欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

高电压技术论文优选九篇

时间:2022-07-25 13:20:09

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇高电压技术论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

高电压技术论文

第1篇

1.1高压直流电网的技术发展

欧洲专家介绍了近海岸直流电网示范工程的研究结论,这项研究工作包括近海岸间歇性能源,直流电网经济,控制保护等问题。两个著名硬件设备开发商参与了该项目,完成用于测试控制技术开发的低功率模拟器,并证明保护算法可用于直流电网,开发出了基于电力电子和机械技术创新的直流断路器;另有专家提出了利用有限的直流断路器操作,设计具有故障清除能力直流网络,模拟研究表明使用直流断路器可迅速隔离直流侧电网故障,即可在点对点的电缆方案中使换流器继续支撑交流网络。针对此问题,中国专家发言指出可采用全桥型子模块拓扑结构来清除直流侧故障,实现与电网换相换流器(LCC)相同的功能。德国专家提出了关于采用电压源换流器(VSC)的交直流混合架空线运行的特殊要求,虽然混合运行可提高现有输电通道的容量,但存在一系列挑战,包括利用可控、有效的方式实现多终端的操作管理,交直流系统的耦合效应,直流电压和电流匹配原则以及机械特性差异等。韩国专家提出了用于晶闸管换流阀的新型合成运行试验回路,该回路可向测试对象施加试验用交、直流电压和电流脉冲,并配置了可在试验前给电容充电的可控硅开关,以及为试验回路中晶闸管门极提供触发能量的独立高频电源。

1.2可再生能源的并网

美国专家提出了近海岸高压直流输电系统设计方案的可靠性分析方法,研究了平均失效时间和平均修复时间等可靠性指标,并结合概率(蒙特卡洛)技术来评估风速波动对风电场的影响,且评估不同的系统互联、系统冗余以及使用直流断路器与否等技术方案的能量削减水平,提议将能量削减作为量化直流电网可靠性的指标。为设计人员选择不同的技术方案、拓扑结构和保护方案提供依据。近海岸直流输电换流站选址缺乏相关的标准、项目参考及工程经验,难以给项目相关者提供合理的建议,并且可能会在项目的开发过程中引入风险。挪威专家针对此情况提出了一种从石油和天然气行业经验总结得出的技术资格要求,将有助于更加快速、高效、可靠地部署海上高压直流输电系统。

1.3工程项目规划、环境和监管

哥伦比亚和意大利专家提出了哥伦比亚与巴拿马电气互联优化设计方案,初步设计方案额定容量为600MW/±450kV,经过综合比较,方案优化为300MW/±250kV,400MW/±300kV的双极结构,并使用金属回线作为最佳的技术和经济解决方案。线路长度由原来的600km变为480km,但考虑到哥伦比亚输电系统的强度问题,决定保留原来的输电路线。贝卢蒙蒂第一条800kV特高压直流输电线路项目规划构想了额定参数为2×4GW/±800kV双极结构,直流线路长2092km,连接巴西北部与南部的直流输电工程方案;印尼第一条Java-Sumatra直流输电工程,额定参数为3GW/±500kV,双极结构,直流线路包含架空线和海底电缆,考虑采用每极双十二脉动换流器和备用海底电缆来提高系统的可靠性和可用率;太平洋直流联接纽带介绍了延长太平洋北部换流站寿命的最佳方案,将原有的换流器变为传统的双极双换流器结构,但保留多余的2个换流器阀厅,现以3.8GW/±560kV为额定参数运行。

1.4工程项目实施和运行经验

新西兰和德国专家提出“新西兰直流工程新增极3的挑战和解决方案”,该工程不仅要保证设备能承受较高的地震烈度,保障其在弱交流系统中安全稳定运行,还要设计合理的设备安装地点,以及新建极与原有极的一体化控制保护系统;巴西互联电力系统的Madeira河项目中SanAntonio发电厂对400MW的背靠背中第一个模块及额定参数为3.15GW/±600kV双极中的第一极进行充电,工程因交流系统没有足够的短路容量而延迟工期,后通过安装500kV/230kV联接变压器得以解决。印度的Champa-Kurukshetra±800kV/3GW高压直流工程首次在特高压输电工程中采用金属回线返回方式运行,输电线路长1035km,远期增加容量3GW,双极功率传输容量可达6GW;法国与西班牙东部互联案例中采用双回VSC-HVDC馈入交流网络,研究认为VSC-HVDC是首选的技术解决方案。

2FACTS装置及技术应用

2.1可再生能源并网

丹麦专家开发了多电平静止同步补偿器(STATCOM)通用电磁暂态模型,并基于伦敦Array风力发电厂多电平STATCOM现场测量和电磁暂态仿真结果对比研究进行了验证,仿真结果与现场测量结果比较相符,并显示出良好的相关性。

2.2提高交流系统的性能

加拿大专家提出了用于工程规划的通用VSC模型,开发了基于PSS/E的稳态和动态模型。验证了该模型部分交流侧和直流侧故障,结果表明具有良好的相关性,可在新的工程规划和规范研究中应用。伊朗专家提出了分布式发电并网中基于自适应脉冲VSC的新型控制方法,与另外两种控制方法相比,谐波补偿和电能质量改善比较表明,分布式发电中谐波含量减少,从而减少谐波注入交流网络。“智能电力线路(smartpowerline,SPL)实验研究项目”引入了在架空输电线路嵌入微型变电站的概念。电源交换模块,保护模块和在线监测系统可使输电线路变得更智能,该技术还可以用于管理功率潮流和额外参数测量。

2.3FACTS工程项目规划、环境和监管

印度专家进行了动态补偿装置在印度电力系统的配置及选址研究,以易受故障扰动影响的印度西部地区为重点研究区域,并提出了无功功率控制补偿器的最佳位置和动态范围。

3电力电子设备的技术发展

3.1直流断路器、直流潮流控制器和故障电流限制装置

Alstom进行了120kV直流断路器的开发和测试研究,该断路器包括电力电子元器件,超快速机械断路器,串联电容器和避雷器等重要组成部分,可在5.3ms内开断电流。ABB提出混合型直流输电工程断路器为未来高压直流系统的解决方案,描述了混合直流断路器的详细功能、控制方式和设计原则,混合断路器的核心部件同样为超快速机械断路器。ABB的专家还提出了低损耗机械直流断路器在高压直流电网中的应用,其可替代混合直流断路器,开断参数最大为10kA/5ms。断路器包含电磁制动器、并联谐振电路,已完成一个额定参数为80kV的断路器样机,并成功通过了开断目标电流的试验。

3.2新型半导体设备和换流器拓扑

第2篇

(1)利用高压喷射法进行施工时

其主要是利用钻机来进行钻孔,当钻机达到要求的深度时,则利用高压泥浆泵的高压射流来对周围的土体结构进行破坏,同时再不断的将钻杆进行旋转提升,并在此过程中利用特殊喷嘴来向周围土体中高压喷射固化浆液,使其浆液与土体达到有效的固化,从而形成一定性能和正式成立的固结体,增加土体的强度和稳定性。

(2)固结体形成什么样的形状

这是与喷射流的移动方向有紧密联系的,因为在喷射过程中,通常会采用旋转、定向和摆动三种喷射方式,这样就会导致在旋喷情况下形成旋喷柱,这对于提高地基的抗剪强度,加固地基都具有良好的作用,而且可以对于地基土变形的情况有较好的改善作用,特别是当上部具有较大荷载时,具有良好的承载作用,不至于变形或是受到破坏。而利用定喷时固结体则会呈现壁状,而摆喷则会形成厚度较大的扇状,这对于地基的防渗作用都具有非常好的效果,可以有效的确保边坡的稳定性,进一步改善地基土的水力条件。

