时间:2022-12-13 15:32:01
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇物联网技术论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
1.1消防产品生命周期管理系统该种系统主要以产品的生命周期理论为主要指导理念,并利用现代信息技术、计算机技术和无线网络和有线网络技术,实现对消防产品生命周期内的全时间跟踪管理,实时动态的获取相关产品的生命周期、空置时间以及相关的其他有效信息,为科学的管理的这些消防产品提供有效地、合理的管理手段和管理方法。消防产品生命周期管理系统主要贯穿于产品使用的全过程,是面向各种消防产品生产、销售、施工和维护管理以及质量监督管理的开放性的平台。利用系统的扫描技术可以实时的对相关产品的标签进行扫描,能够辨别消防产品的质量和生产、运输、安装和维护等各个环节的信息和数据采集过程。在扫描过程中,由于各种消防产品都是以自己独特的编码和数据录入到系统中,因此操作者可以利用这个系统很方便的实现对消防产品质量的监督和管理。同时,该种系统还实现了对消防产品从生产到使用到维护和报废等各个阶段的监督和控制,为各种用户提供了一个综合性能较高的信息查询平台,这个平台的好处就是任何的消防产品一旦出现任何的问题,利用该种信息平台可以及时的查询到是哪一个流程或者环节出现了问题。
1.2消防设施远程监控系统消防设施远程监控系统在我国有着广泛的应用时间和范围。该种系统刚开始时只是应用于消防火警报警系统中,通过火灾自动报警监控装置可以自动的获取系统中报警装置的故障和发生火灾的地方,随着我国信息技术的进一步发展以及我国消防系统的未来发展的需求,不少省市的消防部门已经开始尝试将其应用到其他消防设施的监控中去,但是从总体应用情况来看,不容乐观,应用的效果还有待提高。利用物联网技术对消防设备进行全过程的监督和控制,是将来消防物联网系统应该重点研究的领域。消防设备运行情况的良好与否,直接关系到火灾预警系统和火灾及时扑救的效果,其重要行不需要重点说明。但是在我国现今的消防系统中,各种消防设备的种类和功能繁多,其基数比较大,管理方面存在粗放管理现象严重,在使用过程中缺乏有效地监督管理手段。对于未来消防设备的远程监控系统,应该积极的使用传感技术、计算机技术和互联网技术对这些设备进行远程的实时监督和控制,及时的掌握消防设备的运行现状,对于其中的问题要及时发现,及时处理,及时解决,显著提高消防系统的应急处理时间,保证各种消防设施运行的完整和有序,有效地抑制火灾的发生和提高火灾扑救的工作效率。
1.3危险区域监督管理以及预警系统危险区域监督管理以及预警系统是一个复杂而庞大的系统工程,主要涉及到消防环境、消防设施、消防人员以及消防管理等很多方面。国内外关于该种系统的研究已经取得了比较多的应用成果。根据我国消防系统的实际需求,危险区域监督管理以及预警系统的建设应该寻找到计算机危险的临界点,能够有效地预测危险以及造成危险的各种后果,以便能够形成有效的预警对策和监督管理措施。同时,消防人员要将计算机处理出来的结果和危险性进行有效地分析和研究,在最大程度上降低火灾的发生率和事故后果的损失情况,提高危险区域的监督和管理水平,以便为消防部门提供更加科学、合理、详细、有针对性的对策。
1.4现场态势信息系统消防部门灭火救援的现场态势信息系统只要包括了现场环境监测、消防人员定位感知、消防车辆动态监测、现场消防设备与物资监督管理等内容,该种系统能够有效地提高消防部门灭火救援的质量,能够有效的提高救援信息的传递和灾情信息的资源共享,在最大程度上保证消防部门及时的掌握火灾的态势和消防部门警力调动的情况,提高消防决策的能力等,为消防部门打造现代化的消防信息系统提供坚实的技术支撑。
2.结语
目前,对物联网还没有一个公认的概念,总体来说它是指利用各种传感器和互联网连接起来的一项新技术。物联网就是利用数据采集设备,如传感器、二维码、电子标签等实现对物体信息的采集,然后组成一个嵌入式网络,通过异构网络的融合技术,通过通讯接口实现嵌入式网络和互联网的对接,实现对物体的监控。物联网的核心思想是:利用各种方法和形式对物体、人、设备进行感知,实现无所不在的感知;实现不同网络接入方式、不同应用系统、不同环境的互联互通和信息共享,提供人性化、个性化的综合信息服务,支持信息数据处理和辅助决策实现智能服务。供应链管理与物联网理念一致,通过信息共享,建立协同关系。因此,物联网对供应链的发展有巨大促进作用。首先,物联网技术帮助物流企业跟踪货物,跟踪运输设备的状态。这些信息共享给上下游后,提高上下游的生产效率,降低成本,实现多赢。其次,供应链上的所有信息在一个平台大集中后,可以利用大数据优化运输路线,优化配载,为物流企业带来价值。通过与物联网技术的结合,智慧物流平台提供感知供应链的能力,可以更智能、更有效地管理物流运输活动的整个过程,帮助企业提高物流过程的可控性,提升物流服务质量。因此,研究物联网在供应链上的应用具有重要的现实意义。
2基于物联网技术的智慧供应链
