时间:2022-12-09 22:00:03
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇光纤通信论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
(一)普通光纤
普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。
(二)核心网光缆
我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。G.653光纤虽然在我国曾经采用过,但今后不会再发展。G.654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。
(三)接入网光缆
接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限,在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用G.652普通单模光纤和G.652.C低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。
(四)室内光缆
室内光缆往往需要同时用于话音、数据和视频信号的传输。并目还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。综合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。
(五)电力线路中的通信光缆
光纤是介电质,光缆也可作成全介质,完全无金属。这样的全介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。ADSS光缆在国内的近期需求量较大,是目前的一种热门产品。
二、光纤通信技术的发展趋势
对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。
(一)超大容量、超长距离传输技术波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有广阔的应用前景。近年来波分复用系统发展迅猛,目前1.6Tbit/的WDM系统已经大量商用,同时全光传输距离也在大幅扩展。提高传输容量的另一种途径是采用光时分复用(OTDM)技术,与WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM技术是通过提高单信道速率来提高传输容量,其实现的单信道最高速率达640Gbit/s。
仅靠OTDM和WDM来提高光通信系统的容量毕竟有限,可以把多个OTDM信号进行波分复用,从而大幅提高传输容量。偏振复用(PDM)技术可以明显减弱相邻信道的相互作用。由于归零(RZ)编码信号在超高速通信系统中占空较小,降低了对色散管理分布的要求,且RZ编码方式对光纤的非线性和偏振模色散(PMD)的适应能力较强,因此现在的超大容量WDM/OTDM通信系统基本上都采用RZ编码传输方式。WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在OTDM和WDM通信系统的关键技术中。
(二)光孤子通信。光孤子是一种特殊的ps数量级的超短光脉冲,由于它在光纤的反常色散区,群速度色散和非线性效应相互平衡,因而经过光纤长距离传输后,波形和速度都保持不变。光孤子通信就是利用光孤子作为载体实现长距离无畸变的通信,在零误码的情况下信息传递可达万里之遥。
光孤子技术未来的前景是:在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使现行速率10~20Gbit/s提高到100Gbit/s以上;在增大传输距离方面采用重定时、整形、再生技术和减少ASE,光学滤波使传输距离提高到100000km以上;在高性能EDFA方面是获得低噪声高输出EDFA。当然实际的光孤子通信仍然存在许多技术难题,但目前已取得的突破性进展使人们相信,光孤子通信在超长距离、高速、大容量的全光通信中,尤其在海底光通信系统中,有着光明的发展前景。
(三)全光网络。未来的高速通信网将是全光网。全光网是光纤通信技术发展的最高阶段,也是理想阶段。传统的光网络实现了节点间的全光化,但在网络结点处仍采用电器件,限制了目前通信网干线总容量的进一步提高,因此真正的全光网已成为一个非常重要的课题。
全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机对用户信息的处理不再按比特进行,而是根据其波长来决定路由。
目前,全光网络的发展仍处于初期阶段,但它已显示出了良好的发展前景。从发展趋势上看,形成一个真正的、以WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成为未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。
三、结语
光通信技术作为信息技术的重要支撑平台,在未来信息社会中将起到重要作用。虽然经历了全球光通信的“冬天”但今后光通信市场仍然将呈现上升趋势。从现代通信的发展趋势来看,光纤通信也将成为未来通信发展的主流。人们期望的真正的全光网络的时代也会在不远的将来到来。
参考文献:
[1]辛化梅、李忠,论光纤通信技术的现状及发展[J].山东师范大学学报(自然科学版),2003,(04)
[2]毛谦,我国光纤通信技术发展的现状和前景[J].电信科学,2006,(8).
[3]王磊、裴丽,光纤通信的发展现状和未来[J].中国科技信息,2006,(4):59-60.
光纤通信论文参考文献:
[1]张国鸿.浅谈光纤设备通信原理及其布线技术[J].港口科技.通信与导航,2007.
[2]潘远翠.浅谈光纤通信市场的发展[J].达州职业技术学院学报,2006.
[3]高小梅.光纤通信技术的发展与展望[J].青年科学,2010.
[4]李文娟.光纤通信新技术探究[J].信息技术与信息化,2015,03:87-88.
[5]肖宏.关于光纤通信新技术的应用与研究[J].硅谷,2013,01:253+251.
[6]林海彬.探讨光纤通信新技术的应用与研究[J].中国新技术新产品,2014,14:25.
[7]王小龙.浅谈光纤通信新技术的应用与研究[J].计算机光盘软件与应用,2012,01:75+78.
光纤通信论文参考文献:
[1]夏坚.浅析现代光纤通信传输技术的应用[J].信息通信,2011(04):40-41.