2高压喷射灌浆工艺

2.1原材料

在灌浆施工时,需要确保浆体达到良好的可泵性和保水性,所以通常都会在施工前对浆体进行必要的处理和养护,使其保持立方体的模型持续七天,然后还要对其进行抗压力度检查,确保其符合灌浆时对浆体的要求。同时在施工过程中,为了有效的避免浆体出现干缩的现象发生,则需要将矢量的膨化剂加入到浆液中,有效的改善浆体干缩情况的发生。

2.2定位技术

对喷灌位置的确定时需要利用定位技术进行,同时还要严格遵照施工图纸,对施工中各种参数进行充分的考虑,利用定位技术找准防渗墙的位置,还要错开固有的钢筋位置,并做好标记,等一切工作准备就绪后,检查后与符合标准要求,即可以进行钻孔作业。

2.3钻孔技术

在灌浆施工中,对钻孔有一定的限制。首先,不管是直孔,还是孔壁,都应该有较高的笔直性和足够的均匀度;其次,在施工中,需要有一个合理的程序,这就要求必须严格按照规范进行操作。例如灌浆流程要从前到后依次开展,需注意后一钻孔作为前一钻孔的检查孔,应借助压水实验来检查钻孔的吸水量,如果吸水量符合规定,后续孔的灌浆工作便可省去。此外,在灌浆施工开始前,需要做一些清理工作,将钻孔或裂隙中的岩粉彻底冲洗掉,以维持其干净性。常用冲击钻进行钻孔,按规定标准,钻头和钢筋的直径差应控制在5mm左右。

2.4插管

钻完孔后,按照设计好的深度将注浆管及时插入地层,此环节通常和钻孔是连在一起的,即每钻完一个孔,就须将喷射管插入,输送压缩空气,接着将浆泵打开,持续30s送浆,然后将钻杆拔出。插管时为避免喷射管的喷嘴被泥沙堵塞,可将插管和射水工作同时进行,如果压力过大,可能会出现射塌孔壁的情况,因此,水的压力尽量保持在1MPa以内。

2.5喷浆

喷浆要遵循自下而上的顺序,且需要结合土质、地下水等因素综合考虑,对喷浆的流量、压力及提升速度进行适当调整。有时需进行二次喷射,即在上次喷射形成的浆土混合物上进行喷射,喷射流遇到的阻力比上次喷射要小,二次喷射有利于增加固体的直径。喷浆完成后,对套筒、拉杆等进行清洗,以便下次使用。

2.6检查

灌浆工作结束后,要做的就是检查工作,必须对施工质量做一个严格且全面的检查,而且大概要维持一个月左右。比如说检验灌浆区的钻孔,就要做好压水实验,通过对岩心胶的观察来确定其施工质量是否符合规定要求。

3水利工程高压喷射灌浆施工中质量控制

3.1位置

首先必须按照指定的设计要求来布设防渗墙。那么,墙的厚度要和设计的要求一样,子距一般为2.0m、有效半径和摆角分别是1.8m和15°,另外,升速度一般为10cm/min。喷嘴型号为2mm,气嘴7mm,水压为29.4~34.3MPa,空气压735kPa。

3.2测压管的四周必须要用黄沙来做漏层

规定管口为2英寸的PVC管,管底1.1m高为透水部分,外用400g/m2土工布包裹。

3.3在水泥的使用材料上必须要经过严格的质量控制

需要专业的人员进行现场取样后特意地送往检测部门在进行检验复试,那么,需要往水泥材料里添加外用剂的时候,也必须经过试验后才能明确要掺进的量度。

3.4钻孔在经过严格的检验之后才能进行孔内和缝面冲洗

将孔口敞开用风和水一次进行清洗,将风(水)管插入孔底,风(水)反复冲洗,直至回清水后即可结束。

3.5灌浆

由于裂缝两边的混凝土在灌浆压力的作用之下会产生有害的变形,在进行灌浆施工时应布置好一起对裂缝进行监测,另外,在施工灌浆技术时的工序应保持先浅到深、一侧向另外一侧、右下至上来进行,另外,在灌浆施工结束的标准是单孔吸浆率趋于零之后,灌注20~30min,想要防止因为窜孔而破坏喷射注浆的固结体,就必须要分序进行喷射施工工艺。

4结束语

第3篇

关键词:电力系统;高压电气;试验;绝缘

前言

高压电气试验是考核电气设备主绝缘或电气参数是否满足安全运行的一个重要手段。然而,高压电气试验的结果往往会受到一些不为人们所注意的因素所干扰,造成试验结果与实际情况不符合,甚至得出错误的结论。比如,被试设备的缺陷没有被反映出来,造成设备带病运行;也可能把合格的设备判断为不合格,从而造成不必要的损失。笔者对多年来在高压试验中所碰到的一些问题,进行归纳、分类和分析,并对如何避免和解决这些问题,提出了相应的措施。

1、试验设备和被试设备的接地问题

1.1高压TV及TA二次回路不接地造成测量数据错误

在测量高电压和大电流时,必须使用TV和TA进行变换。理论上,TV或TA的变比应遵循电磁感应定律,即它们是变比决定于一次绕组的匝数和二次绕组的匝数。然而,在实际应用中,如果高电压下的TV或TA的二次绕组没有将一端接地时,实际上反映出来的变比就会偏离铭牌值,所测量出的数据也是错误的。例如,对1台30mW水轮发电机进行交流耐压试验时,采用1台35KV/100V的TV和1块150V的交流电压表测量电压,在第1次试验时发现电容电流比往年小得多,显然是试验电压没有达到预定值,所测量的电压是一个虚假的数据。经检查发现TV二次没有接地。将TV二次绕组一端接地后,数据恢复正常。试验数据见表1。

表1TV二次绕组不接地和接地的数据比较

如果按照电流与电压成正比的关系反过来计算第1次试验电压,应为:(21/38)×23.8=13.15(kV),这一电压与预定试验电压相差甚远。对于高压TA,我们在实验室也做过同样的试验,当高压TA二次绕组不接地时,电流的变比同样会产生严重的偏差。

无独有偶,在做1台电力变压器的空载试验时(试验电压10kV),第1次试验所测量的空载电流和空载损耗与出厂试验数据不吻合,经检查也是TV和TA二次绕组没有接地所造成。

由于高压TV,TA的一次绕组和二次绕组与大地之间存在着分布电容,如果二次绕组不接地,二次绕组上的感应电压就会通过表计与大地之间产生杂散电流,从而产生错误的指示值。

通过对这一问题的分析,笔者认为以下两件事情在高压试验中必须重视:

1)高压TV和TA的二次绕组,不论是从安全的角度还是从测量的准确度来考虑,都必须将其中的一个端子可靠接地;

2)在进行交流耐压试验时,应同时测量试品的电容电流,因为可以从电流的大小来判断试验电压是否正常。

1.2被试设备接地不良造成介质损耗增加

这种问题主要发生在电容量较大的设备上,比如耦合电容器或CVT(电容式电压互感器)。在变电站里,线路CVT或耦合电容器通常都与线路直接连接,在检修时为了保证线路检修人员的安全必须将CVT或耦合电容器的顶端接地,通常是将线路的接地开关合上或挂上临时接地线。如果接地开关或临时挂接的地线接触不良,相当于在电容器上串联了一个附加的电阻。如果电容量为c,电容器的介质损耗因tgδ与等值串联电阻R有如下关系:

tgδ=Ωcr

从上式可知,当电容器串联的电阻一定时,电容器的电容量越大所产生的损耗越大。在实际试验中,已经多次发生因接地开关或接地线接触不良而造成被试品介质损耗超标的问题。表2是一个500KV直流中继站耦合电容器的测量实例。