物联网技术使整个物流供应链管理更精准、高效、智慧、可控、可知及可视。通过物联网等技术的应用,优化业务流程,提升物流服务水平,强化物流精益管理,提高调度智能决策;通过运用摄像头、温湿度和红外线传感等技术手段,实现全环节可视监控;通过RFID技术,对批次物料进行标识和不中断传递,实现物料全过程质量监控和回溯;通过生产过程数据自动采集、自动加工,实现智能信息处理与服务决策,实现整个供应链全面覆盖、全面感知、全程控制、全面提升。“传感监控网络”采集捕获的信息,通过有线网络、无线网络、卫星通信、电信网络、广电网络、蓝牙等多种传输技术和通信网络,快速准确地上报监控信息智能分析系统,分析系统根据预先定义的关于物移、闯入、徘徊、滞留、超速、越界、温/湿/火/水/烟等不同环境异常触控阈值条件,生成不同优先级的警报信息,并以指标、视频、声音、时间等不同维度的信息通报用户。实现对环境、位置、时间三位一体的全方位精细化管理,提高物流仓储管理的安全可控性。通过这样的集成,可以方便地实现:在物流中控室随时检查某个工作间的温、湿度传感标签,温、湿度标签在接收到温、湿度数据后,可以定期向远距离阅读器发送数据,这些数据信息实时传输到监控室的显示屏上。当任何一个监测数据超过事先设置好的警戒线时,就会发出报警提示,监控平台可以在第一时间确定位置,进行有效处理,实现快速响应。另外,可以将监控系统与移动通信技术相结合。在机房出现异常时,利用短消息、邮件、手机或电话振铃等方式进行提醒,充分实现无人值守的远程监控,提高物流现场的管理效率和管理水平。
3智慧供应链平台架构设计
基于物联网技术的智慧供应链平台的总体架构设计思路,以现代物流与供应链管理思想为核心,建立统一的平台多元数据中间件,基于物联网和SOA技术,建立流程化的物流管理信息系统(见图2)结构体系,以整合供应链上下游系统资源和数据资源,增强供应链的可视性,强化绩效管理和成本控制,为供应链提供监控调度手段,提升供应链整体执行效率,降低供应链总体成本,为智能化决策支持提供依据。
4物联网技术对供应链管理的影响
物联网技术的应用使企业供应链管理的方式发生巨大变革,主要体现在以下几个方面。(1)实现供应链的可视化管理,实现产品的质量保障。通过在供应链各个环节运应物联网技术,如RFID、二维码、电子标签等,对每个物品的流动信息进行采集,保证物品的可追溯性,实时监测产品的动态信息,利用互联网实现信息的共享和交换,通过信息平台可以查询这些数据信息,实现供应链的可视化管理,保证产品质量,提高企业信誉度,实现价值最大化。(2)实现供应链的信息共享。信息共享是供应链管理的核心思想,信息共享保证信息的同步传输,供应链各环节的信息同步是供应链信息化追求的目标,只有实现各个环节信息的同步化管理,才能有效发挥供应链协同化管理的价值。物联网技术的应用实现了各环节的信息采集,及时发送信息平台,及时共享,减少数据采集的失真现象。快速有效的数据流动,可以有效应对客户需求的变化,准确预测市场需求,大大减少库存量,降低企业成本。(3)实现供应链的智慧管理。通过物与物的信息交换,实现自动化控制,减少对人工的依赖,节约成本,减少出错率。智慧的物流供应链系统通过对数据信息的采集和分析,用先进的数据挖掘技术和智能分析技术进行智能化处理,根据提供的信息进行判断,将结果回传到设备采集器和节点,实现整个系统的闭环控制。遇到紧急情况,根据这些数据信息,自动启动防护预案,实现多系统联动,全面提升灾害自动修复水平,从而提高供应链的智能化水平,实现真正意义上的智慧管理。
5结论
通过给货箱或旅客行李贴上RFID标签,在机场柜台、行李传送带、安检处、货仓处等地方分别安装RFID读写器,利用RFID读写器获取RFID标签信息[9],利用ZigBee无线通讯的自定义传输协议传输数据,完成了对航空货物的查询与管理,了解货物的状态、位置及配送地方,并实时、准确的定位跟踪。并且进入货仓后,针对某些特别重要的物品可以绑定ZigBee终端,直接通过将ZigBee终端传输协议自定义为唯一的编码方式,直接通过ZigBee终端设备将物品的信息传递给服务器,实现多方式对货物的定位跟踪,更加实时与精确。服务器、数据库和航空物流管理系统之间数据交互通过局域网进行,采用UDP网络编程进行数据传输。
2系统设计与实现
航空物流管理系统的设计由硬件设计、软件设计和网站设计三部分组成,采用模块化化设计思想,完成整体方案设计。
2.1硬件设计与实现随着RFID传感器技术的普及率的提高,RFID标签廉价并可重复使用。数据传输方便,并且可以基于用户的要求处理自定义加密算法[10]。本系统RFID-ZigBee主从节点模块包括RFID标签、RFID读写器和ZigBee无线网络。其中RFID读写器射频模块采用的TI公司生产的TRF7970A,并将900M天线连接到读写器天线端口,微处理器采用的是超低功耗MSP430F2370,微处理器通过SPI总线接口方式连接射频模块,并通过RS232连接到ZigBee终端模块。ZigBee无线网络模块微处理器采用的是TI公司生产的CC2530,它符合2.4GHzIEEE802.15.4标准的第二代片上系统,提供一流的选择性、共存性、出色的链路预算、高达125°C的工作温度和低压工作性能,ZigBee采用自组织网实现数据传输通信[11],CC2530的接口电路如图1所示。