[2]李彬,赵静娟.现代光纤通信传输技术的应用探讨[J].通信技术,2013(07):14-15+18.
[3]李刚.光纤通信传输技术的应用和发展趋势[J].中国新通信,2015(11):65-66.
[4]张越.光纤通信传输技术的应用[J].民营科技,2012(09):102+208.
[5]陈晓岚.现代光纤通信传输技术的应用分析[J].数字技术与应用,2016(03):34.
光纤通信论文参考文献:
[1]孙捷,杨佳,任德昊,谭毅.光纤通信实验教学的改革实践[J].实验技术与管理,2009,26(7):122
[2]陈琳,施正一,朱武,杨俊杰.光纤通信课程实验教学改革和研究[J].电气电子教学学报,34,(4):73-77.
[3]李书旗,朱昌平,陈小刚.光纤通信实验教学的改革与探索[J].中国电力教育,2010,(36):132-133。
[4]曹雪,李新营.光纤通信实验教学的优化探讨[J].实验科学与技术,2013,11(1):97-99.
[5]周建华,邱琪,周晓军.光纤通信实验教学改革探讨[J].2003,5(2):89-92
论文摘要:光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。本文探讨了光纤通信技术的主要特征及应用。
1.光纤通信技术
光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。
光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。
2.光纤通信技术的特点
(1)频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。
(2)损耗低,中继距离长。目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。
(3)抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。
(4)无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。
除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。
3.光纤通信技术在有线电视网络中的应用
20世纪90年代以来,我国光通信产业发展极其迅速,特别是广播电视网、电力通信网、电信干线传输网等的急速扩展,促使光纤光缆用量剧增。广电综合信息网规模的扩大和系统复杂程度的增加,全网的管理和维护,设备的故障判定和排除就变得越来越困难。可以采用SDH+光纤或ATM+光纤组成宽带数字传输系统。该传输网可以采用带有保护功能的环网传输系统,链路传输系统或者组成各种形式的复合网络,可以满足各种综合信息传输。对于电视节目的广播,采用的宽带传输系统可以将主站到地方站的所需数字,通道设置成广播方式,同样的电视节目在各地都可以下载,也可以通过网络管理平台控制不同的站下载不同的电视节目
有线电视网络在全国各地已基本形成,在有线电视网络现有的基础上,比较容易地实现宽带多媒体传输网络,因此在目前的情况下,不应完全废除现有的有线电视网,而用少量的投资来完善和改造它,满足人们的目前需要。很多地区的CATV已经是光纤传输,到用户端也是同轴电缆进入千万家。但是现在建设的CATV大多是单向传输,上行信号不能在现有的有线电视网中传送。可以通过电信网PSTN中语音通道或数据通道形成上行信号的传送,也可以通过语音接入系统来完成。将电话接到各用户,这样各用户间即可以打电话,也可以利用广电自己的综合信息网中的宽带传输系统构成广电网中自己的上行信号的传送,组成了双向应用的Internet网。
现在光通信网络的容量虽然已经很大,但还有许多应用能力在闲置,今后随着社会经济的不断发展,作为经济发展先导的信息需求也必然不断增长,一定会超过现有网络能力,推动通信网络的继续发展。因此,光纤通信技术在应用需求的推动下,一定不断会有新的发展。
参考文献:
[1]王磊,裴丽.光纤通信的发展现状和未来[J].中国科技信息,2006,(4)
[2]何淑贞,王晓梅.光通信技术的新飞跃[J].网络电信,2004,(2)
光纤通信的诞生与发展是电信史上的一次重要革命。光纤从提出理论到技术实现和今天的高速光纤通信也不过几十年的时间。从国外的发展历程我们可以看出,20世纪60年代中期,所研制的最好的光纤损耗在400分贝以上,1966年英国标准电信研究所高锟及Hockham从理论上预言光纤损耗可降至20分贝/千米以下,日本于1969年研制出第一根通信用光纤损耗为100分贝/千米,1970年康宁公司(Corning)采用“粉末法”先后获得了损耗低于20分贝/千米和4分贝/千米的低损耗石英光纤,1974年贝尔实验室(Bell)采用改进的化学汽相沉积法制出性能优于康宁公司的光纤产品。到1979年,掺锗石英光纤在1.55千米处的损耗已经降到0.2分贝/千米,这一数值已经十分接近由Rayleigh散射所决定的石英光纤理论损耗极限。