表2 耦合电容器介质损耗测量数据比较

当怀疑接地开关或接地线接触不良时,可以在被试品上直接挂上另外的接地线,保证接触良好。

1.3滤波器接地开关没合上造成测量数据异常

这种情况发生在测量耦合电容器(或带通信端子的CVT)上,如图1所示。由于耦合电容器顶部接地,所以在测量C1的介质损耗时通常采用反接屏蔽法,也就是将测量装置的屏蔽端子接于C2的下端,这种接法似乎是把C2以下的元件全部屏蔽掉了,而事实上并非如此。表3是一个测量实例,从表3数据来看,当接地开关打开时,不同的测量仪器所呈现的异常情况不尽相同,只有当接地开关合上后,才能测出正确的数据。这种情况说明异常现象还与仪器的测量原理有密切的关系。

因此,在测量耦合电容器的介质损耗时,应首先将结合滤波器的接地开关合上。

图1反接屏蔽法测量C1

表3滤波器接地开关的分合状态对测量结果的影响比较

2、试验电压不同所引起的问题

2.1对介质损耗因数测量的影响

在一次500KV直流中继站的耦合电容器预防性试验中,由于耦合电容器电容量较大,为了避免仪器过载,采取降低试验电压的方法进行测量。在36台耦合电容器中其中有1台测量结果不合格,见表4序号1。为了查找试验不合格的原因,试验人员采取了各种各样的方法,如改变试验接线、擦拭外套等等,但测量结果仍不合格。第二天用另一型号的测量仪进行测量时,发现在0.5KV的电压下测量结果仍然不合格,但随着试验电压的提高,介质损耗却越来越小。然后再用回原来的仪器复测,在同样的试验电压下测量结果也已经正常,测量结果见表4中序号2-7。这种现象显然与绝缘材料中存在杂质有关。之所以出现这种现象,我们分析原因可能是:多元件串联的耦合电容器中存在连接线氧化接触不良的问题,在低电压下氧化层未击穿,呈现较大的接触电阻,所以介损变大;当试验电压提高后,氧化膜击穿,接触电阻下降,介损变小,这时即使降低试验电压,氧化膜仍保持导通状态,介质损耗不再增大。

2.2对测量直流电阻的影响

某厂1台发电机在进行预防性试验时,用双臂电桥测量转子绕组的直流电阻,测量结果与历年数据相比显著增加。为了慎重起见改用外加直流电压电流法,测量结果却与历年试验数据接近,然后改用不同的仪器测量,数据变化很大。根据对测量方法和结果的分析,我们判定转子绕组已经存在导线断裂的问题。导体断裂后,在断裂面形成一层导电性较差的氧化膜,当用双臂电桥测量时,由于电桥输出电压较低,氧化膜不击穿,所以呈现较大的电阻;而采用外加电压电流法时,由于输出电压较高,所以氧化膜击穿导电,测量的直流电阻就变小。经拔护环检查,该转子绕组端部存在5处断裂的缺陷。

表4不同电压下耦合电容器测量结果比较

以上例子说明,对于与直流电阻有关的试验,采用输出电压低的仪器更容易暴露设备存在的缺陷。

2.3对测量直流泄漏电流的影响

导体表面所产生的电晕电流在导体的形状、电压极性、导体间的距离确定以后,就与电场强度的大小有关。当外施电压小于一定的数值时,电晕电流很小,对泄漏电流的测量影响可以忽略,而当试验电压超过一定的数值后,电晕电流要比绝缘的电导电流大得多,这时就要采取措施减小电晕电流的影响。

3、环境温度所引起的问题

在某厂1台发电机转子的预防性试验中测得转子绕组的直流电阻不合格,正准备进行处理,为慎重起见,先用原仪器进行复测,却发现数据是合格的。在后来的几天里,这种情况总是反复出现,所测得的数据有时合格,有时又不合格,令人费解。后来经详细分析,发现凡是白天测量的数据都是合格的,而晚上测量的数据都是不合格的。进一步分析发现,该电厂所处的地区白天和晚上的温差较大,极有可能是转子绕组导体存在裂纹,白天温度高时,由于导体膨胀,裂纹被顶紧而完全导通,所以直流电阻合格;而到了晚上,由于温度降低,导线收缩,裂缝被扯开,所以直流电阻增大而不合格。经拔护环检查,证明这一分析是正确的。

4、引线所引起的问题

4.1绝缘带的问题

在一次测量500kV断路器断口电容器的介质损耗因数时,所测得的数据总是不合格,为了找出原因,试验人员尝试了各种各样的方法,最后发现只有当取消固定试验引线的塑料带后,所测得的数据才是合格的。经用兆欧表测量,所用的塑料带绝缘电阻竟然只有几百兆欧,而被试设备的绝缘电阻均大于10000MΩ,用这样的塑料带固定试验引线,无疑是在试品上并联了一个电阻,增加了试品的介质损耗。这种现象确实非常罕见,为了保证试验结果的准确性,检查所使用的绝缘塑料带的绝缘电阻还是很有必要的。

4.2避雷器的引线问题

某厂1台500kV主变中性点避雷器在预防性试验中,检修人员仅将引线的主变侧断开,引线保留在避雷器上,用塑料绝缘带固定并与周围设备保持足够的距离。然而,在试验中75%直流参考电压下的泄漏电流总是在70μA~80μA之间,大于50μA,按规程规定属于不合格。厂里只好打算更换。为了慎重起见,在拆下避雷器的引线后进行复测,泄漏电流已小于20μA。由此可见,在进行避雷器试验时,高压部位的引线必须全部拆除,而且高压直流发生器的屏蔽线必须直接接到避雷器的高压端,以防止引线所产生的电晕电流流入微安表造成测量偏差。

5、结束语

第4篇

论文摘要:发电侧AVC子站通过远动专线接收内蒙省调AVC主站下发的电厂侧220KV母线指令。中控单元在充分考虑各种约束条件后,计算出对应的控制脉冲宽度,以通讯方式下发至AVC执行终端,由执行终端输出增减磁信号给励磁系统(或输出至DCS),调节机组无功功率,发电机无功出力与机端电压受其励磁电流的影响,当励磁电流发生改变时,发电机的无功出力与机端电压也随之增减,并通过机端变压器进一步影响到母线电压的高低,励磁电流的增减可通过改变励磁调节器(AVR)给定值实现。

一、

选题背景及其意义

近年来,随着我国电力工业的迅速发展,电网规模的不断扩大,电力系统的安全、经济运行已成为电力生产的重大课题。必须不断采用新技术在保证电力系统安全运行的前提下,提高电能质量、降低网络元件中的电能损耗,从而获得满足安全运行条件下的最大经济性和最好的电能质量。其中电网的自动电压控制及无功优化(简称AVC)就是电力生产中提高电能质量,降低网损的重要手段。国家电力调度中心已经把这一项目列入了“十一五规划”。

自动电压无功调控系统AVC系统将发电厂母线电压的调整由人工监控改为自动调控,具有以下意义:

1.提高稳定水平:网内电厂全部投入装置后,通过合理分配无功,可将系统电压和无功储备保持在较高的水平,从而大大提高电网安全稳定水平和机组运行稳定水平。

2.改善电压质量:电压监督电压合格率得到大幅度提高。

3.消除了人为因素引起误调节的情况,有效降低了运行人员的工作强度。

二、国内无功电压控制现状

国内目前对发电厂无功电压的管理考核方式,主要是由调度中心按照高峰、平谷和低谷等不同时段划分母线电压控制范围,按季度向各发电厂下达曲线指标,发电厂则根据曲线要求,实行人工24小时连续监视盘表,及时调节发电机无功出力,以维持母线电压在合格范围内。这种沿用了多年的就地分散控制管理模式,在当前电网结构日益复杂的形势下逐渐暴露出了一些弊端,存在的主要问题是:

1.事先给定的电压曲线和无功设备运行计划是离线确定的,并不能反映电网的实际情况,按照这种方式进行调节往往带来安全隐患。

2.电网运行人员需要时刻监视系统电压无功情况,并进行人工调整,工作强度大,而且往往会造成电网电压波动大;

3.电厂之间,无功调节对相互母线电压影响大,无功调节矛盾突出。由于各电厂只关注自身母线电压,没有从全局角度协调无功分配,电网无功功率无谓搬运现象突出,经常出现无功环流现象,造成不必要的有功损耗。各厂、站无功电压控制没有进行协调,造成电网运行不经济。