2.2软件设计与实现RFID协议设计是在IAR嵌入式工作平台Kickstart环境下完成的,Kickstart是一种集成开发环境(IDE),用于为MSP430微控制器构建和调试嵌入式应用。调试器完全集成,用于源和反汇编级调试,支持复杂代码和数据断点。RFID读写器功能是在VisualStudio2008集成开发环境下,采用MFC(MicrosoftFoundationClasses,微软基础类库)提供的基于对话框的应用程序框架进行程序开发。RFID读写器根据ISO15693标准规范协议和指令实现寻卡、读写、锁定、复位等功能,RFID读写器与PC通过RS232连接,操作界面如图2所示。ZigBee无线射频模块数据通信软件设计用IAREmbeddedWorkbench工具开发的,IAR软件是一套用于对汇编、C语言或是C++语言程序编写能进行编译、调试并完成下载的嵌入式开发软件。协调器的组网,终端设备和路由设备发现网络以及加入网络。协调器:给予ZDO层网络形成反馈信息,发送网络启动事件到ZDApp层,接着转到ZDApp_event_loop()函数,启动网络事件;终端器和路由器:当发现有网络存在时,网络层将给予ZDO层发现网络反馈信息。然后由网络层发起加入网络请求,如加入网络成功,则网络层将给予ZDO层加入网络反馈。数据库可在MicrosoftSQLSever2005开发环境下,根据设计需求完成建立,主要对象有客户(Customer),订单(Order),人(Agent),机场(Airport),航班(Flight),其关系如图3所示。
2.3网站设计与实现网站是在VisualStudio2010集成开发环境下,采用VisualC#中的Web应用程序进行开发设计,采用的数据访问技术来实现网站与数据库数据的交互。为保证系统软件的灵活性,软件核心与网页应尽量分离。航空物流管理系统主要使用者是物流客户、人和机场,网站主要功能有登陆、注册、人管理和机场管理,(如图4所示)。网站首页用于客户查询、用户登陆及注册,机场管理员页面可以查看所有通过自己机场的货物信息,选择是否通过安检,并对物品进行定位跟踪管理,人管理员页面可以根据日期、客户和订单号查询自己的货物信息,并且有添加客户货物信息的功能。
3系统测试
经过测试,系统能基本满足设计要求。对错误信息的处理方面,在网页中用语言来提醒用户该输入何种信息,并在后台程序中规定信息的格式并在误输后弹出提示信息直到输入正确,具有一定容错能力。
4结语
危险品运输车辆现代化程度普遍不高,有相当一部分运输危险品的车辆是由普通车辆经过简单改装而来,对于危险品缺乏切实有效的隔离防护处理措施,易造成危险品泄露或变质。从业人员素质不高,处于节省成本等原因,装载危化品不按规定操作,由于各种人为的原因、管理上的漏洞,以及客观原因等引发的事故时有发生[2]。运输过程中对于危险品的掌控仅由驾驶员一人负责,驾驶员可能缺乏在紧急情况正确处理危险品的技术方法,尤其是在城际间道路上,技术指导和救援不能及时到达,驾驶员若采取错误的施救措施会造成更大的安全隐患和事故。近年来,车载监控设备发展速度较快,危险品运输企业普遍采取车载嵌入式监控和车辆行驶记录仪的方式来监控运输车辆的行驶状态和行驶路径,通过GPS与无线通信技术相结合的方法实现对车辆的定位和通信,已经实现了一定的对城际运输车辆监控的能力。但监控系统构成比较简单,系统各部分是独立工作的,只能进行基础的数据采集,数据分析和处理缺乏时效性。存在诸如定位精度不够、定位有偏差;山区间信号覆盖强度不足,数据信号丢失等问题。实时监控能力的不足可能造成对潜在隐患发现不及时,增加事故发生风险,若事故在城际间的道路上则会延误最佳救援时机。另外,对于运输危险品的实时监控、危险实时预警也是亟待解决的问题。
2物联网技术
物联网(InternetofThings)技术的定义是:通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,将任何物品与互联网相连接,进行信息交换和通讯,以实现智能化识别、定位、追踪、监控和管理的一种网络技术叫做物联网技术。物联网技术的特点是感知全面、传递可靠和智能处理。物联网典型体系构架分为三层,自上而下依次是感知层、网络层和应用层。结合城际危险品运输实际需求,每个层级有各自的功能划分。感知层由各种有感知功能的传感器和检测器组成,包括监控记录摄像头、GPS全球定位系统、RFID标签及读写器、胎压监测器等设备,用于识别和检测运输车辆的胎压、车速、地理位置、海拔高度、行驶路径等指标,也用于监控所运输危险品的实时状态,如液体和气体浓度、温度、压力、有无泄漏和变质等指标及状态。感知层用以采集各项状态信息,是物联网体系的基础和信息来源。网络层对感知层的所收集的信息进行数据传递,利用互联网、移动通信网、无线接入网及无线局域网等基础网络设施进行传输[3],如3G/4G/Wi-Fi等技术手段。网络层的主要作用是信息数据的传递。应用层用于连接物联网和用户,将物联网技术结合到实际的危险品运输行业中,对资源加以整合开发利用,使行业专业应用实施智能化,推出更为全面具体的低成本且高质量的问题解决方案。
3系统中主要应用的物联网技术
3.1传感技术
主要指各类传感器,通过各类传感器采集车辆及危险品的物理信息及指标,它是构成物联网的基础单元。目前最新的MEMS传感器技术的快速发展为系统的建设提供了技术支撑。系统主要应用的传感器包括倾角传感器、速度及加速度传感器、温度传感器、液位传感器、压力传感器、阀门开关传感器和泄露浓度传感器以及其它MEMS传感器等[4]。
3.2物体识别技术
RFID技术是物体识别技术的代表,RFID读写器能自动识别读取RFID的标签信息,标签进入磁场后,接收解读器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中的产品信息,或者由标签主动发送某一频率的信号,解读器读取信息并解码后,送至中央信息系统进行有关数据处理。能高效识别运输车辆身份和所运输危险品的类型等各种基本信息。具有识别速度快、数据容量大、标签数据可动态更改、动态实时通信等优点。实现对车辆及危险品的智能监控。
