欢迎来到易发表网,期刊咨询:400-808-1701 订阅咨询:400-808-1721

关于我们 期刊咨询 科普杂志

故障分析论文优选九篇

时间:2022-08-29 15:05:13

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇故障分析论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

故障分析论文

第1篇

关键词:故障选线,相关分析,小电流接地系统,波形识别

1.引言

准确的小电流接地选线方法,可以避免非故障线路不必要的开关操作,且保持供电的连续性。目前按照故障选线原理,可大体分为以下三类:比幅选线方法;比相选线方法;注入法。配电网拓扑结构的多变性,导致了任何一种比相、比幅选线方法都不能作到整体完全可靠和有效,而注入方法附加设备过多,成本较高,对于需停电实现的注入法选线,破坏了单相接地故障时的供电连续性。文献[1,2]改进了原有的直接进行幅值比较的选线方法,引入了奇异性检测的小波分析方法,通过比较各馈线零序电流小波变换的模值来实现故障选线,效果虽有所改善,但在特定故障模式或现场干扰下,鉴于小波分析方法敏感于波形的奇异点,以及本身信号比较弱,故障与非故障线路的区分阈值同样难以确定,选线可靠裕度不大,同样不能有效的提高现场应用的可靠性。至于其他选线方法,如应用人工智能、能量方向、功率方向等都是有意义的探索。

随着新的数学分析工具的发展、变电站自动化的实现和站内通讯设施的发展和完善,为开辟和研究适于配电网的新型的故障选线原理和方法创造了有利条件。另外,小电流接地选线对于实时性没有要求,从而为离线处理,采用复杂、高级的分析方法提供了可能。

鉴于小电流接地系统的自身特点,以及发生单相接地故障时,所产生的故障信号本身较弱,并且经电磁干扰污染,导致获得的信号失真的现场实际情况,本文提出了基于相关分析的选线方法,根据故障后的暂态波形,作各馈线零序测量电流在一定数据窗下的两两相关分析,获得馈线相关矩阵,求出各条馈线与其他馈线的综合相关系数,经排序策略,最终获得按照发生接地故障可能性大小排列的选相序列。理论分析以及大量仿真表明,此方法选线准确度高,选线结果不受系统运行方式、拓扑结构、中性点接地方式、以及故障随机因素等的影响,对于现场干扰不敏感,具有较强的鲁棒性。

2.相关分析及故障选线原理

2.1相关分析[3]

相关函数是时频描述随机信号统计特征的一个非常重要的数字特征,而确定性信号可以看作是平稳且具有遍历性的随机信号的特例,因而其基本概念和定义(平稳随机过程)同样也适合于确定信号作相关分析。从相关分析的理论来说有它内在的物理含义,设x(t)和y(t)是两个能量有限的实信号波形,为研究它们之间的差别,衡量它们在不同时刻的相似程度,引入(1)

式中α是常数。显然有一个最佳的值使得两波形在均方误差最小准则下获得最佳的逼近,即取δ2的时间平均值D衡量两者之间的相似性,有:

(2)

令=0,求得最佳的,并将其代入上式,得到最小的D值为:

(3)

其中:

(4)

显然,ρ越大,D越小,两个波形越相似。为此ρ定义为相关系数,称之为相关函数。对于能量有限的确定信号,公式(4)中分母是一常数,起到归一化的作用,由许瓦兹(Schwartz)不等式可知:。当ρ=1时,D=0,说明x(t)和y(t+τ)完全相似。严格来讲,定义中的时间T应取无限,但并不妨碍上述理论对于有限长数据窗内波形关系的分析。

将上式离散化,并令τ=0,则有:

(5)

上式表示x(t)、y(t)两波形在一定数据窗内同步采样的相关系数,可以衡量同一数据窗内两路信号的相似程度。此系数综合反映了两信号中每一频率分量的综合相位关系以及幅值信息,而非单一频率的简单相互相位关系。

鉴于相关技术的独特优点,在工程领域日益得到推广。电力科技工作者也已在多年前就将相关技术引入电力系统中,如在行波保护、故障选相、涌流鉴别等领域进行了有意的尝试,同时也证明了利用相关技术提高电力系统某些领域现有方法性能的可行性。基于以上分析和认识,本文将相关分析理论应用于小电流接地系统的故障选线,取得了令人满意的效果。

2.2故障选线原理

小电流接地系统由于中性点不接地或不直接接地,在发生单相接地故障时,系统仍然保持三相对称,且不能构成零序回路,从而不会产生太大的短路故障电流。此系统单相接地故障后故障附加零序网络示意图及电压相量图分别如图1、2所示。

图1单相接地时的零序等效网络

Fig.1ZeroSequenceEquivalentNet

atSinglePhasetoGroundFault

图2A相接地故障时的向量图

Fig.2VectorsatPhaseAtoGroundFault

可知,全系统都将出现大小等于系统接地相相电压的零序电压,方向与接地相的接地前电压反向;故障电流是系统对地电容电流,对于中性点非直接接地系统,还包括中性点处消弧线圈流过的零序电流分量,如图1中虚框所示。零序电流分布如图1中箭头所示,由于故障附加零序电压源位于接地点处,故障线路零序CT所测量到的电流为全系统非故障线路和元件三相对地电容电流之总和的1/3,而非故障线路上流过数值等于本身三相对地电容电流1/3的零序电流。上述特征也是比幅、比相选线方法的基本理论依据。而对于中性点经消弧线圈接地系统,故障线路零序电流中增加了一感性的电流分量,使故障线路的总零序电流减小,且对于普遍采用的过补偿方式,基波电流将反向,即基频无功功率方向与非故障线路方向相同:由母线流向线路。最重要的是,由于小电流接地系统本身零序电流稳态分量很小、现场电磁干扰等因素的影响,以及信号获取手段的误差,将导致基于理论分析的结论在现场出现偏差。尽量增加CT传变精度,提高信号采集系统性能,能够改善选线效果,但势必增加成本,难以令用户接收。而基于目前的变电站自动化系统和设备的选线方法更易于推广,也是发展的趋势。

对于单相接地后的系统虽然稳态零序电流幅值较小,且相位关系对于过补偿的经消弧线圈接地的系统也不再成立。但在故障的暂态过程中,由于故障后附加网络中的储能器件的充放电,势必导致暂态电量中包含有反映馈线本身性征的更丰富的信息[4],且经消弧线圈接地系统,中性点处的电感回路对于高频信号,阻抗增大,影响变小。基于以上分析,本文将利用故障暂态波形性征来识别接地线路。

故障后附加零序网络(图1所示),对于非故障线路,如果忽略母线位置差异,则系统及故障线路无疑可以等效成一个单电源系统,由电路基础理论可知,对于对称性电路,电量也必呈现对称。极端情况,对于非故障线路等效系统,如果馈线长度及参数相等,即等效网络中接地电容相等,则故障后的零序电流波形势必相同,现场中线路参数及长度不完全相同,但并不影响总的变化趋势,即发生单相接地时,非故障线路的对地电容的充放电相似,而故障线路由于附加零序电源的存在,其零序CT测量得到的零序电流波形与其他线路的差异最大。由此,结合确定信号的相关系数的物理意义,我们给出基于相关分析的利用暂态波形的选线方法,实现步骤如下:

1)各馈线故障暂态零序电流波形按照本馈线对地电容归一化处理;

2)求取馈线之间两两相关系数,形成相关系数矩阵:

其中,表示在给定数据窗下,馈线i与j零序测量电流之间的相关系数,显然,选线相关系数矩阵的对角线为1,且为对称矩阵。

3)根据相关矩阵求取每条馈线相对于其他馈线的综合相关系数;

根据相关系数矩阵,我们可以采用适当的策略求出最相关的任意个数的一组馈线零序电流。本文为简单起见,采用本馈线与其他馈线相关系数的平均作为本线路的综合相关系数,仿真及试验结果比较令人满意。

4)根据各馈线的综合相关系数,按照递增排序,从而获得按照发生接地故障最大可能性排列的选线序列。

5)当选线序列中最大最小相关系数之差小于一门槛时(本文仿真测试时取0.3),判为系统或母线发生接地故障。

对于故障选线,现场噪声污染以及本身有用信号弱是导致目前选线装置可靠性能低的主要原因,而本文提出的方法,对于现场噪声具有很强的抑制作用,分析如下。令两馈线观测到的电流信号分别为:

其中,、为原始信号,、为高斯白噪声,则两电流同数据窗的相关函数为:

由于白噪声与信号、互为统计独立,所以、很小且趋于零,除时不为零,而实际中此情况不会出现。由此可知,对于受噪声污染后的馈线零序电流信号的相关函数仍能很好的体现原始信号之间的相关性,从而具备较强的鲁棒性,这正是小电流接地系统中故障选线所需要的。