目前国内光纤光缆的生产能力过剩,供大于求。特种光纤如FTTH用光纤仍需进口,但总量不大,国内生产光纤光缆价格与国际市场没有差别,成本无法再降,已经是零利润,在国际市场没有太强竞争力,出口量很小。二十年来的光技术的两个主要发展,WDM和PON,这两个已经相对比较成熟。多业务传输发展平台两个方面,一方面是更有效承载以太网业务、数据业务,另一方面是向业务方面发展。AS0N的现状是目前的系统只是在设备中,或是在网络中实现了一些功能,但是一些核心作用还没有达到。
二、光纤通信技术的趋势及展望
目前在光通信领域有几个发展热点即超高速传输系统、超大容量WDM系统、光传送联网技术、新一代的光纤、IPoverOptical以及光接入网技术。
(一)向超高速系统的发展
目前10Gbps系统已开始大批量装备网络,主要在北美,在欧洲、日本和澳大利亚也已开始大量应用。但是,10Gbps系统对于光缆极化模色散比较敏感,而已经铺设的光缆并不一定都能满足开通和使用10Gbps系统的要求,需要实际测试,验证合格后才能安装开通。它的比较现实的出路是转向光的复用方式。光复用方式有很多种,但目前只有波分复用(WDM)方式进入了大规模商用阶段,而其它方式尚处于试验研究阶段。
(二)向超大容量WDM系统的演进
采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用率低于1%,还有99%的资源尚待发掘。如果将多个发送波长适当错开的光源信号同时在一级光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路。基于WDM应用的巨大好处及近几年来技术上的重大突破和市场的驱动,波分复用系统发展十分迅速。目前全球实际铺设的WDM系统已超过3000个,而实用化系统的最大容量已达320Gbps(2×16×10Gbps),美国朗讯公司已宣布将推出80个波长的WDM系统,其总容量可达200Gbps(80×2.5Gbps)或400Gbps(40×10Gbps)。实验室的最高水平则已达到2.6Tbps(13×20Gbps)。预计不久的将来,实用化系统的容量即可达到1Tbps的水平。
(三)实现光联网
上述实用化的波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想。如果在光路上也能实现类似SDH在电路上的分插功能和交叉连接功能的话,无疑将增加新一层的威力。根据这一基本思路,光光联网既可以实现超大容量光网络和网络扩展性、重构性、透明性,又允许网络的节点数和业务量的不断增长、互连任何系统和不同制式的信号。
由于光联网具有潜在的巨大优势,美欧日等发达国家投入了大量的人力、物力和财力进行预研,特别是美国国防部预研局(DARPA)资助了一系列光联网项目。光联网已经成为继SDH电联网以后的又一新的光通信发展。建设一个最大透明的、高度灵活的和超大容量的国家骨干光网络,不仅可以为未来的国家信息基础设施(NJJ)奠定一个坚实的物理基础,而且也对我国下一世纪的信息产业和国民经济的腾飞以及国家的安全有极其重要的战略意义。
(四)开发新代的光纤
传统的G.652单模光纤在适应上述超高速长距离传送网络的发展需要方面已暴露出力不从心的态势,开发新型光纤已成为开发下一代网络基础设施的重要组成部分。目前,为了适应干线网和城域网的不同发展需要,已出现了两种不同的新型光纤,即非零色散光(G.655光纤)和无水吸收峰光纤(全波光纤)。其中,全波光纤将是以后开发的重点,也是现在研究的热点。从长远来看,BPON技术无可争议地将是未来宽带接入技术的发展方向,但从当前技术发展、成本及应用需求的实际状况看,它距离实现广泛应用于电信接入网络这一最终目标还会有一个较长的发展过程。
(五)IPoverSDH与IpoverOptical
以lP业务为主的数据业务是当前世界信息业发展的主要推动力,因而能否有效地支持JP业务已成为新技术能否有长远技术寿命的标志。目前,ATM和SDH均能支持lP,分别称为IPoverATM和IPoverSDH两者各有千秋。但从长远看,当IP业务量逐渐增加,需要高于2.4吉位每秒的链路容量时,则有可能最终会省掉中间的SDH层,IP直接在光路上跑,形成十分简单统一的IP网结构(IPoverOptical)。三种IP传送技术都将在电信网发展的不同时期和网络的不同部分发挥自己应有的历史作用。但从面向未来的视角看。IPoverOptical将是最具长远生命力的技术。特别是随着IP业务逐渐成为网络的主导业务后,这种对JP业务最理想的传送技术将会成为未来网络特别是骨干网的主导传送技术。
(六)解决全网瓶颈的手段一光接入网
近几年,网络的核心部分发生了翻天覆地的变化,无论是交换,还是传输都己更新了好几代。不久,网络的这一部分将成为全数字化的、软件主宰和控制的、高度集成和智能化的网络,而另一方面,现存的接入网仍然是被双绞线铜线主宰的(90%以上)、原始落后的模拟系统。两者在技术上存在巨大的反差,制约全网的进一步发展。为了能从根本上彻底解决这一问题,必须大力发展光接入网技术。因为光接入网有以下几个优点:(1)减少维护管理费用和故障率;(2)配合本地网络结构的调整,减少节点,扩大覆盖;(3)充分利用光纤化所带来的一系列好处;(4)建设透明光网络,迎接多媒体时代。
参考文献:
[1]赵兴富,现代光纤通信技术的发展与趋势.电力系统通信[J].2005(11):27-28.