3.3位置识别技术
GPS是目前较为成熟,运用范围广泛的定位技术,在全球范围内应用的比重达到40%以上。GPS定位系统具有在轨卫星数量多、定位速度快、精度高等优点。而我国研制开发的北斗卫星导航系统也逐渐趋于成熟,北斗卫星导航系统相较于GPS具有通信和目标定位等新兴优势。
3.4地理识别技术
以GIS地理信息系统为代表,具有强大的数据采集、管理、存储、分析处理以及输出空间数据的能力,将GIS系统与车辆运行情况相结合,提供车辆位置可视化的地理位置等信息,基于GIS地理信息系统集成已经成为物流发展的必然趋势。
3.5无线通信技术
无线通讯技术发展势头迅猛,3G标准的TD-CDMA技术已经成熟,最新的4G标准的TD-LTE技术相较于前几代技术在数据传输速度上有很大提高,100MB的理论下载速度、50MB的理论上传速度,能够适应高速移动的车辆的数据传送,具有很强的时效性,且可以与云端存储完美结合,随着网络覆盖的广泛化和深入化,4G技术能够胜任物联网的数据传输需求。
4城际危险品运输安全监控系统结构
城际危险品运输安全监控系统由三部分组成,分为车辆及危险品综合工况信息采集系统、信息数据传输系统和远程监控调度指挥中心系统。实现对危险品状态的监测与安全预警、位置跟踪、运输过程信息记录等功能。安全监控系统结构如图1所示。
4.1车辆及危险品综合工况信息采集系统
城际之间道路形式多种多样,有路况良好的国道及高速公路,也有路况差的乡道县道等道路。运输空间跨度较大,距离少则一百公里,多则上千公里。危险品运输车辆需要在复杂的道路条件和气候环境条件下长距离长时间行驶,对车辆及危险品的各项指标进行实时监控显得尤为重要。车辆工况信息采集系统主要完成车辆车况的采集和集中处理工作,是整个车载系统的核心,该系统由各种传感器和数据变换设备组成[4]。根据制定的危险品运输规则,对车辆的行驶速度、加速度、地理位置、海拔高度以及车辆所在的道路环境,气候温度进行实时监测;对于所运输的危险品的温度、湿度、浓度、震动情况以及是否泄漏等信息进行实时数据采集;对于驾驶员和车辆前方的路况使用摄像头进行录制,将采集的数据发送给驾驶员和监控指挥中心,如果有信息数据的异常情况和检测导致危险的因素,驾驶员和监控中心能及时做出反应,排除安全隐患。若运输车辆已经发生突然事故,系统也能及时通报驾驶员和远程监控中心,给出发生问题的原因,为监控中心迅速派出救援和指导驾驶员正确救灾提供便利。车辆及危险品工况采集流程如图2所示。
4.2信息数据传输系统
通过卫星及无线数据通信技术,使采集的信息得以传输到驾驶员端和远程监控调度中心,同时使车辆控制终端和远程监控中心实现实时通信。基于GPS全球定位系统和3G技术,加上北斗系统作以辅助。能够有效传输信息采集系统收集的数据,在发生紧急情况的时候,信息传输速度以及信号强度具有重要的意义。快速的信息传输速度和高强度的网络信号是紧急情况下指导及救援的重要保证。3G技术的成熟度已经很高,在传输数据和声音速度上相较之前的GPRS制式网络有了质的提升,适用于对于采集数据的传输和紧急通话。随着3G网络覆盖面的加深和4G网络的普及,即使在城际间复杂的地形中,如山区之间和隧道内部,都能保证信息和数据的顺利传输。若在通信网络不佳的极端条件下,北斗卫星导航系统也可用于紧急通信,驾驶员通过车载终端能及时与远程监控中心取得联系,同时能标定运输车辆及危险品所在位置,作为常规通讯手段的辅助和保障,多重手段保证通讯不中断,及时发现问题,迅速排除危险。
4.3远程监控调度指挥中心系统
远程监控调度指挥中心是整个系统的关键部分,起到信息汇总、数据分析、通信传输、信息管理、监控与指挥的作用。通过接收从车载终端发回的信息数据,随时监控运输车辆的行驶状态诸如速度、位置、海拔高度等信息,通过摄像头和无线网络能实时检测驾驶员的状态,是否有超速及吸烟等违反规定易触发危险的行为。同时能监控危险品的各项参数指标,配置各类服务器、专用的应用管理程序等,用于数据的周转和数据分析以及指导解决方案的导出。配以救援调度系统,结合详尽的突发事件应急预案,与运输车辆邻近城市救援系统联动,对发生事故或危险的地点及时派出救援力量,规划出最佳路径,在最短时间内到达现场进行救援工作。通过查询事故发生前的车辆及危险品状态的信息记录,加上专业软件技术人员的分析,能推导出事故的诱因或直接原因,使得在责任认定时证据充分、更准确更直接,也对后续运输工作方案及操作流程提出警示和整改方案。
5结论
目前,物联网技术还属于一个新兴技术,正在快速发展。业界对物联网还没有一个完全统一的概念,但普遍认可的概念是通过射频识别(RFID)、红外感应器、全球定位系统(GPS)、激光扫描器、环境传感器、图像感知器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。物联网可分为3层,即:感知层、网络层和应用层。物联网结构如图1所示。感知层是物联网的皮肤和五官,识别物体、采集信息。感知层包括条码扫描、RFID标签和读写器、摄像头、GPS、各种传感器、终端、传感器网络等,主要用于识别物体、采集信息与控制。网络层是物联网的神经中枢,就像大脑的信息传递和处理。网络层包括通信与互联网的融合网络、网络管理中心、信息中心和智能处理中心等。网络层将感知层获取的信息进行传递和处理,类似于人体结构中的神经中枢和大脑。