3.仿真及实现

3.1EMTP仿真

相比于中性点不接地系统,中性点经消弧线圈接地系统发生单相接地后,故障性征不明显,选线较困难。为此,本文以一中性点经消弧线圈接地系统为例,应用EMTP进行了大量的仿真,系统结构如图3示。其中线路参数为:正序阻抗Z1=(0.17+j0.38)Ω/Km,正序容纳b1=3.045/Km,零序阻抗Z0=(0.23+j1.72)Ω/Km,零序容纳b0=1.884/Km。接地方式为过补偿,补偿度为7.5%。

图3小接地电流系统结构及参数

Fig.3TheStructureofaDistributionanditsParameters

仿真故障情况考虑因素:接地电阻、故障合闸角α(以A相电压为基准)、出线传输距离、故障点位置、故障相别、线路故障前运行状态(由额定负荷的百分比来表示)、负荷功率因数等,就各回出线及母线单相接地故障进行了大量的仿真测试。结果表明此选线方法在各种故障模式下都能可靠的给出选线结果,准确率为100%。表1中示出了仿真模式中较典型的选线结果。注:表中出线长度分别表示馈线编号为L1、L2、…L5的传输距离;选线序列采用馈线编号的下标表示,其中括号内为本馈线与其他馈线的综合相关系数。

表1单相接地故障选线结果

Table1TheResultsofDetectionAtPhase-to-GroundFaultCases

另外,我们还对各出线具有不同线路参数、负荷具有一定不对称等故障模式进行了仿真,也得到了满意的结果。而并联于母线的电容器的投切操作不影响本选线方法的故障选线结果。

3.2实现方案

由单相接地后的电压相量图可知,单相接地后系统出现零序电压,因而可以据此确定系统是否发生接地故障,具有充分的可靠裕度。但由于其突变不灵敏,且考虑到某些故障模式下,暂态过程较短,因此采用灵敏度较高的零序电流突变量来启动选线元件,以便更准确的捕捉暂态过程。

可以采用两种方案:分布式和集中式来具体实现选线功能,对于集中式方案,选线功能由单独装置来实现,性能与文中分析一致,但此方式由于集结了所有馈线的电流,现场所需电缆较多,相对成本较高。而分布式实现方案,是将选线功能融合于目前的变电站自动化系统中,选线功能由置于后台监控平台中的选线软件包来实现,而数据采集由馈线上的各功能间隔来实现。此模式下,将涉及数据同步问题,包括两个方面,一是数据窗同步,对此可将数据采集启动元件整定的非常灵敏,保证在最苛刻故障模式下具有足够的灵敏度,再由后台中选线程序根据零序电压决定是否收集各馈线采样数据和启动选线功能来解决;二是采样的同步,最大误差是相差一个采样间隔,对此仿真及实际装置试验表明,虽影响相关系数的大小,但不影响最终选线结果的准确性。

另外,由于本文所提出的选线方案给出的按照可能性大小排列的选线序列,现场实际中可以按照开环或闭环两种模式选用,在开环模式下,只提供结果,允许人为参与以决定断开线路;在闭环方式下,选线程序将按照序定断开线路的次序。避免了目前选线方案单一结果出错后,导致后续切线路盲目的弊端,从而保证了总体开关操作最少。

4.结论

本文基于小电流接地系统单相接地故障的特征分析以及结合目前的硬件水平,提出了基于单相接地故障暂态零序电流波形的选线方法,由故障后的零序附加网络可知,对于非故障线路,系统等效结构相似,从而将反映两信号相关程度的相关分析方法引入,通过对故障后各馈线之间暂态相同数据窗波形的综合相关分析,获得按照接地可能性排列的选线序列。理论分析及大量的EMTP仿真均表明,此选线方法现场抗干扰强,结果准确可靠。文中还结合实际,给出了具体的实现方案。现场选线效果有待于实践的进一步检验。

参考文献

1.贾清泉,刘连光,杨以涵等(JiaQingquan,LiuLianguang,YangYihanetc..).应用小波检测故障突变特性实现配电网小电流接地选线保护(AbruptChangeDetectionwithWaveletforSmallCurrentFaultRelaying).中国电机工程学报(ProceedingsofCSEE),2001,21(10):78~82

2.操丰梅,苏沛浦(CaoFengmei,SuPeipu).小波变换在配电自动化接地故障检测中的应用研究(StudyontheApplicationofWaveletTransformtoDetectEarth-FaultinDistributionAutomationSystem).电力系统自动化(AutomationofElectricPowerSystems),1999;23(13):33~36

3.吴湘淇(WuXiangqi).信号、系统与信号处理(Signal,SystemandSignalProcessing).北京:电子工业出版社(Beijing:PublishingHouseofElectronicsIndustry),2000

4.OinisCHAARI,PatrickBASTARD,MichelMEUNIER.Prony''''sMethod:AnEfficientToolforTheAnalysisofEarthFaultCurrentsinPetersen-Coil-ProtectedNetworks.IEEETransactiononPowerDelivery,1995,10(3):1234~1241

CORRELATIONANALYSISBASEDDETECTIONOFTHEPHASE-TO-GROUNDFAULTINDISTRIBUTIONAUTOMATIONSYSTEM

第2篇

论文摘要:在现代化生产程度很高的今天,企业的生产,产品的加工制造以及人们的日常生活都离不开电动机的使用,在电动机的使用过程当中有很多注意事项以及要求,否则将会发生机器的损坏,这对企业的运转,人民生活等都会带来诸多不便。对电动机常见的故障,主要分为电气和机械两种,每一种故障都给电动机的安全运行带来极大威胁。因此,对电动机的故障分析维护与检修更显得至关重要。

电动机具有结构简单,运行可靠,使用方便,价格低廉等特点。为保证时机的正常工作对运行的电动机要按电动机完好质量标准的要求进行检查,运行中的电动机与被拖动设备的轴心要对正,运行中无明显的振动,一定要保持通风良好、风翅等要完整无缺。要时刻观察和测量电动机电网电压和正常工作电流,电压变化不应超过额定电压的±5%,电动机的额定负荷电流不能经常超过额定电流,以防时机过热,同时检查电机起动保护装置的动作是否灵活可靠。检查电动机各部分温升是否正常,还要经常检查轴承温度,滑动轴承不得超过度,滚动轴承不得超过70度,滚动轴承运转中的声音要清晰、无杂音。对于电动机的运转环境要做到防砸、防淋、防潮。对于环境不良,经常挪动、频繁起动、过载运行等要加强日常维护和保养,及时发现和消除隐患。

一、电动机电气常见故障的分析和处理

(一)时机接通后,电动机不能起动,但有嗡嗡声

可能原因:(1)电源没有全部接通成单相起动;(2)电动机过载;(3)被拖动机械卡住;(4)绕线式电动机转子回路开路成断线;(5)定子内部首端位置接错,或有断线、短路。

处理方法:(1)检查电源线,电动机引出线,熔断器,开关的各对触点,找出断路位置,予以排除;(2)卸载后空载或半载起动;(3)检查被拖动机械,排除故障;(4)检查电刷,滑环和起动电阻各个接触器的接合情况;(5)重新判定三相的首尾端,并检查三相绕组是否有灿线和短路。

(二)电动机起动困难,加额定负载后,转速较低。

可能原因:(1)电源电压较低;(2)原为角接误接成星接;(3)鼠笼型转子的笼条端脱焊,松动或断裂。

处理方法:(1)提高电压;(2)检查铭牌接线方法,改正定子绕组接线方式;(3)进行检查后并对症处理。

(三)电动机起动后发热超过温升标准或冒烟

可能原因:(1)电源电压过低,电动机在额定负载下造成温升过高;(2)电动机通风不良或环境湿度过高;(3)电动机过载或单相运行;(4)电动机起动频繁或正反转次数过多;(5)定子和转子相擦。

处理方法:(1)测量空载和负载电压;(2)检查电动机风扇及清理通风道,加强通风降低环温;(3)用钳型电流表检查各相电流后,对症处理;(4)减少电动机正反转次数,或更换适应于频繁起动及正反转的电动机;(5)检查后姨症处理。

(四)绝缘电阻低

可能原因:(1)绕组受潮或淋水滴入电动机内部;(2)绕组上有粉尘,油圬;(3)定子绕组绝缘老化。

处理方法:(1)将定子,转子绕组加热烘干处理;(2)用汽油擦洗绕组端部烘干;(3)检查并恢复引出线绝缘或更换接线盒绝缘线板;(4)一般情况下需要更换全部绕组。

(五)电动机外壳带电:

可能原因:(1)电动机引出线的绝缘或接线盒绝缘线板;(2)绕组端部碰机壳;(3)电动机外壳没有可靠接地

处理方法:(1)恢复电动机引出线的绝缘或更换接线盒绝缘板;(2)如卸下端盖后接地现象即消失,可在绕组端部加绝缘后再装端盖;(3)按接地要求将电动机外壳进行可靠接地。