[2]韦乐平,光纤通信技术的发展与展望.电信技术[J].2006(11):13-17.
1.1自承式光缆自承式光缆在已经建好的电力线路中使用得较多,自承式光缆有全介质自承式光缆和金属自承式光缆两种类型,全介质自承式光缆是一种特殊的光纤,它的直径很小,质量很轻,同时还是全绝缘结构,因此具有相当稳定的光学性能。金属自承式光缆在电力系统中的应用非常广泛,它的结构简单,应用时不需要考虑热容量和短路电流,而且投资成本比较低。自承式光缆适用于山谷、江河和雷电比较集中的地区,为利用高压输电线杆塔来建设通信网络提供了技术保障。自承式光缆的光缆质量不受任何因素的影响,通信量也不受任何因素的影响,它具有优越的环境性能、光缆机械性能和光纤传输性能,在强电场环境中光缆传输信号也不会受到任何影响,是电力通信系统中最方便,也是最有效的传输方式。组成自承式光缆的材料都是非金属材料,抗电磁干扰和耐腐蚀的能力比较强,自承式光缆的设计充分考虑了电力线路的实际情况和温差、风速等外界因素的影响,具有抗震动、抗弯曲、抗老化和抗冲击的特点。同时,自承式光缆的质量轻,成本低,用高强度的芳纶纱和高弹性的模量作为抗张元件代替传统电缆中的钢丝加强构件,也从根本上减轻了自承式光缆的自重。因此,自承式光缆可以在不改变输电线杆塔的前提下直接安装在原来的输电线杆塔上,对输电线杆塔的负载力也比较小。下图2为自承式光缆的结构示意图。
1.2光纤复合相线光纤复合相线指的是输电线路相线复合光纤单元的一种电力光缆,是电力通信线路中一种必不可少的光纤类型,光纤复合相线与光纤复合地线结构相似,但是在设计、安装和运行方面有本质的区别。光纤复合相线的接线盒与其他光缆使用的接线盒也不相同,分为终端接线头和中间接线头。光纤复合相线在设计时需要计算挂点,考虑档距、配盘和弧垂张力等问题,安装时需要利用光电子分离技术和光纤接续技术将运行相线中的光纤单元分离出来,光纤复合相线安装时对光纤接续技术的要求很高,在安装过程中还要确保高压绝缘。一根光纤复合相线和两根导线形成的三相电力系统可以解决电网的通信、调度和自动化的问题,大大提高了电网传输的数量和质量。光纤复合相线是电力通信中的新型光缆,它有效地避免了在电磁兼容、路由协调和频率资源方面与外界的矛盾,避免了雷击的发生,满足了架空线路的要求,同时,光线组合相线充分利用了电力通信系统的线路资源,确保了地线绝缘式的运行方式,还起到了节约电能的作用。
2电力通信中光纤通信技术的发展趋势
2.1新型光纤的使用随着IP业务量的不断增加,传统的单模光纤已经不能满足高质量、长距离的数据传输,因此,电力通信必须向新的发展阶段迈进,新光纤通信技术的研究与开发就成为了电力通信建设的关键,关系到整个电力系统的发展。无水吸收峰光纤和非零色散光纤等新兴光纤已经得到了技术上的支持和认可,使用新型光纤一定会促进电力通信的发展。
2.2光联网光联网在继承传统波分复用系统技术优越性的同时,还改善了传统的波分复用系统技术在可靠性和灵活性上的弊端。光联网适应了电力通信系统的发展需要,实现了超大容量的光网络,增加了网络的节点数,扩大了网络的范围,增强了网络的透明度,加强了网络的灵活性,使得不同系统之间的不同信号也能有效地进行连接。同时,光联网的网络恢复速度快、时间短,确保了电力通信系统的正常运行,同步数字系统电联网之后,光联网势必会在未来电力通信系统占据重要地位。
光纤通信简而言之是将原始的电信号转成光信号进行传输,但是实现起来有很多因素要考虑。光纤通信自它的产生之日起,就是为了实现大批量数据的高速传输,主要应用于民用通信领域,在各应用领域都有约定俗成的标准,所以要将它引入过来用以实现通信对抗系统的实时串行总线设计,必须进行精心的设计。
1.1物理链路的设计