2堆取侧取堆取料机概述
随着全球工业的迅速发展,各个领域对其生产线的自动化程度及对全厂环保节能的要求越来越高。堆取料机在矿山、冶金、石化、钢厂、电厂、煤矿的应用也越来越被人所认可。顶堆侧取堆取料机是由圆形桥式刮板混匀堆取料机派生出的一种新型散料搬运设备。与圆形桥式刮板混匀堆取料机不同的是前者在料堆顶部取料,后者在料堆端部取料。对于同等直径料场而言,顶堆侧取堆取料机料堆高度要比圆形桥式刮板混匀堆取料机要高,堆料量要大很多,对于物料仓储量大的厂矿更为适用。
2.1控制系统的硬件部分
顶堆侧取堆取料机的电气系统硬件选型遵循着确保电路工作的稳定性、安全性的原则,控制电路在出现事故情况的下,保证操作人员、生产机械、电气设备的绝对安全,并能有效地防止事故的蔓延。顶堆侧取堆取料机控制系统主要包括用于配电类的断路器、接触器、变压器等,用于控制系统的可编程控制器(PLC)及人机界面(触摸屏),用于保护类的热继电器,用于传动类的变频器,用于检测类的物料探测器、编码器、限位开关、接近开关、超声波料位计等,用于监控类的视频采集系统,用于管理类盘煤系统。各部分相互配合来构成一个整体的堆取料机控制系统。顶堆侧取堆取料机控制系统的核心部分就是可编程控制器(PLC),它是整个系统的大脑,通过现场各类检测元件反馈来的信息作出判断,通过程序的编写来实现其正常的生产工艺。
2.2视频监控系统
由于顶堆侧取堆取料机设备较大,在生产过程中观察角度不好,很容易在手动工作时出现堆料溢料,料堆堆积形状不规范,取料时吃料深度大并出现取料余料等现象,很可能造成工作事故,影响工作效率。因此,在顶堆侧取堆取料机上增设工业电视监控系统具有要意义。顶堆侧取堆取料机设有一套独立的工业电视系统,包括5个变焦距彩色摄像机(带旋转云台)、系统主机、电源、彩色液晶监视器、光端机等(见图2)。
2.3盘煤系统
随着产品智能化的不断提高,激光盘煤系统已经大量用于圆形煤场中,通过安装于堆取料机上的盘煤系统可将料场中煤量进行合理分析,并通过三维合成及数据分析,以图形及报表的形式将数据送至主控制室,可让厂矿合理的分配煤炭的进出时间及进出量,大大节省人力。由于当今煤炭行业价格不稳定,通过盘煤仪可以对电厂所需煤炭需求有精确的掌握,同时对市场煤炭价格的预判来降低电厂的成本。盘煤系统共分为激光盘煤仪,回程角度测量及后台集成控制器。盘煤系统安装示意图如图3所示。
3基于物联网技术的产品硬件组成及数据采集
基于物联网技术对顶堆侧取堆取料机数据采集的方法简单的说就是在设备上安置1台工控机,工控机内嵌入1个用于通讯的DP板,利用DP通讯将工控机与顶堆侧取堆取料机控制系统中的PLC进行连接,将PLC中的数据采集至工控机中。利用3G技术将工控机内的数据传至远程服务器内。通过页面访问进入已设计好的画面内,画面同时调取服务器内数据,从而达到远程在线检测的目的。
3.1产品硬件组成及网络连接
3.1.1产品硬件组成在设备上安置1台工控机,工控机与堆取料机控制系统之间利用DP通讯来连接。工控机上放置1个用于通讯的DP板,利用DP通讯将数据从设备控制器内采集出来。3.1.2网络连接建立基于云计算技术的物联网云服务系统,并利用3G技术实现其与主流操作系统移动终端的通讯。将工控机采集过来的信号传送至服务器内。设备网络连接如图4所示。
3.2网络配置
在PLC内进行DP网络配置,将PLC内DP地址设置为1,波特率为1.5b/s。将工控机所需数据放置于单独数据块内。工控机内设置DP地址为2,波特率为1.5b/s。数据读取循环间隔为3.5s。
3.3顶堆侧取堆取料机数据
由于堆取料机数据较多,根据实际需求调取必要数据。这样不但减少网络传送数据量,降低传送时间,同时保证数据准确。顶堆侧取堆取料机传送数据信号如表1所示。数据显示利用局域网,在线登陆监控界面,通过调用服务器数据进行监视。
4应用情况
目前,该技术已在宁夏某企业成功应用1年。在此期间,服务中心专家智能系统对现场设备的实时监测,多次为设备故障做出了预判,提前告知用户问题,避免突发事件的发生,减少了设备因故障停机时间近60h,降低用户因此而带来的损失近200万元。用户满意度极高,同时由于该技术的应用增强了用户对公司产品的信赖,近期再次签订了订货合同,增加订货产值。由此看来,物联网技术的应用价值可观。
5存在问题
5.1网络安全问题
由于物联网技术是新型的一门技术,物联网技术在顶堆侧取堆取料机上的应用主要依靠物联网的传送来完成的。而基于云计算技术的物联网云服务系统,在信息安全需要较高。现阶段,一方面要分析传统计算平台面临的安全问题,采取全面严密的安全措施;另一方面,云平台应向用户证明自己具备某种程度的数据隐私保护能力。
5.2传送信号问题
顶堆侧取堆取料机物联网应用是3G网络平台搭建的,由于现阶段3G网络覆盖区域的问题,出现过信号丢失、断网等问题出现。现阶段采用了移动3G,电信3G双网并行的方式来缓解信号不稳定的问题。
6结语
所谓Savant技术,其是一种对物联网当中的物品电子编码的相关数据进行传送与管理的分布式网络软件。Savant技术始终处在Internet与阅读器之间,而其主要的任务即是对阅读器的协调,对数据的校对、传送与储存,以及任务管理。一般情况下,Savant技术的实现首先就需要阅读器将电子标签上的信息读取出来,然后将其发送到Sacant之中,然后Savant再做相应的处理。从整体上来看,Savant具有对数据的平滑、校验以及暂存等功能。经过Savant处理后的数据传送到In-ternet之后,将更具精准性[1]。