(六)电动机运行时声音不正常

可能原因:(1)定子绕组连接错误,局部短路或接地,造成三相电流不平衡而引起噪音;(2)轴承内部有异物或严重缺油。

处理方法:(1)分别检查,对症下药;(2)清洗轴承后更换新油为轴承室的1/2-1/3。

(七)电动机振动

可能原因:(1)电动机安装基础不平;(2)电动机转子不平衡;(3)皮带轮或联轴器不平衡;(4)转轴轴头弯曲或皮带轮偏心;(5)电动机风扇不平衡。

处理方法:(1)将电动机底座垫平,时机找水平后固牢;(2)转子校静平衡或动平衡;(3)进行皮带轮或联轴器校平衡;(4)校直转轴,将皮带轮找正后镶套重车;(5)对风扇校静。

二、电动机机械常见故障的分析和处理

(一)定、转子铁芯故障检修

定、转子都是由相互绝缘的硅钢片叠成,是电动机的磁路部分。定、转子铁芯的损坏和变形主要由以下几个方面原因造成。

(1)轴承过度磨损或装配不良,造成定、转子相擦,使铁芯表面损伤,进而造成硅钢片间短路,电动机铁损增加,使电动机温升过高,这时应用细锉等工具去除毛刺,消除硅钢片短接,清除干净后涂上绝缘漆,并加热烘干。

(2)拆除旧绕组时用力过大,使倒槽歪斜向外张开。此时应用小嘴钳、木榔头等工具予以修整,使齿槽复位,并在不好复位的有缝隙的硅钢片间加入青壳纸、胶木板等硬质绝缘材料。

(3)因受潮等原因造成铁芯表面锈蚀,此时需用砂纸打磨干净,清理后涂上绝缘漆。

(4)因绕组接地产生高热烧毁铁芯或齿部。可用凿子或刮刀等工具将熔积物剔除干净,涂上绝缘溱烘干。

(5)铁芯与机座间结合松动,可拧紧原有定位螺钉。若定位螺钉失效,可在机座上重钻定位孔并攻丝,旋紧定位螺钉。

(二)轴承故障检修

转轴通过轴承支撑转动,是负载最重的部分,又是容易磨损的部件。

(1)故障检查

运行中检查:滚动轴承缺油时,会听到骨碌骨碌的声音,若听到不连续的梗梗声,可能是轴承钢圈破裂。轴承内混有沙土等杂物或轴承零件有轻度磨损时,会产生轻微的杂音。

拆卸后检查:先察看轴承滚动体、内外钢圈是否有破损、锈蚀、疤痕等,然后用手捏住轴承内圈,并使轴承摆平,另一只手用力推外钢圈,如果轴承良好,外钢圈应转动平稳,转动中无振动和明显的卡滞现象,停转后外钢圈没有倒退现象,否则说明轴承已不能再用了。左手卡住外圈,右手捏住内钢圈,用力向各个方向推动,如果推动时感到很松,就是磨损严重。

(2)故障修理

轴承外表面上的锈斑可用00号砂纸擦除,然后放入汽油中清洗;或轴承有裂纹、内外圈碎裂或轴承过度磨损时,应更换新轴承。更换新轴承时,要选用与原来型号相同的轴承。

(三)转轴故障检修

(1)轴弯曲

若弯曲不大,可通过磨光轴径、滑环的方法进行修复;若弯曲超过0.2mm,可将轴放于压力机下,在拍弯曲处加压矫正,矫正后的轴表面用车床切削磨光;如弯曲过大则需另换新轴。

(2)轴颈磨损

轴颈磨损不大时,可在轴颈上镀一层铬,再磨削至需要尺寸;磨损较多时,可在轴颈上进行堆焊,再到车床上切削磨光;如果轴颈磨损过大时,也在轴颈上车削2-3mm,再车一套筒趁热套在轴颈上,然后车削到所需尺寸。

(3)轴裂纹或断裂

轴的横向裂纹深度不超过轴直径的10%-15%,纵向裂纹不超过轴长的10%时,可用堆焊法补救,然后再精车至所需尺寸。若轴的裂纹较严重,就需要更换新轴。

(四)机壳和端盖的检修

第3篇

论文摘要:数控机床电气系统故障的调查、分析与诊断的过程也就是故障的排除过程,一旦查明了原因,故障也就几乎等于排除了。因此故障分析诊断的方法十分重要。

一、故障的调查与分析

这是排故的第一阶段,是非常关键的阶段,主要应作好下列工作:

1、询问调查在接到机床现场出现故障要求排除的信息时,首先应要求操作者尽量保持现场故障状态,不做任何处理,这样有利于迅速精确地分析故障原因。

2、现场检查到达现场后,首先要验证操作者提供的各种情况的准确性、完整性,从而核实初步判断的准确度。由于操作者的水平,对故障状况描述不清甚至完全不准确的情况不乏其例,因此到现场后仍然不要急于动手处理,重新仔细调查各种情况,以免破坏了现场,使排故增加难度。

3、故障分析根据已知的故障状况按上节所述故障分类办法分析故障类型,从而确定排故原则。由于大多数故障是有指示的,所以一般情况下,对照机床配套的数控系统诊断手册和使用说明书,可以列出产生该故障的多种可能的原因。

4、确定原因对多种可能的原因进行排查从中找出本次故障的真正原因,这时对维修人员是一种对该机床熟悉程度、知识水平、实践经验和分析判断能力的综合考验。

5、排故准备有的故障的排除方法可能很简单,有些故障则往往较复杂,需要做一系列的准备工作,例如工具仪表的准备、局部的拆卸、零部件的修理,元器件的采购甚至排故计划步骤的制定等等。

下面把电气故障的常用诊断方法综列于下。

(1)直观检查法这是故障分析之初必用的方法,就是利用感官的检查。

①询问向故障现场人员仔细询问故障产生的过程、故障表象及故障后果,并且在整个分析判断过程中可能要多次询问。

②目视总体查看机床各部分工作状态是否处于正常状态(例如各坐标轴位置、主轴状态、刀库、机械手位置等),各电控装置(如数控系统、温控装置、装置等)有无报警指示,局部查看有无保险烧煅,元器件烧焦、开裂、电线电缆脱落,各操作元件位置正确与否等等。

(2)仪器检查法使用常规电工仪表,对各组交、直流电源电压,对相关直流及脉冲信号等进行测量,从中找寻可能的故障。例如用万用表检查各电源情况,及对某些电路板上设置的相关信号状态测量点的测量,用示波器观察相关的脉动信号的幅值、相位甚至有无,用PLC编程器查找PLC程序中的故障部位及原因等。

(3)信号与报警指示分析法

①硬件报警指示这是指包括数控系统、伺服系统在内的各电子、电器装置上的各种状态和故障指示灯,结合指示灯状态和相应的功能说明便可获知指示内容及故障原因与排除方法。

②软件报警指示如前所述的系统软件、PLC程序与加工程序中的故障通常都设有报警显示,依据显示的报警号对照相应的诊断说明手册便可获知可能的故障原因及故障排除方法。

(4)接口状态检查法现代数控系统多将PLC集成于其中,而CNC与PLC之间则以一系列接口信号形式相互通讯联接。有些故障是与接口信号错误或丢失相关的,这些接口信号有的可以在相应的接口板和输入/输出板上有指示灯显示,有的可以通过简单操作在CRT屏幕上显示,而所有的接口信号都可以用PLC编程器调出。

(5)参数调整法数控系统、PLC及伺服驱动系统都设置许多可修改的参数以适应不同机床、不同工作状态的要求。这些参数不仅能使各电气系统与具体机床相匹配,而且更是使机床各项功能达到最佳化所必需的。因此,任何参数的变化(尤其是模拟量参数)甚至丢失都是不允许的;而随机床的长期运行所引起的机械或电气性能的变化会打破最初的匹配状态和最佳化状态。此类故障多指故障分类一节中后一类故障,需要重新调整相关的一个或多个参数方可排除。

(6)备件置换法当故障分析结果集中于某一印制电路板上时,由于电路集成度的不断扩大而要把故障落实于其上某一区域乃至某一元件是十分困难的,为了缩短停机时间,在有相同备件的条件下可以先将备件换上,然后再去检查修复故障板。

鉴于以上条件,在拔出旧板更换新板之前一定要先仔细阅读相关资料,弄懂要求和操作步骤之后再动手,以免造成更大的故障。

(7)交叉换位法当发现故障板或者不能确定是否故障板而又没有备件的情况下,可以将系统中相同或相兼容的两个板互换检查,例如两个坐标的指令板或伺服板的交换从中判断故障板或故障部位。这种交叉换位法应特别注意,不仅硬件接线的正确交换,还要将一系列相应的参数交换,否则不仅达不到目的,反而会产生新的故障造成思维的混乱,一定要事先考虑周全,设计好软、硬件交换方案,准确无误再行交换检查。