上述问题的存在,既增加机组进相深度,影响机组和电网安全稳定运行,也使网损增加,影响经济性。因此,有必要发展AVC(自动电压控制)系统,从全局对电网无功潮流和发电机组无功功率进行协调控制,实现电厂母线电压和无功功率的自动调控,合理协调电网无功分布,以保证电网安全稳定运行,提高电压质量和减少网损,降低运行人员劳动强度。近几年来国际上几次重大的电网事故如美加大停电,都有无功电压的问题造成电压崩溃,致使电网瘫痪。无功电压自动控制技术越来越引起重视,在华北电网,基于分层分区控制技术的二/三次电压控制技术在某些电厂逐步进入应用,而本论文依据包头第二热电厂现场改造的实际情况,将重点讲述电厂侧无功电压控制方案在包头第二热电厂的应用。

三、课题研究的主要内容:

发电厂侧AVC实施方案

信息来源:http:/1. 自动电压无功调控系统控制方案

在发电侧增设一套电压无功自动调控系统,与调度中心共同组成AVC系统,以主站-子站星型网络方式运行,主站和子站系统之间通过现有数据采集系统及数据通信网互连并完成信息交换。 发电侧AVC子站通过远动专线接收内蒙省调AVC主站下发的电厂侧220KV母线指令。中控单元在充分考虑各种约束条件后,计算出对应的控制脉冲宽度,以通讯方式下发至AVC执行终端,由执行终端输出增减磁信号给励磁系统(或输出至DCS),调节机组无功功率,发电机无功出力与机端电压受其励磁电流的影响,当励磁电流发生改变时,发电机的无功出力与机端电压也随之增减,并通过机端变压器进一步影响到母线电压的高低,励磁电流的增减可通过改变励磁调节器(AVR)给定值实现。所以系统的无功电压控制通过励磁系统来实现。自动电压调控系统AVC是通过改变发电机AVR的给定值来改变机端电压和发电机输出无功的。信息来自:输配电设备网

包头第二热电厂300MW机组自动电压控制(AVC)系统框图

2.合理的设备配置方案

2.1.安全可靠的硬件配置

本工程采用中控单元/执行终端配置方式,共安装两套独立的系统,每套设备配置台中控单元(主/备)和2台AVC执行终端,终端与机组一对一配置。AVC子站中控单元接收内蒙省调AVC主站下达的电厂侧高压母线电压指令,在充分考虑各种约束条件后,计算出对应的控制脉冲宽度,下发至AVC执行终端,执行终端输出增减磁信号给励磁系统,由励磁系统调节机组无功功率。

中控单元有主备功能,主中控单元故障时,可切换至备用中控单元,保证系统正常运行。主中控单元恢复后,自动切回主中控单元控制。

本工程共有中控单元2台,执行终端2台。

2.2.人性化的发电厂AVC子站软件配置方案

2.2.1.包括完整的数据采集、处理、通信和诊断等各种软件,应具有告警、具体故障内容的中文提示及事故记录功能。软件配置满足功能规范的要求,具有良好的实时性和可维护性。

2.2.2软件遵循国际标准,满足开放的要求。

2.1.3.便于用户的二次开发和在线安装、生成、修改新的应用功能。

2.1.4.配备一套完整的、可运行的软件备份。

2.2.5.系统有较强的防计算机病毒、反入侵能力,提供硬件防火墙或其它安全设施的接入能力。

2.2.6.具备较强的数据存储功能,能够长时间存储运行数据、运行事件、系统参数和离线电压设定曲线等数据。

3.对功能模块的要求

3.1计算模块应具有下列功能:

ü

根据高压母线电压调整量目标值计算电厂对应机组发出无功功率目标值。

ü

按照给定的无功分配策略,将总的无功目标值分配给各台机组。

ü

选择需要调整的机组,给出合适的调整指令。

ü

自动识别母线检修,双母线结构一条母线检修,控制母线自动切换至另一条母线。

3.2.运行约束条件:

ü

AVC主站下发的调节信号突变限值;

ü

AVC主站控制无效时间限值;

ü

发电机参与调节的有功功率限值。

ü

发电机在不同的有功出力下对应的无功功率上下限;

ü

发电机的机端电压上下限;

ü

发电机的机端电流上下限;

ü

高压侧母线电压上下限;

ü

AVR自动信号消失;

ü

实时数据波动过于剧烈,超过设定值;

ü

实时数据不刷新;

ü

省调通信中断;

ü

RTU通信故障;

ü

机组有功越闭锁值;

ü

机组无功越闭锁值;

ü

机组机端电压越闭锁值;

ü

机组机端电流越闭锁值;

ü

母线电压越闭锁值。

ü

机端电流耦合校验

AVC子站在满足以上运行约束条件时,装置闭锁输出并发出增减闭锁信号,一旦运行条件正常,增减闭锁信号消失,装置自动恢复正常运行。

3.3AVC子站的控制模式

ü

退出:只能工作在研究方式下。

ü

闭环:AVC主站与子站闭环运行。

ü

开环:AVC子站系统根据本地设定电压运行

3.4防误措施

ü

中控单元计算错误时有保护措施,能可靠保证不误输出。

ü

执行终端掉电时不会误输出。

ü

任一硬件模块或连线损坏,均不会造成设备误输出。

ü

防止输出控制节点粘死措施,当输出节点粘死导致输出控制脉冲过长时,应自动切断控制输出信号保证机组安全。

4.GPS对时接口

子站系统提供RS485串口(RS232口备用),可与厂内卫星定时系统GPS实现精确对时(对时误差不大于1ms)。

5.自动电压无功调控系统调试中注意问题。

自动电压调控系统的各种限制功能必须与发电机励磁系统AVR的各种限制以及和发变组保护很好的配合。根据发电机励磁系各种限制数据以及发电机P-Q曲线、发变组保护定值对自动电压调控系统定值进合理整定,杜绝配合不好带来的不良后果。

试验时,调度及电厂运行加强监视控制点参数,必要时,无条件退出AVC运行,并恢复参数。 调试中注意和发电厂侧进相数据的配合,调整中要保证6KV厂用电系统的稳定运行,如果调整中6KV电压过低,有必要调整发电机电压定值。

在无功调控设备中采取措施防止增磁和减磁出口继电器接点粘连。

四、

研究的难点和重点

(1)

本文着重阐述该系统如何通过合理的硬件配置实现安全可靠运行、如何实现人性化、可视化、智能化的软件系统配置。

(2)

在参数设定中,既要保证电网电压及无功优化问题、又要考虑到本厂汽轮发电机组在调节过程中的安全稳定问题,因此AVR执行终端的无功功率调节死区、脉冲计算斜率、最大脉冲宽度的定值是AVR成功运行的关键因素,也是本文的重点和难点。

(3)自动电压调控系统的各种限制功能必须与发电机励磁系统AVR的各种限制以及和发变组保护很好的配合。根据发电机励磁系各种限制数据以及发电机P-Q曲线、发变组保护定值对自动电压调控系统定值进合理整定,杜绝配合不好带来的不良后果。

五、预期成果

本课题研究成功投入使用后,将发电厂母线电压的调整由人工监控改为自动调控,消除了人为因素引起误调节的情况,有效降低了运行人员的工作强度,保证系统电压低于规定的最大数值,以适应电力设备的绝缘水平和避免变压器过饱和,并向用户提供合理的最高水平电压; 信息来自:tede.cn 大机组无功出力分配必须满足系统稳定的要求,单机无功必须满足P-Q曲线,保证了机组安全运行,尽可能地降低了电网的有功功率损耗,取得较好的经济效益。

参考文献

1. 唐茂林.庞晓艳.李曼.刘柏私.尹晓澜.张蓓.李建.郭庆来.孙宏斌 计及梯级电站的省地一体化AVC系统研究及实现方案 [期刊论文] -电力自动化设备2009(6)