2、信息智能分析与控制技术
所谓信息智能分析与控制技术,即是通过对先进软件技术的应用对各种物联网信息进行快速处理与海量存储,并且将处理的结果及时的反馈于物联网的各种控制部件当中。就目前的情况来看,模糊意识、人工智能以及云计算技术等都能够满足物联网的海量信息处理需求。
3、在通信装备管理中的应用
3.1库存通信装备管理
在物联网技术的应用下,人们通过对各种技术与设备的利用,有效的实现了对通信装备的识别、定位以及跟踪等。而如果将其应用在库存管理中的话,不仅能够实现对每一个装备的高效管理,同时还能够有效的管理与监控通信设备的入库与出库等具体的环节。具体而言,在入库时,物联网技术的应用能够对其装备进行信息的采集与录入,并且通过软件的利用,可以在固定的位置存储装备。而在出库时,则可以对其进行登记,并实现对整个装备存储过程的监控与管理,达到了预防丢失、保证安全性的效果。显然,在这样的环境下,针对于通信装备管理的水平必然将得到实质性的提升。
3.2通信网络管理
无线网、有线网以及计算机网等,即是现代通信网络的主要内容,其所涉及的装备种类不仅数量多,而且技术体制极为复杂,配置也高度分散。基于这样的情况,通信网络的管理俨然较困难。那么,物联网技术的应用将以更加透彻的感知、更加深入的智能化以及更加全面的互联互通方式来对各类通信网络进行管理。所谓更透彻的感知,即是通过嵌入在通信装备中的RFID技术与各类传感器的应用来对通信频率、数据流量、温度以及误码率等信息进行实时的感知,并对其进行快速的分析与处理[2]。所谓更加深入的智能化,即使指通过先进技术的应用来对复杂的装备运行数据信息进行良好的处理,并依据预设的参数来对各类管理以及警告信号进行自动的传递,从而形成决策,在联动相应处理预案的同时,第一时间通知相应的装备维护管理人员对通信网络的运行进行合理的干预、对突发故障进行紧急处理等。所谓更加全面的互联互通,即是通过互联网系统来实现各通信信息的分析与处理、交互与共享以及实时的监控。同时,还能够对在网运行通信设备进行远程调度与远程管理。
4、制约物联网技术应用的主要因素
4.1标准体系问题
就目前的情况来看,虽然物联网技术得到了积极的研究与应用,但对其的研究并没有形成一种统一的标准。在这样的情况下,物联网技术的利用价值就很难得到广泛的认同。同时,因为物联网标准体系不够健全,致使针对其的研发工作缺乏规范性,而对其的使用也没有形成一定的规模,存在着移植困难的现象。显然,只有进一步完善物联网的标准化体系,才能够让物联网技术在更多的领域中将自身的作用充分展现出来。
4.2承载网的实现问题
就目前的情况来看,虽然目前我国很多领域都逐步建立起了专用的信息网络,但从本质上来说,大多数信息网络依旧属于单一的IP网。显然,这样的网络根本无法满足物联网对承载网“资源可知、安全可信、可控、可管”以及支持多种技术模式的要求。因此,应该充分对新型分组交换技术的下一代网络(NGN)进行实际的部署与应用。只有这样,承载网无法满足物联网要求的问题才能够在根本上得到解决。
4.3军事安全问题
众所周知,物联网技术拥有极强的信息获取能力,能够实现对任何信息的扫描、识别及阅读。显然,目前很多领域在信息安全工作的开展上并不够完善,其信息很容易被泄露,而一旦泄露出去被不法分子所利用,那么通信的安全必然将受到严重的威胁。而诸如政府、部队等政治性领域而言,其军事通信安全如果受到了威胁,则很有可能对社会、国家的安全带来严重影响[3]。因此,必须不断的提高物联网系统的安全性,旨在让通信安全得到有力的保证。
5、结语
1.1实验室资源共享由于测控专业学生相对较少,所以大多高校都不愿花大量经费去建立测控专业的实验室,基本都采用共享其它专业实验室的方式,这也限制了测控专业的发展。我们学院也同样存在这个问题,目前针对测控技术与仪器专业开放的专业实验室有传感器实验室、自动控制实验室和计算机仿真实验室,没有专门的虚拟仪器实验室。之前学生只能在计算机仿真实验室里做些虚拟仪器课程的基础实验,无法做专业实验,在将物联网技术引入之后,我们摸索出了实验室资源共享的模式,也就是将不同实验室的资源共享使用,以此完成虚拟仪器课程的专业实验教学任务。其中传感器实验室拥有近20种传感器、30套ZigBee模块(WSN的一种)和30套GPRS模块(无线传输技术的一种)等设备;计算机仿真实验室拥有50台计算机和配套虚拟仪器软件,可以完成虚拟仪器课程的所有基础实验。在教学安排上只要将传感器技术和虚拟仪器课程分在两个学期,就可以实现两个实验室的资源共享,学生就可以借助于传感器实验室的资源完成虚拟仪器课程的大多数专业实验。
1.2科研成果转化虚拟仪器技术是利用高性能的模块化硬件,结合灵活高效的软件来完成各种自动测试、测量应用。将虚拟仪器技术和物联网技术结合起来,在自动测试测量、无线通信、故障诊断和远程测控等方面有着极大的应用价值和应用前景。目前,国内很多高校和科研机构积极致力于这两者结合模式的研究,如天津大学、华北电力大学等。我们学院在这方面也开展了很多研究,譬如开展了“基于LabVIEW和物联网的风光互补电站监控系统的研究”、“虚拟仪器与GPRS无线通信测试研究”等多项校厅级项目,并取得了一些成果。我们已经将项目涉及的无线传感器技术、GPRS无线数据传输技术应用到虚拟仪器课程当中,对整个虚拟仪器课程的教学起到了很大的推动作用。