(8)特殊处理法当今的数控系统已进入PC基、开放化的发展阶段,其中软件含量越来越丰富,有系统软件、机床制造者软件、甚至还有使用者自己的软件,由于软件逻辑的设计中不可避免的一些问题,会使得有些故障状态无从分析,例如死机现象。对于这种故障现象则可以采取特殊手段来处理,比如整机断电,稍作停顿后再开机,有时则可能将故障消除。维修人员可以在自己的长期实践中摸索其规律或者其他有效的方法。

二、电气维修与故障的排除

电气故障的分析过程也就是故障的排除过程,因此电气故障的一些常用排除方法在上一节的分析方法中已综合介绍过了,本节则列举几个常见电气故障做一简要介绍,供维修者参考。

1、电源电源是维修系统乃至整个机床正常工作的能量来源,它的失效或者故障轻者会丢失数据、造成停机。重者会毁坏系统局部甚至全部。西方国家由于电力充足,电网质量高,因此其电气系统的电源设计考虑较少,这对于我国有较大波动和高次谐波的电力供电网来说就略显不足,再加上某些人为的因素,难免出现由电源而引起的故障。

2、数控系统位置环故障

①位置环报警。可能是位置测量回路开路;测量元件损坏;位置控制建立的接口信号不存在等。

②坐标轴在没有指令的情况下产生运动。可能是漂移过大;位置环或速度环接成正反馈;反馈接线开路;测量元件损坏。

3、机床坐标找不到零点。可能是零方向在远离零点;编码器损坏或接线开路;光栅零点标记移位;回零减速开关失灵。

第4篇

论文摘要:在现代化生产程度很高的今天,企业的生产,产品的加工制造以及人们的日常生活都离不开电动机的使用,在电动机的使用过程当中有很多注意事项以及要求,否则将会发生机器的损坏,这对企业的运转,人民生活等都会带来诸多不便。对电动机常见的故障,主要分为电气和机械两种,每一种故障都给电动机的安全运行带来极大威胁。因此,对电动机的故障分析维护与检修更显得至关重要。

电动机具有结构简单,运行可靠,使用方便,价格低廉等特点。为保证时机的正常工作对运行的电动机要按电动机完好质量标准的要求进行检查,运行中的电动机与被拖动设备的轴心要对正,运行中无明显的振动,一定要保持通风良好、风翅等要完整无缺。要时刻观察和测量电动机电网电压和正常工作电流,电压变化不应超过额定电压的±5%,电动机的额定负荷电流不能经常超过额定电流,以防时机过热,同时检查电机起动保护装置的动作是否灵活可靠。检查电动机各部分温升是否正常,还要经常检查轴承温度,滑动轴承不得超过度,滚动轴承不得超过70度,滚动轴承运转中的声音要清晰、无杂音。对于电动机的运转环境要做到防砸、防淋、防潮。对于环境不良,经常挪动、频繁起动、过载运行等要加强日常维护和保养,及时发现和消除隐患。

一、电动机电气常见故障的分析和处理

(一)时机接通后,电动机不能起动,但有嗡嗡声

可能原因:(1)电源没有全部接通成单相起动;(2)电动机过载;(3)被拖动机械卡住;(4)绕线式电动机转子回路开路成断线;(5)定子内部首端位置接错,或有断线、短路。

处理方法:(1)检查电源线,电动机引出线,熔断器,开关的各对触点,找出断路位置,予以排除;(2)卸载后空载或半载起动;(3)检查被拖动机械,排除故障;(4)检查电刷,滑环和起动电阻各个接触器的接合情况;(5)重新判定三相的首尾端,并检查三相绕组是否有灿线和短路。

(二)电动机起动困难,加额定负载后,转速较低。

可能原因:(1)电源电压较低;(2)原为角接误接成星接;(3)鼠笼型转子的笼条端脱焊,松动或断裂。

处理方法:(1)提高电压;(2)检查铭牌接线方法,改正定子绕组接线方式;(3)进行检查后并对症处理。

(三)电动机起动后发热超过温升标准或冒烟

可能原因:(1)电源电压过低,电动机在额定负载下造成温升过高;(2)电动机通风不良或环境湿度过高;(3)电动机过载或单相运行;(4)电动机起动频繁或正反转次数过多;(5)定子和转子相擦。

处理方法:(1)测量空载和负载电压;(2)检查电动机风扇及清理通风道,加强通风降低环温;(3)用钳型电流表检查各相电流后,对症处理;(4)减少电动机正反转次数,或更换适应于频繁起动及正反转的电动机;(5)检查后姨症处理。

(四)绝缘电阻低

可能原因:(1)绕组受潮或淋水滴入电动机内部;(2)绕组上有粉尘,油圬;(3)定子绕组绝缘老化。

处理方法:(1)将定子,转子绕组加热烘干处理;(2)用汽油擦洗绕组端部烘干;(3)检查并恢复引出线绝缘或更换接线盒绝缘线板;(4)一般情况下需要更换全部绕组。

(五)电动机外壳带电:

可能原因:(1)电动机引出线的绝缘或接线盒绝缘线板;(2)绕组端部碰机壳;(3)电动机外壳没有可靠接地

处理方法:(1)恢复电动机引出线的绝缘或更换接线盒绝缘板;(2)如卸下端盖后接地现象即消失,可在绕组端部加绝缘后再装端盖;(3)按接地要求将电动机外壳进行可靠接地。

(六)电动机运行时声音不正常

可能原因:(1)定子绕组连接错误,局部短路或接地,造成三相电流不平衡而引起噪音;(2)轴承内部有异物或严重缺油。

处理方法:(1)分别检查,对症下药;(2)清洗轴承后更换新油为轴承室的1/2-1/3。

(七)电动机振动

可能原因:(1)电动机安装基础不平;(2)电动机转子不平衡;(3)皮带轮或联轴器不平衡;(4)转轴轴头弯曲或皮带轮偏心;(5)电动机风扇不平衡。

处理方法:(1)将电动机底座垫平,时机找水平后固牢;(2)转子校静平衡或动平衡;(3)进行皮带轮或联轴器校平衡;(4)校直转轴,将皮带轮找正后镶套重车;(5)对风扇校静。

二、电动机机械常见故障的分析和处理

(一)定、转子铁芯故障检修

定、转子都是由相互绝缘的硅钢片叠成,是电动机的磁路部分。定、转子铁芯的损坏和变形主要由以下几个方面原因造成。

1)轴承过度磨损或装配不良,造成定、转子相擦,使铁芯表面损伤,进而造成硅钢片间短路,电动机铁损增加,使电动机温升过高,这时应用细锉等工具去除毛刺,消除硅钢片短接,清除干净后涂上绝缘漆,并加热烘干。

(2)拆除旧绕组时用力过大,使倒槽歪斜向外张开。此时应用小嘴钳、木榔头等工具予以修整,使齿槽复位,并在不好复位的有缝隙的硅钢片间加入青壳纸、胶木板等硬质绝缘材料。

(3)因受潮等原因造成铁芯表面锈蚀,此时需用砂纸打磨干净,清理后涂上绝缘漆。

(4)因绕组接地产生高热烧毁铁芯或齿部。可用凿子或刮刀等工具将熔积物剔除干净,涂上绝缘溱烘干。

(5)铁芯与机座间结合松动,可拧紧原有定位螺钉。若定位螺钉失效,可在机座上重钻定位孔并攻丝,旋紧定位螺钉。

(二)轴承故障检修

转轴通过轴承支撑转动,是负载最重的部分,又是容易磨损的部件。

(1)故障检查

运行中检查:滚动轴承缺油时,会听到骨碌骨碌的声音,若听到不连续的梗梗声,可能是轴承钢圈破裂。轴承内混有沙土等杂物或轴承零件有轻度磨损时,会产生轻微的杂音。

拆卸后检查:先察看轴承滚动体、内外钢圈是否有破损、锈蚀、疤痕等,然后用手捏住轴承内圈,并使轴承摆平,另一只手用力推外钢圈,如果轴承良好,外钢圈应转动平稳,转动中无振动和明显的卡滞现象,停转后外钢圈没有倒退现象,否则说明轴承已不能再用了。左手卡住外圈,右手捏住内钢圈,用力向各个方向推动,如果推动时感到很松,就是磨损严重。

(2)故障修理

轴承外表面上的锈斑可用00号砂纸擦除,然后放入汽油中清洗;或轴承有裂纹、内外圈碎裂或轴承过度磨损时,应更换新轴承。更换新轴承时,要选用与原来型号相同的轴承。

(三)转轴故障检修

(1)轴弯曲

若弯曲不大,可通过磨光轴径、滑环的方法进行修复;若弯曲超过0.2mm,可将轴放于压力机下,在拍弯曲处加压矫正,矫正后的轴表面用车床切削磨光;如弯曲过大则需另换新轴。