首先是并串、串并转换集成电路的选取。在通信领域已经有许多高速并串转换的芯片,但大部分都是面向民用通信领域的通用协议设计的,针对性强,协议架构复杂,不适合串行自定义总线协议的实现。经过一番比对,笔者选取了TI公司的TLK1501芯片。该芯片在应用层是开放式的,应用相对简单,利于自定义总线协议的实现,便于开发调试。它的串行吞吐速率为0.6~1.5Gbps[2],已能满足应用。考虑到PCB布板及实时数据传输的需要,选择800Mbps作为数据传输速率。其次是光模块的选取。光模块现在已经发展到具有支持波分复用的能力,考虑到引导总线实时只传输一种指令,所以选择单一波长的光模块即可。目前主要有三种波长的光模块可以选择:850nm,1310nm,1550nm。850nm多模光模块主要应用于短距离传输,一般500米以内;1310nm,1550nm光模块一般应用在单模光纤。考虑到性价比因素笔者选用了某公司的1310nm波长光模块EO2F-13-311423。该光模块输出功率-7dBm左右,灵敏度-21dBm左右,即使光纤转接有些损耗,整个光纤通路也有比较充裕的动态范围来保证通信的可靠。TLK1501与EO2F-13-311423间的接口电路见图1。
1.2TLK1501设计
TLK1501负责整个物理链路中数据的并串、串并转换,是数据高速传输的关键节点,设计时应注意以下3点。1)时钟的选取TLK1501有8bit/10bit转换机制,这样在FPGA与TLK1501的并行数据端口的16bit数据进入芯片后会转成20bit数据进行传输;反过来推算,16位并行端口的速率应为40MHz。选择40MHz时钟时应注意,发送方和接收方TLK1501对时钟的要求比较高,频差须在0.01%以内,时钟的抖动不能超过40ps。设计时将FPGA送给TLK1501的时钟与并行数据的输送时钟尽可能做到同相位,布线长度也尽量相近。2)收发的同步设计TLK1501只有进入同步状态后才能正常传输数据,它有两种方式发送同步码,一种是TX-EN、TX-ER为00时发送端强制发送同步码;另一种是当LCKREFN为高时,TLK1501内部状态机自动控制发送同步码。本设计采用的是第一种同步设计。FPGA首先控制TX-EN、TX-ER为00,产生IDLE码字,一段时间之后传输正常的数据,接收模块根据接收到的帧同步信号判断链路是否同步。如果链路同步,可以发送正常数据。如果链路失同步,则再产生IDLE码字,等待重新进入同步状态。3)PRBS测试为了使整个光通信链路的调试进展顺利,可以先在每个用户端口对TLK1501的收发进行PRBS回环测试,如回环测试有问题,可能是因为时钟抖动太大,或电源不稳定,需改进设计。在每个用户的TLK1501分别通过测试后,可以进行两个用户间的PRBS测试,验证用户间的两个时钟是否匹配,如两个用户间PRBS测试通过,就可以进行高速光纤串行通信总线的测试了。
1.3传输协议的设计
信息交换帧由帧头、帧长度、命令码、引导信息、校验字、帧尾等字段组成,帧格式定义见表1。帧的基本组成为字,每个字为16bit,即2个字节,正好匹配TLK1501芯片并行数据端口的数据位数,位定义符合TLK1501芯片的数据总线定义。帧头与帧尾各有3个16比特的字,通信时方便用户将完整的一帧内容接收下进行解析。对于一些不能丢帧的指令的通信,如图2所示,可由ACK校验和握手机制[3]来确保重发,图中T1:1~10μs。若ACK校验和错误,则自动重发;累计重发次数超过5次或是T1超时1s,本次传输结束,由上位机决定是否重发。
2高速光纤串行总线测试
两个设备间用光纤互联后可以进行高速光纤串行总线的调试与测试,测试框图见图3。测试时在两个设备间定时发送按协议格式简化的一个帧,包括帧头、帧尾,帧头帧尾中间填充有规律的便于观察统计的测试数据,例:“AA55,55AA,5A5A,0000,0001,0002,0003,0004,5A5A,5AA5,A55A”。图4是利用QUARTUS软件自带的SignalTap抓取的传输数据,从图中的接收数据(ser_data_in)可以看到一个完整的带帧头、帧尾,测试数据正确的帧。测试前,可预先在通信板卡的控制芯片例如DSP的程序中增加一段测试代码,专门用于统计通信的误码率。试验的测试结果比较理想,几万次的通信传输中未发现误码,可见误码率是很低的,可以满足工程应用。
3结束语
