附加值(经发局批文)项目、并能解决总量指标的区域外,一律不予审批。
3.2.3严格限制排放重金属相关项目
新建、改建、扩建项目坚持新增产能与淘汰产能“等量置换”域“减量置换”的原则,实施“以大带小”、“以新带老”;严格控制企业建设项目选址,合理确定重金属企业的排放浓度和环境安全防护距离,确保周边群众身体健康。
3.3积极推进清洁生产
依法实施强制性清洁生产审核,大力发展循环经济。按照省环保厅、省经贸委的工作部署,督促涉重金属企业加快强制性清洁生产审核评估和验收进度。对于经公布要求进行强制性清洁生产审核的企业,未实施清洁生产审核或者虽经审核但不如实报告审核结果的企业,责令限期改正,对拒不改正的依法从重处罚。
3.4严格污染源监管
3.4.1进一步摸清重金属污染情况
全面调查涉重金属企业污染物排放、治理设施运行情况及其周边区域环境隐患,深入开展污染现状评估,进一步摸清重金属污染情况,全面掌握辖区内重金属污染情况动态,有针对性地制定重金属污染综合防治计划,加大监控和治理力度。
3.4.2加强对污染源监管,促进企业稳定达标排放
进行重金属特征污染物自动监控装置试点工作,待条件成熟后逐步实现重点重金属污染源安装自动监控装置,实行“实时监控、动态管理”,确保污染物稳定达标排放。督促涉重金属企业进一步完善突发环境事件应急预案和应急处置设施,配备应急物资,定期组织应急培训和应急演练。
3.4.3规范企业日常环境管理,提高操作运行水平
要求企业建立重金属污染物产生、排放详细台帐,每月向环保部门报备污泥等危险废物产生量、处置去向等环境管理信息资料,实施动态管理;指导企业完善治污设施,规范物料堆放场、废渣场、排污口等建设,提升污染治理技术水平。
3.4.4严格执行项目审批要求,清理违法企业
全面排查全市重金属污染物排放企业,对于超过环评审批范围、含重金属废水、废渣、废气未经处理或处理达不到要求、重金属污染物超标超总量的企业,依法严肃处理。