(2)轴颈磨损

轴颈磨损不大时,可在轴颈上镀一层铬,再磨削至需要尺寸;磨损较多时,可在轴颈上进行堆焊,再到车床上切削磨光;如果轴颈磨损过大时,也在轴颈上车削2-3mm,再车一套筒趁热套在轴颈上,然后车削到所需尺寸。

(3)轴裂纹或断裂

轴的横向裂纹深度不超过轴直径的10%-15%,纵向裂纹不超过轴长的10%时,可用堆焊法补救,然后再精车至所需尺寸。若轴的裂纹较严重,就需要更换新轴。

(四)机壳和端盖的检修

第5篇

关键词:电力电缆故障解决方法在我国电力电缆较普遍使用是上世纪60年代以后,等级有限,使用范围较窄,当时为解决电缆故障,科研人员研制生产出了以“冲闪法”为原理的电缆故障测试仪。该仪器测试电缆故障的方法有三个步骤:

第一步先用测距仪测距离。其实,先要判断电缆故障是高阻还是低阻或者是接地,根据这个条件采用不同的测试方法。如果是接地故障,就直接用测距仪的低压脉冲法来测量距离;如果是高阻故障就要采用高压冲击放电的方法来测距离,用高压冲击放电的方法测距离时又要许多的辅助设备:如高压脉冲电容、放电球、限流电阻、电感线圈以及信号取样器等等,操作起来既麻烦又不安全,具有一定的危险性,更为烦琐的是还要分析采样波形,对测试者的知识要求比较高。

第二步是查找路径(如果路径清楚这一步可以省掉)。在查找路径时,要给电缆加一信号(路径信号发生器),再用接收机接收这个信号,沿着有信号的路径走一遍,就确定了电缆的路径。但是,这个路径的范围大致要在1-2米之间,不是特别准确。

第三步是根据测出的距离来精确定位。其依据是打火放电产生的声音,当从定点仪的耳机听到声音最大的地方时,也就是找到了故障点的位置。但是,由于是听声音,所以,受环境噪音的影响,找起来相当费时间,有时要等到晚上才可以。当遇到交联电缆时,就更费时间了,因为,交联电缆一般都是内部放电,声音非常小,几乎听不到,最后只有丈量了。

因此上说,用这种方法可以解决大部分的以油侵纸作绝缘材料的电力电缆故障,对于近几年出现的以交联材料和聚乙烯材料作绝缘材料的电缆故障,测试效果不是太理想,原因是打火放电所产生的声音往往很小(电缆外皮没有损伤,只是电缆内部放电),遇到这种情况时,就只有用其它方法来解决了。

虽然有这样的不足之处,但以“冲闪法”原理设计成的电缆故障测试仪在很长一段时间内为企业解决了不少电缆故障,大家基本上是认可的,其贡献有口皆碑。目前已广泛运用到各个行业,随着各行各业的快速发展,电缆的用途越来越广泛,电缆的种类也不断增多,这样电缆故障不断发生就是一种必然。我们知道,各行业对所用电缆的等级、使用的环境、接线配电的方式、绝缘要求各不相同,不同电缆的电缆故障特征也有很大的不同之处,原因是使电缆发生故障的因素有许多方面,可目前人们由于以前养成的习惯,总想以一种方式解决所有的电缆故障,所以现在市场上还是以“冲闪法”为原理设计的电缆故障测试仪占主导地位。然而,在有些行业用“冲闪法”去解决电缆故障,根本就测不出故障,而且很有可能会产生严重后果,如路灯用的电缆和矿山用的井下电缆就不能直接用“冲闪法”去测试故障。同样其它行业用的电缆都有各自的特点,在此我们不能详细介绍。但是,随着科学技术的不断发展,我们应该能够找到更加简便的测试方法,把电缆故障进行分类,对症下药,具体问题具体分析,这样我们就会发现实际有些电缆的故障无须“冲闪法”的原理,解决起来也十分方便快捷。

在多年的实际工作中,我们发现高压电缆和低压电缆的故障各有许多不同之处,高压电缆故障多以运行故障为主,且大多数是高阻故障,而高阻故障又分泄露和闪络两大类型;而低压电缆故障只有开路、短路和断路三种情况(当然,高压电缆也包括这三种情况)。

另外,低压电缆在实际使用过程中还有以下特点:

⒈敷设的随意性比较大,路径不是很明白。

⒉敷设时不像高压电缆那样填沙加砖后深埋,相反埋深较浅,易受外力损伤而出现故障。

⒊电缆一般较短,几十米到几百米不等,不像高压电缆往往在几百米到几公里。

⒋绝缘强度要求低,处理故障做接头时,工艺较简单。

⒌绝大多数电缆在故障点处都有十分明显的烧焦损坏现象。故障点在电缆外皮没有留下痕迹的情况,十分罕见。

⒍所带负载变化较大,而且往往相间不平衡,容易发热,由此引发的故障多为常见。

针对低压电缆的以上特点和广大用户提出的建议以及我们对各个地方的实际使用情况等等因素的综合考虑,我科宇公司的研究人员又成功开发出了DW型低压电缆故障测试定位系统:该系统包括测距仪和定位仪两部分。DW型系统的测距仪是完全智能化、人性化的设计,它自动完成电缆故障点的测试,无须人工分析故障波形,直接报出故障点距离和故障性质。采用电池供电,方便野外工作,体积小,重量轻,携带方便,无须任何辅助设备。DW型系统的电缆故障定位仪是针对直埋低压电缆的埋设路径,埋深及故障点位置进行同步定位测试的仪器。因为,它是采用电磁感应和跨步电压原理设计的低压电缆故障定位系统,它基本上满足了低压电缆故障测试的全部条件。这种测试系统比起以“冲闪法”为原理的电缆故障测试仪来说有许多优点:

⒈多种测试方法集于一身,相互验证结果,以确定故障点的唯一性。

⒉体积小、重量轻、单人轻松操作,没有辅助设备。

⒊采用电池供电,适宜野外工作,不用打火放电。

⒋电缆的路径查找(可以确定在30公分之间)、埋深探测、故障点定位同步完成,效率高。

⒌对故障点的确定,仪器有直观显示,不需要作波形分析。

⒍不受地下情况(如电缆的分叉、打捆、接头扭曲等)影响,像探地雷一样,点对点去查找故障点,定位误差在十几公分以内,相当准确。

⒎不受路面情况影响,如:地砖、绿化带、水泥路面等。

⒏测试现场安全,对测试者没有危险,对电缆没有二次损坏。

⒐价格低廉,一般用户都能接受。

我们知道低压电缆绝缘要求较低,同时运行过程中电流较大,出现故障后有明显的特征,具体归类如下:

第一类故障:整条电缆被烧断或某一相被烧断,此类故障造成配电柜上的电流继电器动作,电缆在故障处损坏相当严重。

第二类故障:电缆各相都短路,同样,此类故障造成配电柜上的电流继电器和电压继电器都动作,电缆在故障点损坏也很严重(可能是受外力引起的)。

第三类故障:电缆只有一相断路,电流继电器动作,故障点损伤较轻但表露较明显。可能是该相电流太大或者是由电缆质量造成。

第四类故障:电缆内部短路,外表看不出痕迹,此类故障一般是由于电缆质量造成的,比较少见。

DW型低压电缆故障定位系统中的测距仪和定位仪结合使用能非常方便地完成测试。同时针对不同故障特征及电缆长度也可独立完成测试。具体如下:

第一类故障和第二类故障如果电缆较短时(小于500米)可直接使用故障定位仪进行故障定位,无须测距仪配合。只需手持接收机沿路径(路径可边走边测)走上一遍,即可确定故障点。

第三类故障:由于电缆在故障点处损坏较轻,发射机发出的信号在此泄漏较少,用定位仪故障定位时,指示范围较窄,这时可先用测距仪测出故障点大概距离,再用定位仪定位也很方便。

第四类故障:此类故障是目前所有电缆故障中最难测的一种故障,此时可用测距仪分别在电缆两头对电缆进行测试,再拿测试结果和实际长度相比较,就可将故障点确定在一个很小的范围内(1-3米),此时将电缆挖开后再找出可疑点,或干脆将这一段电缆锯掉(因为低压电缆很便宜,绝缘要求低,接头好做),或用定位仪,在这一段范围采用音频定位,也可确定故障点。

目前,广大的电力电缆故障测试仪的用户所使用的以“冲闪法”为基础的电缆故障测试仪,在解决低压电缆的低阻故障和死接地故障时,一般都能用测距仪较方便地粗测出故障点的距离(此类故障点的距离测试是无须高压放电设备的,用的是低压脉冲法),但故障点定位还是要用打火、放电、听声音这一方法,同时该类仪器的路径仪和定点仪是分开的,这就造成了找准路径时无法同步定点,而定点时又往往走偏路径,而且该类仪器的路径仪由于原理所限,找电缆路径时,很难找到电缆的准确路径,一般是在1-2米的宽度之间。