①光纤通信系统耗损较低,尤其是石英光纤的耗损更低,基本不会超过0.2dB/km,正是因为其耗损极低,因此其中继距离较长,拿石英光纤来说,其最远的中继距离能够超过200km,如果是非石英极低耗损光纤,那么中继距离会得到进一步的提高,利用损耗低的特点进行海底通信电缆的铺设,能够有效降低成本,并保证通信系统的安全可靠。②光纤通信系统不会受到串音和电磁干扰,光波在传输过程中都处于光缆当中,因而不会出现泄漏,就算在弯道出现泄漏,其泄出量也极低,对此可以以消光剂来保存光波,而且光缆中有很多的光纤,因此不会受到串音干扰,极大程度保障了数据的安全。而光纤自身的绝缘属性能够使其避免电磁干扰。③光纤通信系统的频带较宽,能够实现大容量的通信,就目前而言光纤能够使用的带宽值能够达到50000GHz,使用一对光纤能够完成近三万多的电话传输,同时对于宽频带信息的传输有重要的价值。④使用光纤能够减少对金属材料的过多使用,光纤主要的材料为石英,这种材料的储存量巨大,同电缆则主要使用资源量较小的铜。除此以外光纤还具有较高的抗腐蚀能力,但是也存在机械强度不高、质地脆的缺陷,连接时的技术要求高,对于弯曲的半径也有严格的控制。
2远方监控系统
沅陵远方集控计算机监控系统采用北京中水科技有限公司开发的全开放、分层分布式H9000V4.0系统由一(两)套数据采集服务器群、两台操作员站、一台工程师站、一台培训工作站、一台语音报警站、一台报表服务器、两台远动工作站、一台厂内通信工作站(用于基地内通信)和两台Ⅰ区核心交换机组成。集控侧监控系统同样采用双冗余配置并与电厂侧监控系统在功能上完全对等且互为备用,形成一套完整的监控系统。沅陵基地监控网通过PTN及光纤直连两个1000Mb不同的通信通道与凤滩厂区的监控计算机系统通信,预留1000MbSDH通道为应急冷备用通道,形成完整监控网,控制以沅陵基地的系统为主,前方的系统备用,实施远程监视与控制。根据电监会安全[2006]34号文《电监会关于主机加固的规定》,电厂监控系统等关键应用系统的主服务器,以及网络边界处的通信网关、WEB服务器等,应该使用安全加固的操作系统,采用专用软件强化操作系统访问控制能力。故本期共配置了5套操作系统加固软件以满足系统安全防护的要求。远方监控系统没有采用传统的规约打包式传输方式,而采取沅陵调度大楼控制终端直接与电厂侧现地控制单元通讯的“直采直送”方式,将远程控制、采集延时控制在5ms以内,满足国家电网公司对智能化电厂的数据及时性要求。同时采用双中心冗余配置对时系统,凤滩主站、沅陵从站,确保系统时钟一致性(如图1~2)。
3系统光纤通信案例分析
远方集控SDH建设采用NEC的U-NODE设备,建设内容如下:沅陵:沅陵基地配置1套NECU-NODEWBM设备,配置2块L-16.2光板分别对凉水井变和凤滩后方,1块L-1.2光板对凤滩前方,1块GBEM板和1块FEH板。凤滩:由于凤滩后方NECU-NODEBBM设备主框插槽已满,无法新上2.5Gb/s光板,因此本工程在凤滩后方NECU-NODEBBM设备上配置1个EXT16(2.5Gb/s)扩展(含2块PSW板的更换)子框和1块L-16.2光板,以及1块FEH板。凉水井变:凉水井220kV变现有NECU-NODEWBM设备。
4试验调试
调度软交换系统试验调试工作从2012年12月30日开始,完成了系统功能试验与网络可靠性试验。经过一段时间的试运行,系统各项性能稳定。PTN设备2013年1月22日由由湖南省电力公司信息通信公司信息通信运维中心组织,使用专业网络测试工具Smartbits600B网络性能分析仪对PTN传输通道性能进行测试(详见凤滩电厂沅陵基地至后方机房网络传输通道测试报告)。并与SDH设备的性能进行了比较,从数据上说明了PTN设备在以太网的传输效率高于SDH设备。整体试验达到前期方案要求,没有出现漏项缺项情况,试验数据可靠真实。通过联调试验,检验了SDH、PTN通道的可靠性,二次防护网、调度数据网的稳定性,检测了PTN及调度数据网等系统各项切换的延时及稳定性,试验数据满足要求,SDH、PTN、二次防护网、调度数据网已具备正式投运条件。
5结束语
1.1PDH光纤通信在铁路通信系统中的应用
光纤通信技术之所以在铁路通信系统里发挥重要作用,是因为当前对光纤通信技术的划分十分精细,在各个铁路通信系统里都会使用相应的光纤通信技术,达到最理想的通信效果。PDH光纤通信作为十分重要和关键的方面,能有效清除铁路通信系统里存在的隐患以及漏洞,确保铁路通信系统的正常与稳定。但PDH存在标准不一、复用结构过于复杂以及网络管理功能较弱的问题,所以其难以得到长远、有效的发展。
1.2SDH光纤通信在铁路通信系统中的应用