2. 惠建峰.焦莉.张世学 自动电压控制系统建设与应用分析 [期刊论文] -陕西电力2009(2)

3. 李钦.温柏坚 广东电网电厂AVC子站建设研究 [期刊论文] -电力系统保护与控制2008(21)

4. 郭庆来.孙宏斌.张伯明.吴文传.王彬.李柱华.汤磊.王蓓.宁文元.郑燕涛.袁平 自动电压控制中连续变量与离散变量的协调方法(一)变电站内协调电压控制 [期刊论文] -电力系统自动化2008(08)

5. 郭庆来.孙宏斌.张伯明.吴文传.王彬.李柱华.汤磊 自动电压控制中连续变量与离散变量的协调方法(二)厂站协调控制 [期刊论文] -电力系统自动化2008(09)

6. 孙鸣.吴兆文.李家仁 电厂侧AVC子站系统控制策略的研究 [期刊论文] -仪器仪表用户2008(03)

7. 杨银国.崔丽华.李扬絮.李力.向丽玲.杨雄平 广东电网2007春节电压调控存在问题与对策 [期刊论文] -广东电力2008(04)

8. 郭庆来.张伯明.孙宏斌.吴文传 电网无功电压控制模式的演化分析 [期刊论文] -清华大学学报(自然科学版)2008(01)

9.

Sancha J L.Fernandez J L Secondary Voltage Control:Analysis Solutions and Simulation Results for the Spanish Transmission System 1996(2)

10.

Vu H.Pruvot P.Launay C An Improved Voltage Control on Large-scale Power System 1996(3)

11.

Lefebvre H.Fragnier D.Boussion J Y Secondary Coordinated Voltage Control System: Feedback of EDF 2000

12.

Sancha J L.Fernandez J L Secondary Voltage Control:Analysis Solutions and Simulation Results for the Spanish Transmission System 1996(2)

第5篇

被加州大学洛杉矶分校研究小组称为磁电随机存储器的这款内存极有可能成为未来几乎所有电子产品的内存条,包括智能手机、平板电脑、计算机、微处理器,也可专门用于数据存储,如计算机和大型数据中心的固态磁盘等。

磁电随机存储器优于现有技术的主要优点是它耗能极低,同时密度大、读取和写入速度快、不挥发,不用加电也可保存数据(这类似于硬盘驱动器和闪存条,但速度要快得多)。

当前,磁性内存的技术基础是自旋转移矩,利用了电子(自旋体)的电荷和磁特性,以电流移动电子,向内存写入数据。尽管自旋转移矩与其他内存技术相比有诸多优势,但其电流写入机制仍须消耗一定能量,即写入数据时会产生一定热量。其存储能力受到数据物理距离的限制,即写入信息所需电流的限制。这种低位能力拉高了比特成本,从而限制了自旋转移矩技术的应用。

在磁电随机存储器中,加州大学洛杉矶分校的研究小组用电压取代电流来写入数据。这样就无须用导线移动大量的电子,而只须利用电压(电势差)即可开关磁位,向内存写入信息。这样计算机内存产生的热量就大为减少,节能效率提高10到1000倍。此外,内存密度可提高5倍,在同样的物理空间内能存储更多的位信息,从而降低了比特成本。

该研究负责人为加州大学洛杉矶分校电气工程系教授王康,成员还有论文第一作者、电气工程研究生胡安· G·阿尔扎泰以及加州大学洛杉矶分校—国防高级研究计划署非挥发逻辑项目经理、电气工程助理研究员佩德拉姆·哈利利。

哈利利说:“以电压控制纳米级磁体的能力是磁学研究中令人兴奋、快速增长的领域。这一工作为下列研究提供了新思考:如何以电压脉冲控制开关方向,如何不用外部磁场就能确保设备正常工作,如何把它们整合成高密度存储器阵列等。一旦做成商品,磁电随机存储器相对现行其他技术的优势不仅表现在能量散失少上,还表现在能使磁阻随机存储器极为密实,这也很重要。由于成本低、性能高,磁电随机存储器可以挺进以前为成本和性能所困的新的应用领域。”

阿尔扎泰说:“最近首款自旋转移矩—磁阻随机存储器(STT-RAM)商用芯片问世,它也为磁电随机存储器的推广打开了大门,因为它们的设备原料和制造工艺十分相似,后者既可兼容STT-RAM当前的逻辑电流技术,又减缓了能量和密度的限制。”

名为《纳米级磁穿隧接面的电压开关控制》论文介绍了上述研究成果,在12月12日于旧金山召开的美国电气和电子工程师协会国际电子设备2012年会上进行了宣读,该年会是“半导体和电子设备领域突破性成果的杰出论坛”。

磁电随机存储器采用了称为受电压控制的磁绝缘体结点的纳米级结构,数层摞在一起,其中有两层是磁性材料,一层磁场方向固定,另一层可通过电场加以控制。特殊设计的设备对电场很敏感。当施加电场时,两个磁层间就产生了电位差,即电压。电压可通过在各层表面聚积或消除电子,向内存写入信息。

王康指出:“像这样能量极低的自旋电子设备,其潜在应用不只限于存储器产业。这些存储器可集合逻辑和计算,从而彻底消除预备电力,使即通型电子系统成为现实,极大提高设备功能。”

第6篇

关键词:三维电极,中试装置,PCB含铜废水,电费

 

随着电子通讯行业的迅猛发展,我国已成为名副其实的PCB生产大国,PCB产量多年居世界第一位。PCB生产废水中污染物主要是COD与重金属铜[1]。产生铜废水的工序主要有:沉铜、全板电镀铜、图形电镀铜、蚀刻以及各种印制板前处理工序。其中含铜非络合物废水主要来源为磨板、全板电镀、图形电镀、酸性蚀刻以及其他一些漂洗工序[2]。本试验主要采用阴极填充粒子的三维电极电解法处理各环节排放的非络合综合含铜废水,并进行电费成本的估算。

1 试验

1.1 试验装置

三维电极中试设备如图1所示,采用PVC塑料制作(70cm50cm60cm),处理水量140L,阳极为两块35 cm 45 cm的涂钛极板,阴极为2块20cm 53 cm的铜板环境保护论文,放置在宽6cm的玻璃槽中,槽中填充废铁屑或活性炭粒子。

图1 三维电极电解中试装置图

Fig.1 Schematic diagram of three-dimensional electrode pilot reactor

1.2 试验方法

试验设备为HY1711-5S双路可跟踪直流稳压电源、721可见分光光度计。铜离子检测采用2,9-二甲基-1,10-菲啰啉分光光度法中国期刊全文数据库。

铜离子流经粒子颗粒阴极,并在其表面还原吸附析出。试验用水取自线路板生产企业实际含非络合铜废水。粒子电极中的活性炭是不饱和的,故在试验前先用试验原水对其浸泡,并多次换水,测定浸泡前、后水中的铜离子,直至两者相同。试验考查极间距、电解电压、电解时间和不同填充粒子对铜去除率的影响,得出最佳运行参数,估算电费成本。

2 试验结果

2.1 极间距对铜离子去除的影响

为能更好的溶出废水中的铜,调节废水的pH值为3-4,试验中阴极添加了铁屑,考查当电解电压为13V和16V时,极间距分别为4cm和6cm条件下的铜去除,结果如图2。

Fig2.Effect of electrode distance on Cu removal

由图2可知,不同电压下铜去除率都随极间距的减小而增加,这是因为极间距影响着溶液的传质距离和电极电势[3]。极间距小相应的可减小对流、扩散传质的传质距离,增大传质的浓度梯度环境保护论文,强化传质效果,降低电解电压,提高电解速率和效率。但间距过小会影响操作的稳定性,因此试验中采用极间距4cm。当电压为16v时,电解215min铜去除率为49.6%,此时电流为5.80A,以河北省工业用电0.71元/度计,电费成本为1.68元。