第6篇

温度风板的控制系统:调节温度旋钮感觉温度是否发生变化,若不变化则可能是风板控制拉线脱落,如脱落则重新安装调整。感觉出风口的风量是否足够大,如果风量小则是蒸发器堵塞,需要拆卸蒸发器进行清洁。触摸空调管,高压管很热甚至烫手,当然低压管也不会凉。这种情况下,可能会出现压缩机频繁通断的现象。尤其是在发动机高转速的情况下压缩机根本不吸合。切忌不能长时间的高速运转发动机,否则会很危险。

查看冷凝器和水箱及其之间是否被污物堵塞。如有,清除掉污物即可。如确实无污物堵塞,则查看冷媒观察窗,看冷媒是否过多.现象是能看到液体流动,但看不到任何气泡,则证明冷媒的加注量过多了,需要重新做一次标准的抽空加注。对于高压管过热的现象,还要查看空调压缩机的下方是否有油渍,如有则证明压缩机的限压阀已经被高压破坏,需要更换压缩机。

触摸空调管,高压管温度低,而低压管温度高。此种情况下,是压缩机不能有效的使冷媒进行循环,可能需要更换压缩机。若启动空调制冷系统后,两个电子扇同时运转。但就是空调泵不吸则很可能是汽车电脑损坏应予修复。

轿车空调制冷系统常见故障的分析与排除如下:

①制冷剂泄漏制冷系统完全没有冷气吹出,其原因为:制冷系统中无制冷剂或制冷剂泄漏,制冷剂泄漏后,首先要查明漏点,并将其修复好,再重新抽真空,灌注制冷剂。

②制冷系统严重堵塞当压缩机工作时,若制冷系统中某个部位严重堵塞,没有制冷剂循环流动,则就失去了制冷作用。这时,用压力表检测制冷系统的高、低压侧的压力值,可发现高压侧压力值比正常时低,而低压侧的压力值成真空状态,且堵塞部位前后有明显的温差,这一般出现在储液干燥器或膨胀阀内。因此,可用氮气对着储液干燥器或膨胀阀的进口或出口吹气,如不通畅,说明其堵塞,需更换。

③压缩机部件损坏压缩机缸垫窜气、进排气阀损坏,均能造成压缩机不能压缩制冷剂或压缩不良。此时,用压力表检测压缩机工作时的进气压力和排气压力,可发现两者压力相同或相差不大,提高发动机转速时,其压力值仍无明显变化;用手触摸压缩机上的进气管和排气管。可感觉两者温差不大。当压缩机出现缸垫窜气时,用手触摸压缩机会感觉非常烫手。这时,一般需更换损坏的部件。

④输出的制冷量不足造成输出的制冷量不足(即吹出的冷气不凉)的原因和检修:

a.制冷剂不足。当制冷系统中循环制冷剂不足时,高、低压侧的压力值均会比正常时低,且从观察窗内可看到气泡流动。此时,在检查系统无泄漏后,应添加适量的制冷剂。

b.制冷剂过多。如充注的制冷剂量超过制冷系统的正常容量,必然使冷凝器内液体制冷剂增加,从而减少了散热面积,使冷却效率降低。其主要表现是:系统的高、低压侧压力值比正常时高;用手触摸高压管,感觉烫手;断开空调开关约45s后,从观察窗中仍看不见有泡沫状态的制冷剂流过。这时,需从低压侧放掉适量的制冷剂,使其达到正常的排气压力和温度。

c.散热效果差。冷凝器散热片变形,表面过脏或散热风扇电动机转速下降,均会使散热效果变差,从而导致系统的高、低压侧压力值过高和排气温度过高,且用手触摸从冷凝器出来的高压管时有烫手的感觉,需进行修复或更换。

d.膨胀阀开得过大。膨胀阀温包与蒸发器出口包扎不好,或膨胀阀本身有问题,均会引起膨胀阀开得过大。表现为系统的高压值比正常时偏低,而低压值比正常时高;从蒸发器出来的低压管温度比蒸发器表面温度还凉,需检查膨胀阀温包与蒸发器出口是否包扎良好,必要时更换膨胀阀。sp;

e.制冷系统脏堵。由于压缩机长期运转,机械磨损产生的杂质可使储液干燥器或膨胀阀轻微堵塞,从而导致输出的制冷量不足。表现为系统的低压值过低,储液干燥器前后的管子有明显的温差,或膨胀阀处结霜,需更换储液干燥器或清洗制冷系统。

f.制冷系统内有空气。由于空气很难压缩成液化的气体,因此制冷系统内进入空气后,会使压缩机排气压力和排气温度增高,从而导致输出的制冷量下降。从观察窗内能看到大量泡沫状态的制冷剂流过。这是由于抽真空不够彻底,或制冷剂泄漏后,引起制冷系统低压端成真空状态而吸入了外界的空气。需在系统重新抽真空,再灌注制冷剂。

2.桑塔纳轿车空调制冷系统常见故障检修:当接通空调开关,冷凝器风扇运转,但压缩机电磁离合器不吸合,而制冷系统有一定压力的制冷剂量。该故障现象表明从x路电源熔断丝FI4空调开关外界温度开关空调继电器线圈的电路完好,故障可能在外界温度开关与电磁离合器线圈的电路上。这时可用直流电压表先测量恒温开关上输入端插接线与车身搭铁之间的电压,如有电源电压,再检测其两端插接线之间是否导通,若导通,说明故障不在恒温开关上;然后用相同的方法对低压开关进行检测,也可把低压开关两端的插接线短路一下,如压缩机电磁离合器恢复工作,说明低压开关损坏,需更换;如仍不工作,再进一步检查压缩机电磁离合器线圈:从蓄电池正极直接引出一根火线接压缩机电磁离合器线圈,此时压缩机电磁离合器应吸合,否则说明其已损坏,需更换。接通空调开关,压缩机电磁离合器吸合,鼓风机也能运转,但冷凝器风扇不转,而冷却液温度达到规定值后,风扇又能运转。上述故障现象说明熔断丝F23,和散热风扇电动机本身均无问题。因此,需检查空调继电器,可用直流电压表测量空调继电器输出端与车身搭铁之间的电压,如发现空调继电器能吸合而无输出电压时,则说明空调继电器输出电路断路,需焊接或更换空调继电器;也可更换上新的空调继电器进行对比试验,若风扇运转则为空调继电器有故障。

3.轿车空调故障检修实例:

高压管被油污、脏污堵塞,空调不制冷一辆94款奔驰乘用车,配装WI40底盘和全自动空调,制冷剂为R134a,使用中空调不制冷,电磁离合器不吸合,有时能吸合一下,但立即脱开,无法正常工作。更换了空调压缩机、蒸发器和膨胀阀等,加注制冷剂后仍是如此,后又诊断是压缩机工作不良。检查时,启动发动机后开空调,电磁离合器吸合一下便即跳开,连续几次后便不再吸合。接上歧管压力表,检测高压侧压力、低压侧压力均偏低,加入三罐制冷剂,此后能吸合稍长时间,但仍是间歇性吸合、脱开,车内也不制冷,此时高压侧压力为980.7kPa左右,低压侧压力为196kPa左右。在其更换压缩机后,首先读取故障代码:左边温度设定旋钮转至红色区域并显示“HI”;右边温度设定旋钮转至蓝色区域并显示“LO”;点火开关置于ON,按下AUTO键,20s内同时按下RES和“0”键2s以上;左边显示屏显示EO和El,右边显示屏显示故障代码17和06,因该车曾更换过蒸发器、膨胀阀和仪表板,可能造成假故障代码,故先进行清码:读取故障代码后,按左侧AUT0键,在左显示屏出现“d”后再按右侧AUTO键,这时左显示屏显示EO,右显示屏显示00,故障代码清除完毕。拆下贮液干燥器、膨胀阀和相关高压管道等,发现冷凝器至贮液干燥器的高压管接口处几乎被油污、脏污所堵塞,管道和冷凝器内也是金属屑及黑油,于是更换冷凝器及高压管,清洗压缩机,更换了冷凝器、高压管和贮液干燥器;再用高压氮气吹净低压管道,并更换了膨胀阀,加入了适量专用冷冻机油,然后再压入氮气检漏,抽真空,加制冷剂,经试验制冷效果很好,故障消除。