SDH光纤通信在铁路通信系统里的使用解决了PDH光纤通信使用存在的问题,并在此基础上有所突破,让铁路通信系统更加稳定和流畅。借助SDH设备构成的具备自愈保护作用的环网形式,能在传输媒体主要信号中断的时候自动利用自愈网及时恢复正常的通信状态。相较于与PDH技术,SDH技术有四个显著优点:一是网络管理能力更强;二是比特率和接口标准均统一,让各个厂家设备间的互联成为了可能;三是提出“自愈网”这一新理论,能在传输媒体主要信号中断时及时恢复正常;四是运用字节复接技术,简化网络各个支路信号。鉴于SDH光纤通信技术有诸多优点,所以在铁路通信网发展规划里,已经明确提出了要着重发展基于同步数字系列(SDH)基础上的传送网。就以xx铁路为例,该铁路基于新敷设20芯光缆里的其中4芯光纤基础上,开设SDH2.5Gb/s(1+1)光同步传输系统为长途传输网,在铁路的相应经过点均设置了SDH2.5Gb/sADM设备,并借助622Mb/s光口同接入层传输设备相连,发挥上联和保护作用。此外,还借助2芯光纤开设了SDH622Mb/s(1+0)光同步传输系统,将其作为当地的中继网,并在铁路相应经过点以及新开设的各个中间站和线路新设置了SDH622Mb/s设备。
1.3DWDM光纤通信在铁路通信系统中的应用
DWDM光纤通信技术是借助单模光纤宽带与损耗低的特点,由多个波长构成载波,许可各个载波信道能同时在同一条光纤里传输,如此一来,在给定信息传输容量的情况西夏,就能降低所需光纤的总量。使用DWDM技术,单根光纤能传输的最大数据流量可以高达400Gb/s。DWDM技术最显著的优点就是其协议与传输速度是没有关联的,以DWDM技术为基础的网络可以使用IP协议、以太网协议、ATM等进行数据传输,每秒处理数据流量在100Mb~2.5Gb之间。也就是说,以DWDM技术为基础的网络能在同一个激光信道上以各种传输速度传输各种类型的数据流量。当前,在国内铁路通信网里DWDM技术得到了广泛应用,其中沪杭-浙赣铁路干线就是国内第一条使用DWDM光纤传输系统的铁路。此外,京九、武广等铁路的DWDM光纤传输系统也在建设与使用中。就拿京九铁路来说,京九铁路线使用的是具有开放性的DWDM系统和设备,能兼容各种工作波长以及厂商的SDH设备。波道数量为16,波道速率基础为每秒2.5Gb,借助京九线20芯光缆里的2芯G.652单模光纤,使用单纤单向传输的方式,也就是说相同波长在两个方向上都能多次使用,光接口满足ITU-TG.692协议的标准。
2结语
关键词:光纤通信技术优势接入技术
近年来随着传输技术和交换技术的不断进步,核心网已经基本实现了光纤化、数字化和宽带化。同时,随着业务的迅速增长和多媒体业务的日益丰富,使得用户住宅网的业务需求也不只局限于原来的语音业务,数据和多媒体业务的需求已经成为不可阻挡的趋势,现有的语音业务接入网越来越成为制约信息高速公路建设的瓶颈,成为发展宽带综合业务数字网的障碍。
一、光纤通信技术定义
光纤通信是利用光作为信息载体、以光纤作为传输的通信力式。论文百事通在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的中绕非常小,光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听,光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。
二、光纤通信技术优势
2.1频带极宽,通信容量大光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。散波长窗口,单模光纤具有几十GHz?km的宽带。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。采用密集波分复术可以扩大光纤的传输容量至几倍到几十倍。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps,采用密集波分复术实现的多波长传输系统的传输速率已经达到单波长传输系统的数百倍。巨大的带宽潜力使单模光纤成为宽带综合业务网的首选介质。
2.2损耗低,中继距离长目前,实用的光纤通信系统使用的光纤多为石英光纤,此类光纤损耗可低于0.20dB/km,这样的传输损耗比其它任何传输介质的损耗都低,因此,由其组成的光纤通信系统的中继距离也较其他介质构成的系统长得多。如果将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。目前,由石英光纤组成的光纤通信系统最大中继距离可达200多km,由非石英系极低损耗光纤组成的通信系至数公里,这对于降低通信系统的成本、提高可靠性和稳定性具有特别重要的意义。