2.2 电解电压、填充颗粒和电解时间对铜离子去除的影响

为使填充颗粒呈现复极化,电解电压必须足够高。当施加在粒子电极上的电压低于反应电压时,只有短路电流或旁路电流存在。大于反应电压时,则有反应电流出现。电压越高,复极化程度越大,处理效果越好,但耗电量越大,并且填充颗粒上副反应加剧,产生大量气泡环境保护论文,使得污染物在粒子上不能很好地吸附。试验考查了极间距4cm,阴极槽填充铁屑和活性碳两种粒子电极形式下的铜去除率,结果见图3和图4。

Fig3.Cu removal efficiency of three-dimensional electrode at4cm electrode distance andfilling scrap iron

Fig4.Cu removal efficiency of three-dimensional electrode at4cm electrode distance andfilling activated carbon

试验表明阴极槽填充铁屑,当电压大于16v,电解220min以上时,铜去除率可达到50%,电压22v时电解135min,铜去除率为56.4%。而阴极槽填充活性炭时,电压在20v以下,铜去除率仍然极低,当大于22v后铜离子可去除50%以上中国期刊全文数据库。

图中还可看出阴极填充铁屑对铜的去除要好于填充活性炭颗粒,所需电压小,电解时间短,但通过电费估算可知阴极填充铁屑时电解电费成本较高。电压为22V,电解135分钟,铜去除率达到56.4%环境保护论文,进水铜浓度为58.0mg/L时,出水铜为25.3mg/L,电费成本1.72元/吨。阴极槽填充活性炭颗粒时,电压为22v,电解90min,铜去除率为52.1%,进水铜浓度为171.3mg/L时,出水铜为82.0mg/L,电费成本1.12元/吨。

由图4还可知,,随着电解时间的延长,对铜离子的去除率逐渐增大,在前135 min内铜去除率随时间的延长而迅速增大,之后增速逐渐减慢并趋于稳定。其原因是电解初期,装置内铜离子浓度高,能快速扩散到电极表面。之后装置铜浓度下降,浓度梯度对去除效果的影响变得显著,所以降解曲线变得越平缓。考虑到运行费用环境保护论文,电压为22v,电解时间宜取90 min。

3 结论

中试试验表明三维电极电解处理PCB非络合铜废水最佳处理条件时阴极槽添加活性炭粒子,极间距4cm,电压22V,电解90分钟,在此条件下铜去除率为52.1%,进水铜浓度为171.3mg/L时,出水铜为82.0mg/L,电费成本约为1.12元/吨。三维电极电解处理此种废水虽能回收铜,但出水达不到排放标准,需采用其他方法继续处理。

参考文献:

[1]谢东方.印制电路板废水处理技术应用实践[J].安全与环境工程,2005,12(1):42-45

[2]刘晖.印制电路板废水处理设计[J].科技资讯,2007,9:198-199

[3]薛松宇.三维电极反应器处理染料废水的研究:[硕士论文].天津:天津大学,2005

第7篇

【关键词】低压配电 配电线路 导线截面 节能 降损

中图分类号:TE08 文献标识码:A 文章编号:

一.前言

我们知道,电力网在输送电能的过程中,电能损耗是十分惊人的,在这巨大的电能损耗中低压(380V/220V)配电网占有相当大的比重。主要原因是低压配电网电压低、电流大,特别是负荷功率因数低,更加大了电能损失。若能有效降低低压配电网的线路损耗,对于提高整个电网的经济运行将具有重大意义。在进行输电线路设计时,选择导线截面的传统方法是:按导线机械强度、允许电压降和导线长期允许安全载流量等因素而定。但从节约能源的原则出发,应将“电能损耗大小”作为配电线路选择导线截面的依据之一。即在经济合理的原则下,适当增大导线截面积以减少输电线路电能损耗,从而达到在不增加发电能力的情况下而增加供电能力的目的。

二.低压配电线路导线截面选择

工程设计时,离不开电气设计,而电气设计直接关系到人民的生命财产安全、环境保护和其他公众利益,成功的导线截面设计,应当是安全、合理、经济和可行的。而导线截面设计则是电气工程设计的重要组成部分之一。由国家建设部颁发的《工程建设标准强制性条文》对电气方面要求就更加严格。因此,我们在低压配电线路导线截面设计中,不仅要使导线截面有足够的安全储备,而且要限制导线截面过大造成的经济浪费,来保证电气设备的安全运行。低压线路导线导线截面设计,一般应根据以下几方面的要求来选择:

1.选择导线截面,首先满足发热条件这一要求,即导线通过的电流,不得超过其允许的最大安全电流。通常,当负荷电流通过导线时,由于导线具有电阻,导线发热,温度升高。当裸导线的发热温度过高时,导线接头处的氧化加剧,接触电阻增大;如果发热温度进一步升高,可能发生断线事故。当绝缘导线( 包括电缆) 的温度过高时,绝缘老化和损坏,甚至引起火灾。因此,导线应能够承受长期负荷电流所引起温升。各类导线都规定了长期允许温度和短时最高温度,从而决定了导线允许长期通过的电流和短路时的热稳定电流。选择导线截面时,应考虑计算的负荷电流不超过导线的长期载流量,导线的额定电流可以从工具书中查到。

2.为保证导线具有必要的机械强度,要求导线的截面不得太小。因为导线截面越小,其机械强度越低。低压线路的导线要经受拉力,电缆要经受拖曳。所以,规程对不同等级的线路和不同材料的导线,分别规定了最小允许截面。按机械强度选择导线的允许最小截面,可参考表一。

3.选择导线截面,还应考虑线路上的电压降和电能损耗。电压损失导线的电压降必须限制在一定范围以内。按规定,电力线路在正常情况下的电压波动不得超过正负百分之五临时供电线路可降低到百分之八。当线路有分支负荷时,如果给出负截的电功率P和送电距离L,允许的电压损失为ε,则配电导线的截面( 线路功率因数改为I) 可按下式计算

式中P为负载电功率,千瓦;

L为送电线路的距离,米;

ε为允许的相对电压损失,=;

C为系数,视导线材料,送电电压而定( 表二)

Kn为需要系数,视负载用电情况而定,其值可从一般电工手册和参考书中查到。

表二公式中的系数C值

例:距配电变压器400米处有1台电动机,功率为10千瓦,采用380伏三相四线制线路供电,电动机效率为η=0.80,COSΨ=0.85,Kn=1,要求, ε=5%应选择多少截面的铜导线?

解(1) 按导线的机械强度考虑,导线架空敷设铜绝缘导线的截面不得小于4平方毫米

(2 ) 按允许电流考虑,求出电动机工作电流( 计算电流)

从电工手册查得S=2.5平方毫米的橡皮绝缘铜线明敷时的允许电流为28 安培,可满足要求Ij=Ie

(3 ) 按允许电压降考虑,首先计算电动机自电源取得电功率

若选用铜线则C=77,Kn=1,求出导线截面为

为满足以上三个条件,可选用S=16平方毫米的BX型橡皮绝缘铜线

选择导线截面,一般来说,应考虑以上三个因素。但在具体情况下,往往有所侧重,针对哪一因素是主要的,起决定作用的,就侧重考虑该因素。根据实践经验,低压动力线路的负荷电流较大,一般先按发热条件选择导线截面,然后验算其机械强度和电压降。低压照明线路对电压的要求较高,所以先按允许电压降来选择导线截面,然后验算其发热条件和机械强度。在三相四线制供电系统中,零线的允许截流量不应小于线路中的最大单相负荷和三相最大不平衡电流,并且还应满足接零保护的要求。在单相线路中,由于零线和相线都通过相同的电流,因此,零线截面应与相线截面相同。例如,对于长距离输电线路,主要考虑电压降,导线截面根据限定的电压降来确定;对于较短的配电线路,可不计算线路压降,主要考虑允许电流来选择导线截面;对于负荷较小的架空线路,一般只根据机械强度来确定导线截面。这样,选择导线截面的工作就可大大简化