继电器电阻值过大,空调压缩机不工作一辆红旗CA7220E型乘用车新车,在使用不久,便发现外界气温高和空调使用时间长时,会出现空调压缩机不工作的故障。数分钟后重新启动空调,压缩机工作又正常,而且制冷系统良好。此故障时有时无出现频繁,但停车检查短时间内却无此故障出现。该车采用可变排量压缩机,只有在节气门全开、冷却液温度超过规定值和空调管路处于高、低压保护的情况下压缩机才不工作,在汽车正常行驶,空调制冷正常的情况下,压缩机离合器是不会断开的。但要判断故障部位,必须在空调(制冷)开启而压缩机不工作的情况下才能进行。根据上情况,停车启动发动机并开启空调,在连续正常运转1小时后,压缩机终于停止工作。随即对连接压缩机离合器的线路进行监测,发现该线路无电,拔下原继电器与新继电器相比,用数字万用表测量各端子之间的电阻,发现两继电器对应的端子75到U、U到31和U到30间的电阻值相同,分别为12.7kΩ、11.7kΩ、和14kΩ。而端子U到HLS和30到HLS间的电阻值,新继电器为129kΩ,原继电器是143kΩ。可以判定:原继电器部分端子间电阻值稍大,长时间工作发热,使线圈电阻值变化,引起控制压缩机离合器电路通断的触点断开。稍停数分钟后重新启动空调正常,是因为继电器触点断开切断电流后继电器线圈温度下降,工作又恢复正常。

当更换新的空调压缩机离合器继电器后,工作开始正常。

温控开关失效,使用空调就开锅一辆夏利轿车平时行车正常,一开空调制冷,时间不长发动机就开锅。把节温器拿掉和装上都差不多。冷却系统清除了水垢,结果还是同样不能使用空调。

车辆使用空调,开锅肯定是不正常的。当在该车停驶状态下打开空调试验,果然不久就开了锅,说明水温已达100℃,而车上的电动风扇却没有工作。夏利轿车冷却系统为闭式、液冷,带膨胀箱,风扇为电动式,发动机的冷却主要依靠汽车向前行驶产生的风。只有当水温高于92℃时,电动风扇才开始工作,而当水温低于87℃时,电动风扇又自动停止工作,这全靠温控开关控制。这种结构,有利于发动机保持最佳水温,平时风扇也不消耗发动机动力。冷却水开锅了,电动风扇却还没有工作,将点火开关转至ON位置,拆下散热器温度控制开关接头,并将其接地,电动风扇开始转动,说明风扇电动机是好的。检查有关保险丝也是好的,把温控开关拆下放入盆中用万用表Ω档,一个表笔接温控开关接线端,一个表笔接外壳,盆中倒入冷水加热,有开水可直接倒入开水。正常情况下,水温高于92℃时应导通,低于87±2℃时应断开。未用温度表,倒入滚开的水,表针也不动,说明温控开关失效。该车更换温控开关后,使用空调再也没有开锅了。

转速滤波器引线断损,空调系统不能正常工作一辆夏利乘用车,在接通鼓风机开关和空调开关时,发动机的怠速转速提高了,但是空调压缩机不工作,仪表板上的风口吹出热风。启动发动机,接通鼓风机开关和空调开关,发动机的怠速转速提高,仪表板上的风口正常吹风,这说明空调开关和鼓风机工作正常。但此时空调压缩机不工作,而且冷凝器风扇也不转动。检修时,首先将歧管压力计的高、低压软管与制冷系统中对应的检测阀连接好,此时歧管压力计的高压表和低压表都指示为0.6MPa,在正常静态压力值范围内。启动发动机,接通鼓风机开关和空调开关。从蓄电池的正极柱引电源线直接接通空调压缩机的电磁线圈后,其压盘吸合,说明空调压缩机的电磁离合器没有损坏,制冷系统正常工作了,冷凝器风扇也转动起来,同时仪表板上的风口也吹冷风了。再观察歧管压力计的低压表指示值和高压表指示值均在正常范围;高压管道上的液镜内无气泡,证实了制冷系统中制冷剂充足。

空调压缩机的电磁离合器和冷凝器风扇都受该车的空调放大器控制。二者均不能正常工作,其故障根源可能就在空调放大器上。空调放大器为电子式,其正常的工作过程如下:在发动机正常运转时,接通鼓风机开关和空调开关,在制冷系统中制冷剂充足的条件下,空调放大器首先发出提高怠速转速的电信号来驱动怠速真空电磁阀,使发动机怠速转速提高到l200r/min;此时空调放大器接收到发动机的相应转速脉冲信号和蒸发器出风侧的相应温度电信号后,再接通空调压缩机电磁离合器和冷凝器风扇控制继电器电路,使得制冷系统进入正常工作状态。

经试验,该车空调放大器工作正常;检查空调放大器的线束连接器,首先确认点火开关控制的电源线和接地线均正常,压力开关也正常,然后逐线检查连接器各端子到各传感器和执行器之间的线路通断情况。发现原来是转速滤波器的引线断损,使空调放大器无法得到发动机的转速提高信号,因而空调放大器无法接通空调压缩机电磁离合器和冷凝器风扇控制继电器的电路,使得该车空调系统不能正常工作。后将转速滤波器的引线焊好,再将空调放大器复位装好。启动发动机,接通鼓风机开关和空调开关,随着发动机的转速提高,空调压缩机的电磁离合器吸合,冷凝器风扇也转动起来,驾驶室内仪表板上的风口吹出冷风,空调系统恢复了正常工作。

进气门间隙过小,冷机开空调熄火一辆(F22B2型四缸直列电控发动机)本田雅阁乘用车,使用中发动机怠速抖动,转速过低,冷机时一开空调就熄火,但热机时开空调不熄火,故障指示灯不亮。诊断时,首先调取故障代码,无代码输出。检查点火系统正常。测试各汽缸压力也正常,估计为发动机内部无故障。于是拆下节气门体及怠速控制阀等进行检查,发现都被胶质物体严重堵塞。将节气门体、怠速控制阀和快怠速阀都进行了清洗。之后安装试车,有明显好转,但冷车时仍抖动,开空调仍熄火。而发动机温度升高后,怠速较稳定,开空调也正常。该车发动机怠速系统由三部分组成:一是怠速调整螺钉,用以调整基本怠速;二是快怠速阀,它的开闭动作与蜡式节温器相似,冷机时石蜡柱塞收缩,旁通气道开大,冷却液温度升高后,石蜡柱塞膨胀,旁通气道关小;第三个是怠速控制阀,该阀由ECU控制,当空调打开、转向助力泵负荷增大,以及大灯和后窗加热器等投入使用时,怠速控制阀会适时开大,以提高发动机转速。该车进修前曾调整过气门间隙,检查气门间隙时,发现进气门间隙过小,一般只有0.05mm左右。冷机时气门间隙标准值应该是:进气门0.23~0.28mm,排气门0.28~0.32mm。原来该车发动机的上述故障,主要有两个方面的原因:一是节气门体、怠速调整螺钉的空气通道,以及怠速控制阀和快怠速阀都被胶质物体堵塞,因此怠速过低;另一个是进气门间隙过小,使进气门提前开启,进、排气门同时打开的时间加长(气门重叠角过大),造成废气倒流入进气管,影响发动机的工作。后将气门间隙重新按标准调整后,故障排除,一切正常。

第7篇

[论文摘要]血液透析是一门技术性很强的专业,血透护士应具备处理突发故障的能力,有高度的责任心和严谨的工作态度。本文就透析中的常见突发故障及处理方法作一分析总结。

血液透析是肾功能衰竭安全有效的替代疗法之一,目前已广泛应用于临床。有人认为血液透析不需要什么高深的技术,但这是一种误解。其实,血液透析的专业性很强,对医务人员和设备的要求都非常高,因此,为确保透析安全有效地进行,血透护士既要有娴熟的操作技术和丰富的临床工作经验,又要具备一定的技术管理能力,才能沉着果断、有条不紊地处理透析中的突发故障,最大限度减少不必要的损失,提高患者的透析质量。笔者根据多年的工作经验,将血液透析常见故障及处理方法总结如下:

1人为故障

多表现为透析开始前透析器及管道连接不良,透析液浓度、温度、流量的检查不及时,透析时间的设定、合适的体重、血流量、抗凝药的种类和使用量不准确,透析条件变更不及时,患者血压下降时观察不及时,输液结束(泵前)忘记关夹致空气误入等。人为故障其对策是护士在透析工作中坚持“三查七对”原则,严守操作规程,严密观察血透中机器的运转和患者病情变化,做到勤观察、勤调整、勤思考、严肃认真地做好透析中的各项工作。

2透析器及回路发生凝血

为了使透析治疗时血液不凝固,每次将患者血液引出体外后需加肝素抗凝。合适的肝素用量可以既不发生凝血也不引起病人出血,这是透析的基本条件。透析器和回路内凝血的主要原因是:①透析过程中肝素用量不足。②患者血液呈高凝状态。③血液流速慢。④透析膜材料的不同。⑤静脉回流不畅。⑥无肝素透析等。凝血前的征兆:静脉压力逐渐升高,空气捕捉器内血液分层,泡沫增多,外壳变硬,透析器颜色变深。其对策是:①应在透析开始前做好透析器及管道的预冲,使用肝素湿化,对于血液处于高凝状态的患者,应及时复查血常规,根据出凝血时间加大肝素用量。②静脉回流不畅时,要检查回路有无梗阻、打折及血栓堵塞静脉滤网。③血流量不足时,检查穿刺针位置是否合适,保证充分的血流量,无肝素透析时根据凝血情况每30~60分钟阻断一次血流,用100~200ml生理盐水冲洗透析器及管路,冲洗量计算在超滤总量内。④透析器已发生凝血时,要及时更换。