2物联网技术的应用体现
物联网技术在虚拟仪器课程中的应用体现在实验教学环节,主要针对专业实验。因为基础实验仅依靠软件编程就可以实现,譬如学生编程练习数组函数、结构等知识。但对于专业实验,必须要有硬件配套才能完成,借助于传感器实验室的WSN和GPRS将传感器测量的信号传给计算机仿真实验室的上位机,再通过上位编程对各种参数进行分析处理,就实现了一套从数据采集、数据传输、数据分析、数据存储、远程监控的完整流程,让学生体会到虚拟仪器作为自动测试测量领域专业开发工具的优势所在,掌握到该领域的一些前沿技术,此类专业实验的实验流程如图1所示,只要改变传感器类型、ZigBee组网方式和数据中心程序,就可以完成不同的专业实验。在实验内容安排上,我们追求量少质高。开设了几个目前科研应用中比较常用的无线通信、远程测控和故障诊断方面的实验。譬如开设的“虚拟仪器与GPRS无线通信测试”实验,就是由校级精品实验项目转化而来,旨在通过借助虚拟仪器的实验平台,快速搭建一套GPRS无线通信系统,模拟实际工程中无线通信的全过程,通过LabVIEW编程,设计出友好的人机交互界面,将无线通信的原理和过程直观形象地展现出来,让学生充分理解无线通信的原理和设计思想,在实验室里就能接触到要在科研项目或企业里才能用到的新技术。同时在课堂教学上将实验中涉及到的物联网技术进行讲解,譬如ZigBee组网选择、ZigBee组网协议、用于GPRS通信的TCP/IP协议等,讲解时可结合项目实例进行,课堂上现场演示利用GPRS技术通过简单编程实现手机短信和彩信的收发,让学生能直观地感受到所学课程的实用性和前沿性,让学生从心底里产生要将这门课学好的冲动。
3教学效果
引入物联网技术之前,由于无法开展专业性的实验,使得很多理论无法得到实践运用和验证,学生只能通过编程练习数组函数、结构等基础实验,普遍感觉实验比较空洞、枯燥,积极性不高,学生感觉不到该课程的工程应用价值,也体会不到虚拟仪器作为自动测试、测量领域专业开发工具的优势所在。在将物联网技术引入之后,使这一问题得到很大改观。开设的实验项目涉及的内容是目前很流行的无线通信领域,而且GPRS通信中还可以实现手机短信的接收和发送,所以学生的积极性都很高。另外,在项目的实验过程当中,每组学生会对程序界面的设计和调试过程进行探讨,所以实验氛围也很好。另外该类项目要求学生要对所做内容有个清晰的思路和具体实现方案,要求学生具备一定的编程能力和程序调试能力,所以对学生实践能力的锻炼,创新意识的培养、探究性思维的启发都起到一定作用。
4结语
1)提供智能化教学环境。学生时常为找不到自习教室而苦恼,利用物联网技术搭建的信息平台,学生可以通过网络了解到自习室的情况。将摄像头、传感器等设备安装在教室中,并且与教室资源系统连接起来,将实时的学生数量信息传递到资源平台上,学生可以通过进入教学资源系统来查询自习室的占用情况,从而节省了找自习室的时间。
2)智能考勤系统。传统教师点名的考勤方式,浪费了一定的教学时间。使用智能考勤技术,学生上课前通过刷卡进教室,教室的读卡器在接受了学生的刷卡信息后,自动将信息发送到教学管理系统中,并通过计算机将数据更新到考勤数据中去,这样教师就可以通过计算机快速的查询学生的出勤情况,从而节约了教学时间。
3)构建智慧图书馆。智慧图书馆的建设主要为学生借阅图书和学校管理图书提供方便。首先,学校图书馆是供学生查阅资料的场所,外来人员的进入会给图书馆的管理带来了不便,利用RFID标签和学生的一卡通等设备,可实现图书馆安全管理。另外学生借书、还书也依靠一卡通来实现,通过刷卡、扫描图书等方式来实现自助式借书,还书时只需扫描一卡通即可获得书本信息,方便图书的归架。另外,系统在刷卡时能自动识别学生的专业、借阅记录,学生的考试成绩等信息,自动寻找学生的兴趣点,为学生提供推荐服务,方便学生学习。
4)实验室管理。实验室的设备一般造价昂贵,其结构、类别也比较复杂,通过电子标签,对实验设备进行管理,在电子标签上存储设备的信息,通过与网络系统相连接,实现统一控制。学生凭一卡通进出实验室。
2物联网在学生生活方面的应用。
校园生活是智慧校园管理系统中的一项重要内容,校园生活包括学生、教师在校园内消费、住宿、校园安全、车辆管理等方方面面,智慧校园是以智慧技术来实现智慧生活,利用物联网技术来更好的实现智慧校园。具体来谈,有以下几点。
1)消费管理。消费管理是智慧校园的重要组成部分,以物联网技术为核心的消费管理主要包括:
⑴基于RFID技术的一卡通,或有的学校以手机等作为信息存储器,含有学生的基本信息。
⑵RFID阅读器,即消费场所的刷卡器,读到信息后传至后台的数据库进行查询,读取和扣除金额。
⑶后台数据库,持卡人的信息统计在数据库中,方便了消费业务的查询。像食堂、商店、浴室等场所的消费管理都可以通过这种方式实现。
2)智能照明控制。利用物联网技术实现智能照明,利用声控装置、加法计数器等设备,根据光线、教室有无人来自动控制照明开关,实现节能效果。