三.结束语

虽然我国低压供配电系统设计中依然存在着一些问题和缺陷,但是,随着我国经济实力和科学技术实力的进一步增强,将会为我国的低压配电节能的发展奠定更为坚实的发展基础,为了保证用户电器的正常运转,提高我国低压配电节能能力,可以实施独立的供配电系统,同时,要进一步完善各种应急措施,比如设置应急的电源,如此,可以在发生一些突发事件时候,保证企业的供配电能够正常进行,对企业的财产形成更强有力的保证。在进行企业的供配电设计时候,要充分考虑到企业建筑供电要求高,供电负荷复杂的特点,要在综合考虑整个企业生产设备和功能的基础上,采取有效的设计工艺,严格设计流程,在企业相关各个部门共同的配合下,加强双方的沟通,保证供配电设计能够充分满足企业各方面的需求,同时,要在实践中,不断促进整个企业供配电系统的优化。

参考文献:

[1]刘平甘 陈洪波 刘凡紫外检测技术在电力系统中的应用及其展望 [会议论文],2009 - 中国电机工程学会高电压专业委员会2009年学术年会

[2]吴栩 冯鹏英 高压电气设备的在线检测技术 [期刊论文] 《中国房地产业》 -2011年8期

[3]张川 刘乃涛 贺福敏 李林 李成龙 高压电力设备的在线绝缘检测技术 [会议论文],2011 - 中国石油和化工自动化第十届年会

[4]曾晓晖 聂端 基于绝缘在线检测技术的状态维修 [期刊论文] 《中国农村水电及电气化》 -2005年9期

[5]陈伟球 赵吴鹏 尹忠东 周浩 张瑜 在线检测技术可行性分析 低压配电网无功负序不平衡现象的节能降损解决方案 [期刊论文] 《电网与清洁能源》 -2009年7期

[6]文江林基于光纤荧光的电力设备温度检测系统的研究 [学位论文], 2005 - 沈阳工业大学:检测技术及自动化装置

第8篇

关键词:变压器,过电压,保护措施

 

变压器运行时,如果电压超过它的最大允许工作电压,称为变压器的过电压。过电压往往对变压器的绝缘有很大的危害,甚至使绝缘击穿。过电压分为内部过电压和大气过电压两种。输电线路直接遭雷击或雷云放电时,电磁场的剧烈变化所引起的过电压称为大气过电压(外部过电压);当变压器或线路上的开关合闸或拉闸时,因系统中电磁能量振荡和积聚而产生的过电压称为内部过电压。变压器的这两种过电压都是作用时间短促的瞬变过程。科技论文。内部过电压一般为额定电压的3.0-4.5倍,而大气过电压数值很高,可达额定电压的8-12倍,并且绕组中电压分布极不均匀,端头部分线匝受到的电压很高。因此,必须采取必要的措施,防止过电压的发生和进行有效的保护。

过电压在变压器中破坏绝缘有两种情况,一是将绕组与铁心(或油箱)之间的绝缘高压绕组与低压绕组之间的绝缘(这些绝缘称为主绝缘)击穿;另一种是在同一绕组内将匝与匝之间或一段绕组与另一段绕之间的绝缘(这些绝缘称为纵绝缘)击穿。由于过电压时间极短,电压从零上升到最大值再下降到零均在极短的时间内完成,因而具有高频振荡的特性,其频率可达100kHZ以上。在正常运行时,电网的频率是50HZ,变压器的容抗很大,而感扩ωL很小,因此可以忽略电容的影响,认为电流完全从绕组内部流过。但对高频过电压波来说,变压器的容抗变成很小,而感抗变成很大,此时电流主要由电容流过,所以必须考虑电容的影响。科技论文。考虑电容影响后,变压器的分布参数电路(见后面图1)。

其中:CFe——绕组每单位长度上的对地电容;C’——高低压绕组之间每单位长度上的电容;Ct——绕组每单位长度上的匝间电容;L’——过电压时绕组每单位长度上的漏电感;R’——绕组每单位长度上的电阻。

下面简单说明两种不同类型过电压产生的原因:

1.内部过电压我市电网中,绝大多数是降压变压器,下面就以降压变压器空载拉闸为例说明内部电压产生的原因

根据变压器参数的折算法可知,把二次侧(低压侧)电容折算到一次侧(高压侧)时,电容折算值为实际值的(1/K2)倍,所以二次侧电容的影响可以略去不计。这就是说,空载时可以忽略二次侧的影响。就一次绕组来说,由于每单位长度上的对地电容CFe是并联的,故对地总电容为CFe=ΣCFe由于一次侧单位长度上的匝间电容Ct是串联的,故它的匝间总电容为Ct=1/(Σ1/Ct)在电力变压器中,通常CFe>>Ct,所以定性分析时,匝间电容的影响也可略去不计。当再忽略绕组电阻R1时,可得空载拉闸过电压时的简化等效电路(见后面图2):其中L1是一次绕组的全自感。把空载变压器从电网上拉闸时,如果空载电流的瞬时值不等于零而是某一数值Ia,这时相应的外施电压瞬时值为Ua。于是在拉闸瞬间,电感L1中储藏的磁场能量为1/2L1i2a,电容CFe上储藏的电场能量为1/2CFeU2a。由于这时变压器的电路是由电感L1和电容CFe并联的电路,故在拉闸瞬间,回路内将发生电磁振荡过程。在振荡过程中,当某一瞬间电流等于零时,此时磁场能量全部转化为电场能量,由电容吸收,电容上的电压便升高到最大值Ucmax。当不考虑能量损失时,根据能量守恒原理有CFeU2cmax= L1i2a+CFeU2a故得上式表明,当拉闸电流和电容上的电压一定时,绕组的电感愈大,对地电容愈小,则拉闸时过电压愈高。电力系统中,拉闸过电压通常不超过额定电压的3.0-4.5倍。

2.大气过电压大气过电压是输电线路直接遭受雷击或雷云放电时,电磁场的剧烈变化所引起的

当输电线路直接遭受雷击时,雷云所带的大量电荷(设为正电荷)通过放电渠道落到输电线上,大量的自由电荷向输电线路的两端传播,就在输电线上引起冲击过电压波,称为雷电波。雷电波向输电线两端传播的速度接近于光速,持续的时间只有几十微秒,电压由零上升到最大值的时间只有几微秒。雷电波的典型波形为曲线由零上升到最大值这一段称为波头,下降部分称为波尾。如果把波头所占时间看成是周期波的四分之一周期,则雷电波可看成是频率极高的周期性波。这样,当过电压波到达变压器出线端时,相当于给变压器加上了一个频率极高的高电压。这一瞬变过程很快,一开始,由于高频下,ωL很大的,1/ωC很小,电流只从高压绕组的匝电容和对地电容中流过。由于低压绕组靠近铁心,它的对地电容很大,(即容抗很小),可近似地认为低压绕组接地。科技论文。可雷电波袭击时,沿绕组高度上的电压分布取决于匝间电容Ct和对电容CFe的比例。在一般情况下,由于两种电容都存在,过电压时,一部分电流由对地电容分流,故每个匝间电容流的电流不相等,上面的匝间电容流过的电流最大愈往下面则愈小,随着电压沿绕组高度的分布变为不均匀,见下图:(图3是过电压波加在变压器两端的电压)从图中可见,起始电压分布很不均匀,靠近输电线A端的头几匝间出现很大的电压梯度,因此,在头几个线匝里,匝间绝缘和线饼之间的绝缘都受到很大的威胁,这时最高匝间电压可能高达额定电压的50-200倍。