2.3抗电磁干扰能力强我们知道光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。它是一种非导电的介质,交变电磁波在其中不会产生感生电动势,即不会产生与信号无关的噪声。这样,就是把它平行铺设到高压电线和电气铁路附近,也不会受到电磁干扰。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。
2.4光纤径细、重量轻、柔软、易于铺设光纤的芯径很细,约为0.1mm,由多芯光纤组成光缆的直径也很小,8芯光缆的横截面直径约为10mm,而标准同轴电缆为47mm。这样采用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题,节约了地下管道建设投资。此外,光纤的重量轻,柔韧性好,光缆的重量要比电缆轻得多,在飞机、宇宙飞船和人造卫星上使用光纤通信可以减轻飞机、轮船、飞船的重量,显得更有意义。还有,光纤柔软可绕,容易成束,能得到直径小的高密度光缆。
2.5保密性能好对通信系统的重要要求之一是保密性好。然而,随着科学技术的发展,电通信方式很容易被人窃听,只要在明线或电缆附近设置一个特别的接收装置,就可以获取明线或电缆中传送的信息,更不用去说无线通信方式。光纤通信与电通信不同,由于光纤的特殊设计,光纤中传送的光波被限制在光纤的纤芯和包层附近传送,很少会跑到光纤之外。即使在弯曲半径很小的位置,泄漏功率也是十分微弱的。并且成缆以后光纤在外面包有金属做的防潮层和橡胶材料的护套,这些均是不透光的,因此,泄漏到光缆外的光几乎没有。更何况长途光缆和中继光缆一般均埋于地下。所以光纤的保密性能好。此外,由于光纤中的光信号一般不会泄漏,因此电通信中常见的线路之间的串话现象也可忽略。
三、光纤接入技术
随着通信业务量的不断增加,业务种类也更加丰富,人们不仅需要语音业务,高速数据、高保真音乐、互动视频等多媒体业务也已经得到了更多用户的青睐。光纤接入网可分为有源光网络A(ON)和无源光网络((PON。)采用SDH技术、ATM技术、以太网技术在光接入网系统中称为有源光网络。若光配线网(ODN全)部由无源器件组成,不包括任何有源节点,则这种光接入网就是无源光网络。
现阶段,无源光网络P(ON)技术是实现FT-Tx的主流技术。典型的PON系统由局侧OLT光(线路终端)、用户侧ONUO/NT(光网络单元)以及ODN-OrgnizationDevelopmentNetwork(光分配网络)组成。PON技术可节省主干光纤资源和网络层次,在长距离传输条件夏可提供双向高带宽能力,接入业务种类丰富,运维成本大幅降低,适合于用户区域较分散而每一区域内用户又相对集中的小面积密集用户地区。
为实现信息传输的高速化,满足大众的需求,不仅要有宽带的主干传输网络,用户接入部分更是关键,光纤接入网是高速信息流进千家万户的关键技术。在光纤宽带接入中,由于光纤到达置的不同,有FTB、FTTC,FTTCab和FTTH等不同的应用,统称FTTx。
FTTH(光纤到户)是光纤宽带接入的最终方式,它提供全光的接入,因此,可以充分利用光纤的宽带特性,为用户提供所需要的不受限制的带宽,充分满足宽带接入的需求。我国从2003年起,在“863”项目的推动下,开始了FTTH的应用和推广工作。迄今已经在30多个城市建立了试验网和试商用网,包括居民用户、企业用户、网吧等多种应用类型,也包括运营商主导、驻地网运营商主导、企业主导、房地产开发商主导和政府主导等多种模式,发展势头良好。不少城市制定了FTTH的技术标准和建设标准,有的城市还制门了相应的优惠政策,这此都为FTTH在我国的发展创造了良好的条件。
在FTTH应用中,主要采用两种技术,即点到点的P2P技术和点到多点的xPON技术,亦可称为光纤有源接入技术和光纤无源接入技术。P2P技术主要采用通常所说的MC(媒介转换器)实现用户和局端的自接连接,它可以为用户提供高带宽的接入。目前,国内的技术可以为用户提供FE或GE的带宽,对大中型企业用户来说,是比较理想的接入方式。