据统计,到二十一世纪第一个十年,我国的设施农业种植面积已经位居世界首位,达到了350万hm2。同时伴随着物联网技术应用推广开来,大范围应用于设施农业,会使应用整个体系更加完善。与此同时,物联网凭借其产出增加、成本降低、高效及智能化等优势被人看作是现代农业智能化实现的重要途径。设施农业是结合动植物的特点分析其最佳的生长条件,同时在有关设备和人力的共同调节下控制环境,使动植物不受季节天气的束缚达到每年均衡生产上市的目的。当现代信息技术发展到某个程度进而衍生出物联网技术,实现了技术上的突破,物联网技术是将传感器技术、人工智能、网络与自动化等综合在一起从而实现的聚合性应用。它涉及的技术领域比较广,因此被认为是信息技术第三次革命性的创新。这种技术拥有巨大的潜力,同时世界各国人们对其充满了期待,我国顺应时代潮流,提出了“感知中国”的战略,其重要性可见一斑。把互联网的快速发展应用到设施农业发展中去,实现农业现代化与信息化的完美结合。在智能监控与分析、数据的传输与采集、自动化调控等互联网信息技术的帮助下对农业的生产过程等进行监控管理,对农业生产实现科学的组织与规范的管理,让动植物能够更好生长生产,实现产出最大化。如今,物联网在设施农业中的应用已经形成一套控制闭环的系统,它的实现首先通过传感器来得到温室环境的各种参数(如温度、湿度、酸碱性等),在把得到的数据通过数据的收发网关来发送到信息的处理中心,同时由它来对得到的信息进一步处理并采用一系列的算法等作出决策,然后再经网关把算出的决策传送到设施农业执行机构,触发执行任务后就可以参考标准对现在的环境作出调整。如此循环往复,实现目标。
二、物联网技术在设施农业中的应用
当前,在种植、养殖、农资、农产品加工、农业信息化推送、农业智能化管理等方面,设施物联网技术都取得了一定的应用与发展。物联网技术的应用,可以让植物生长环境更好,可以全面感知家禽牲畜的生长状态,减少弊病。下面就对其应用具体几个方面进行探讨:一、物联网技术可以对农业情况进行实时监测。在整个物联网技术的研究工作中,其终端技术的应用及研究是工作的重点之一。简单地说,物联网终端与各式各样的作用不同的传感器有着密不可分的联系。在传感器的帮助之下,可以全方位的对农作物实时进行监控,依据监控所得数据进一步采取措施,使农作物在合适的环境下生长。其中传感器的种类大致有温度、光、湿度、pH值、二氧化碳、生物等传感器。使用这一终端对在农业生产中出现的各种问题进行合理适度的调整控制,同时还节约了各类资源,如水与人力等。二、对农作物的病虫害具有防治作用。判定农作物是否发生灾害的关键数据是阈值,当阈值到达一定的界限之后,农作物灾害便随之而来。在以往的种植过程中,人们常常需要花费不少的时间、金钱、精力去应对农作物灾害发生,但是往往得到的效果也不尽如人意,同时大量时间、金钱付诸东流。在设施农业中应用物联网技术,可以借助无线传感器对农田进行大规模的同步监测,同时针对观察情况,科学及时地对发现的情况处理,对农作物的灾害防御有很好的作用。在准确判断灾害情况、范围、程度的同时,还可以面对问题给出最合理的方案。根据情况的不同,在整个过程中还可能会用到GPS定位、GIS等先进技术。
三、物联网在设施农业应用中存在的问题
随着国家对物联网发展事业的重视,物联网产业持续升温,很多与设施农业相关的设备工厂开始在设施农业物联网方面大展拳脚,使得产品种类多种多样。在这个过程中,这些公司也出现了很多的问题。一、产品功能单调、没有特色。再次开发前景受限、价格过高等。这些工厂研发制造水平旗鼓相当,在激烈竞争的同时并没有出现领头羊式的企业。再者由于该技术比较新颖,没有一套公认的、合理的、权威的评价标准。面对这一困境,需要国家进行适度干预,从全局上对该产业进行规划、同时明确发展的方向并根据实际情况制定一些计划。要在新产品的研发与新技术上加倍努力,根据不同的地区情况、人员素质情况研发技术,因地制宜。在发展的同时还出现了技术不协调的问题。二、目前我国的农业生产信息化还没有普及,所以物联网中很多的高新技术并不是完全适用于我国当前的市场,这就导致我国的物联网技术在一些关键的技术上一直停滞不前。但是伴随着传感器在各个不同类型农业的发展,其价格也逐渐走低,该技术取得了一定进步。综合上述两种现象,产生了在一个大的技术系统中各类技术发展不均衡。设施农业的发展离不开物联网技术的支持,虽然目前物联网技术取得一定发展,但是总体上水平较低。要是这个问题走出泥潭,首先是对关键技术(无线传输等)进行攻关,取得突破,再是对已经取得的技术成果(传感器等)进一步巩固完善。三、当前,我国农业物联网产业分布分散,没有统一的组织,没有明确的分工,这使得行业内交流较少。出现了对同一技术重复开发,造成资源大量浪费。这需要各个企业共同努力建设一个权威技术平台,围绕该平台,进行交流探讨,避免一些重复开发、资源浪费问题再次发生。
四、就物联网在设施农业发展中的设想
要想使设施农业实现投资少,环保节约的目的就要大力发展精确农业,这种农业类型以效益作为目标,是一种超前性的农业新技术。这种技术把信息智能化与机电一体化结合起来,并取得一定的应用。精确农业凭借其减少不必要投资,同时加强农业管理水平,既保证能源消耗少,又可以使环境影响小等优势值得被引入我国设施农业。自进入二十一世纪以来,食品安全的问题逐渐凸显。要想使食品安全有保证,农产品的生产、传输、出售等各环节必须严格把关,用传统的方式往往会消耗大量的人力物力,但是设施农业的引入可以缓解这个问题。比如通过物联网技术监控动植物生长,监测动植物生长环境的各个指标,真正保证食品安全,实现绿色无公害。当前,传感器应用和比较广泛,但是随着发展很多农户存在完全自动化管理的要求。这对整个设施农业的发展可以起到很好的领导作用。同时要建设一批专业的技术队伍和技术品台,使企业之间、用户之间、企业用户间有一个良性沟通。
五、结语