3.过电压保护为了防止变压器绕组绝缘在过电压时被击穿,必须采取适当的过电压保护措施,目前主要采用下列措施

3.1避雷器保护

在变压器的出线端装设避雷器,当雷电波从输电线侵入时,避雷器的保护间隙被击穿,过电压波对地放电,这样雷电波就不会侵入变压器,从而保护了变压器。

3.2加强绝缘

除了加强变压器高压绕组对地绝缘外,针对雷电波作用的特性,还要加强首端及末端部分线匝的绝缘,以承受由于起始电压分布不均匀而出现的较高的匝间电压。这种方法效果有限,而且加厚绝缘使散热困难,同时减少了匝间电容,增大了匝间电压梯度。目前只在35kV及以下的变压器中采用。

3.3增大匝间电容

匝间电容相对于对地电容愈大时,则电压的起始分布愈均匀,电压梯度越小,因此增加匝间电容是有效的过电压保护措施。过去常采用加装静电板或静电屏的方法,现在在110kV以上的高压变压器上,广泛采用纠结式线圈。纠结式线圈制造工艺简单,不增加材料,与连续式线圈相比能显著增大匝间电容,所以现在高压大型电力变压器的高压绕组大多数采用了这种绕线法。结束语造成变压器过电压的原因多种多样,针对不同的过电压,有不同的过电压保护措施。在实际工作中,我们应进行经济上和技术上的全面研究,选择有效的过电压保护措施,确保变压器的安全稳定运行。

第9篇

关键词:低功耗;无线供能;电荷泵整流器;低压差线性稳压器;带隙基准电压源;电源抑制

中图分类号:TM44;TN722;TP393 文献标识码:A 文章编号:2095-1302(2016)12-00-04

0 引 言

近几年,受益于集成电路工艺技术与片上系统(System on Chip,SOC)的不断发展,射频识别、微传感网络以及环境感知等智能技术得到了飞速发展。其中,对于无线供能植入式芯片的能量管理、功耗等问题受到了持续关注与研究。当能量采集完成后,如何管理该能量是下一代被动与半被动植入式医疗设备的要点之一。

在低功耗植入式芯片中,如低噪声放大器、模数转换器等对工作电压及其纹波都有一定的要求,因此须通过无线能量管理单元(Wireless Power Management Unit,WPMU)将其电源性能优化。在被动式芯片中,电荷泵整流器(Charge Pump Rectifier,CPR)、带隙基准源(Bandgap Reference,BGR)、低压差线性稳压器(Low Dropout Regulator,LDO)是WPMU的重要组成单元[1]。芯片工作时,人体各种低频信号(EEG、ECG)会通过相应的耦合方式传输到电源通路上,从而产生低频噪声,因此必须采用相关技术获得高电源抑制比电源。论文首先通过电荷守恒定理对传统Dickson电路进行动态分析及能量转换效率的改进;然后采用电源抑制增强(Power Supply Rejection Boosting,PSRB)与前馈消除(Feed-forword Cancellation,FWC)等技术分别提高BGR、LDO在运放工作带宽内的电源抑制力(Power Supply Rejection,PSR),并在输出节点并联电容以滤除超高频纹波;最后为保证LDO在负载变化时的稳定性,利用零极点追踪补偿来满足相位裕度的要求。

论文对高性能无线能量管理单元预设指标为:

(1)CPR在输入500 mV交流小信号时能输出2 V电压并驱动200 A的电流。

(2)BGR输出电源抑制比在LDO的工作范围内尽可能大于60 dB,以减小对LDO的影响。

(3)LDO输出电源抑制比在生物信号频率处(01 kHz)及CPR输入信号处大于60 dB,从而提供负载电路高性能的工作电压。

(4)在满足以上性能的情况下,尽可能减小电路工作时的静态电流。

1 无线能量管理单元的基本原理

图1所示为论文采用的无线供能能量管理单元拓扑结构。由图1可知,WPMU主要包含CPR、BGR、LDO及保护电路(PRO)等模块。芯片通过片外天线采集到由基站发射的高频无线能量信号,CPR将信号整流后进行升压,产生纹波较大的电压,并将该能量储存到Cs中。由BGR与LDO所组成的环路通过负反馈输出纹波较小的VDD来驱动负载电路。其中BGR为LDO提供一个精准稳定的参考电压,因此BGR的性能影响着LDO输出电压的性能。芯片中的保护电路包括过温保护电路、过压保护电路、限流电路,其主要目的在于意外情况下对电路关断,实现对电路的保护。

设计能量管理单元时,在无线供能的环境下要注意相关性能的优化,而这又伴随着其它性能的牺牲,下面将详细分析论文采用的CPR、BGR、LDO设计原理及电路结构。

3 版图及后仿真结果

采用SMIC 0.18 m CMOS工艺,在Cadence下对电路进行仿真验证,无线能量管理单元的版图如图7所示,其中包含了CPR、BGR、LDO及PRO等模块,芯片的尺寸大小为277 m×656 m。

电路在工作时要避免反馈环路发生震荡,必须保证LDO环路的相位裕度,论文在tt、ff、ss三个工艺角下对其进行不同负载电流(0200 A)的仿真,仿真结果如表1所列。该结果表明在负载电流0200 A内,由于零极点追踪补偿的作用,相位裕度均大于60度,根据奈奎斯特稳定判据,LDO环路能在负载变化的范围内稳定工作。

图8所示为BGR、LDO的PSR仿真波形,从图中可以看出,BGR采用PSRB技术后,PSR在低频降低了近25 dB。当LDO采用FWC技术时,电源抑制在低频段得到了显著提升,电路空载时,在100 Hz内提升了近20 dB,满载时提升了近40 dB。

图912给出了WPMU中CPR与LDO的相关瞬态仿真结果,当输入频率为500 MHz、幅度为0.5 V的正弦波时,电路建立时间约为13 s,CPR的纹波约为5 mV,而LDO的输出电压纹波减小至2.3 V,即高频处PSR约为-66 dB。因此论文采用的LDO在生物信号频率处(DC-10 kHz)与输入信号频率处(100 MHz以上)具有较好的PSR。表2对相关文献与本文设计进行性能比较,可以看出,该电源管理单元能输出性能更好的工作电压。

4 结 语

论文针对CPR、LDO、BGR进行研究,设计了一种应用于低功耗无线供能植入式医疗芯片的能量管理单元。采用SMIC 0.18 m CMOS工艺提供的本征MOS管使CPR的效率得到提升。利用PSRB将BGR的PSR在低频处从-75 dB降低到-95 dB,这是优化LDO电源抑制能力的基本前提。通过FWC、零极点追踪补偿改善LDO的PSR与稳定度,在驱动0.2 mA的负载电流时,PSR为-85 dB@DC,而相位裕度在负载范围内均大于60度,该性能可适用于对电源性能要求较高的模块。

参考文献

[1]郭文雄.应用于植入式经皮能量传输的集成电路研究与设计[D].广州:华南理工大学,2013.

[2]Pierre Favrat, Philippe Deval, Michel J.Declercq. A High-Efficiency CMOS Voltage Doubler[J]. IEEE Journal of Solid-State Circuits, 1998, 33(3) : 410-416.

[3]To shiyuki Umeda, Hiroshi Yoshida, Shuichi Sekine, et al. A 950-MHz Rectifier Circuit for Sensor Network Tags With 10-m Distance[J]. IEEE Journal of Solid-State Circuits, 2006, 41(1): 35-41.

[4]Keith Sanborn, Dongsheng Ma, Vadim Ivanor. A Sub-1-V Low-Noise Bandgap Voltage Referen-ce[J]. IEEE Journal of Solid-State Circuits, 2007, 42(11) : 2466-2481.

[5]Mohamed El-Nozahi, Ahmed Amer, Joselyn Torres, et al. High PSR LOW Drop-Out Regulator With Feed-Forward Ripple Cancellation Techniq-ue[J]. IEEE Journal of Solid-State Circuits, 2010, 45(3) : 565-577.

[6]王忆.高性能低压差线性稳压器研究与设计[D].杭州:浙江大学,2010.

相关文章
相关期刊