3透析中的失血

透析过程也是一种体外循环的过程,由于透析器及管道系统连接口较多,加之循环血量较大,200~300ml/min,任何部位发生松脱都可以造成大量出血而致患者在数分钟内死亡,透析结束时不注意压迫止血也会引起失血,透析器及管路凝血约失去220ml全血,给病人造成极大的损失。透析结束回血时操作要熟练,使血液损失减少到最少。我们要注意每个细小的环节,各个接头要拧紧,透析中经常巡视,做到及时发现、及早处理,压迫止血时有告知的义务,以取得配合,避免意外发生。

4透析过程中的低血压

血液透析中最常见的并发症是低血压,主要原因是脱水过多或速度过快引起的血容量下降,部分患者同时有血管顺应性差。透析脱水首先是除去血管内的水分,血管外组织间隙的水分不断进入补充血管内水分使使血压稳定。发生低血压后,心、脑等重要脏器供血严重不足,故应尽量避免,发生后要迅速纠正。低血压前兆:出汗、打哈欠、恶心呕吐等。预防对策:测量体重要准确,避免透析脱水过多过快,体重增长过多时要适当延长透析时间。出现血压下降时即刻给予生理盐水、高渗糖等静脉滴入,减少机器上的脱水,减少血流量,抬高下肢增加回心血量。

5透析中的空气栓塞

空气栓塞也是透析中较严重的医疗事故。如果处理不及时,将会给病人造成不可挽回的损失。透析过程中出现的空气栓塞常见的原因有:①动脉管路连接不紧或有裂缝,空气随之进入血液。②输液输血时观察不周,液体滴完了不及时夹住侧支。③回血操作时失误或血泵失控,气体进入体内[1]。④静脉壶液面低。⑤血流量不足,动脉压产生气泡等。如大量空气逸入,患者可迅速死亡。混入空气时的症状有:患者可出现呼吸困难、胸痛、咳嗽、发绀、血压下降、气喘,严重者引起昏迷和死亡。此时护士应立即将患者置于头低左侧卧位,拍背部,报告医生及时对症处理,必要时送高压氧舱治疗。无论何种处理,最有效的是事前预防极为重要。预防对策:①体外循环各接头要衔接紧密,及时查对。②输液或输血应从动脉端给入,并注意观察。③提升静脉壶液面使其高于空气探测器。6电、水源中断

在透析中可能发生意外如水、电中断,使透析不能正常进行。因此,我们在积极寻找原因的同时要采取必要的措施。断电:断电时血泵不转,时间较短时需要手摇,防止凝血;时间较长就要暂时先回血,将动静脉穿刺针盖上的小帽固定好。病人可以活动,待来电时继续接通循环治疗。断水:断水原因有水泵故障,水管断裂,水源不足等,此时透析液电导率报警停止供液。可以采取单纯超滤,时间较长则要终止透析。如果水箱的水有一定的量可以将透析液流量调至250ml左右,可以暂时不回血,待供水充足时继续治疗。

综上所述,血透护士除了具备良好的专业素质及对患者有高度的责任心及严谨的工作态度外,还必须具备应对紧急意外故障的处理技能。在繁忙的工作中尤应注意,稍有疏忽就会给患者带来不必要的痛苦,因此在工作中应不断地学习探索,刻苦钻研专科技术,提高专科水平。提升自身素质,增加服务内涵,防止差错事故的发生,推动血液净化事业的发展。

[参考文献]

[1]方咏梅,吴云霞,方梅红.血液透析中低血压的护理[J].中国医药导报,2007,4(6):77.

第8篇

1.1早期监测设备运行时间过长监测站点中2007年建设的站点占所有监测站点的半数以上,设备到现在已运行7年,远远超过电子设备平均寿命,监测主机、解调/解扰设备、监测板卡等硬件持续老化,突发性故障多发,导致故障率不断升高而且故障点分散性、随机性强,维护难度大。

1.2模拟及部分数字监测站点设备架构落后通过图1可以发现,所有模拟监测站点及部分数字监测站点采用半嵌入式结构,存储及各种软件运行均依赖监测主机,多个可能的故障环节集中到工控机本身,工控机自身的故障多发导致设备故障率升高,同时给故障分析及故障环节定位带来较大困难,不易进行有针对性的维护。

1.3多个厂商设备共存数字监测站点共采用三个生产厂家的设备,每个厂家的设备架构和组成都不一样,底层运行协议及系统软件均不同,虽然接口协议都符合总局标准及招标需求,但兼容性仍然不够理想,增加了维护难度。

2常见故障分析及故障处理流程

根据监测站点的特点及日常维护工作总结,常见故障现象主要分为三大类,即网络故障、软件故障、硬件故障。

2.1网络故障

2.1.1交换机及网线包括交换机电源故障、交换模块故障、交换机配置文件损坏及网线松动等,交换机及网线故障一般不易远程判断,主要依靠站点代维人员通过观察交换机指示灯及电源指示灯来判断,通常需要更换交换机。

2.1.2协议转换器江苏省广播电视监测网采用省广电干线网SDH进行三级组网,现仍有8个地市的区县采用协议转换器(光电转换)实现2M数据链路传输,协议转换器成对使用,市、县任何一端出现故障都会导致网络异常,多数网络故障都是由于协议转换器的电源适配器损坏,协转无法工作所致,需依靠站点代维人员辅助判断,一般要更换协转电源适配器。

2.1.3数据传输链路较少发生故障,如果排除上述两个环节,就要考虑SDH传输链路中某个环节出现问题,需联系各相关网络机房网管或技术员帮助排查解决。

2.2硬件设备类故障

2.2.1电源包括远程电源管理器故障、管理模块故障、解调器电源模块故障、场强仪电源模块故障、板卡箱电源模块故障、主机电源故障及电源线脱落等,在网络正常的情况下可通过PING命令初步判断各个设备运行状态,进行初步排除,结合远程维护软件和站点人员现场查看确定故障环节,日常维护中主要以电源管理器及解调器电源模块故障较多见。

2.2.2硬盘包括系统硬盘及阵列硬盘故障,系统硬盘故障及主机上的阵列硬盘一般远程无法直接判断,都会导致主机无法启动或自检失败,远程只能判断出该站点主机是否通讯正常,需站点代维人员协助判断。存储器硬盘故障可通过存储器管理口远程判断,存储器硬盘可以快递备品到站点并由站点人员代换,中心维护人员进行远程配置,主机内硬盘必须现场更换并重新安装系统或重做阵列,在维护中最耗时。

2.2.3风扇包括CPU风扇及机箱散热风扇故障,风扇故障一般是由于运行时间过长或机房环境较差导致风扇停转,风扇停转的直接影响就是CPU无法工作致主机无法启动或启动后短时间内又自动关机,机箱散热风扇故障极易导致硬盘、显卡、监测板卡等过热,设备寿命缩短。风扇故障需要现场拆机判断及更换。

2.2.4监测板卡包括主机内的模拟监测板卡及数字嵌入式板卡故障,主要是由于板卡工作时间过长导致老化损坏,驱动无法加载,视频无法采集,中心无法观看视频,可以通过远程控制软件访问主机查看板卡状态。模拟监测板卡单块损坏会导致所有板卡驱动无法加载,需及时更换,数字监测板卡每块对应一个IP流输出,个别板卡故障不影响基本监测。

2.3软件故障

2.3.1操作系统包括操作系统崩溃及系统假死,系统崩溃主要是由于系统运行时间过长或频繁断电重启造成系统内核文件损毁,常见于LINUX操作系统的监测站点;系统运行产生的系统垃圾文件及监测软件中的日志文件过大容易导致系统盘空间被占满,从而造成系统假死,多见于WINDOWS操作系统的监测站点。系统假死可以通过远程访问删除垃圾文件解决,系统崩溃需要到站点现场更换系统硬盘或重装操作系统。

2.3.2运行软件及配置文件包括软件运行异常及配置错误,软件运行异常主要由于运行时间过长导致的进程崩溃,看门狗软件异常导致的软件无法正常启动及软件版本不一致导致运行异常。配置错误及参数设置不正确容易造成软件通讯、解扰、解调、存储、上报等功能无法正常实现,两种故障情况都主要依靠远程调试及配置来解决。

2.4信号问题

2.4.1信号中断常见的原因主要有信号线在机房施工中图被挖断、信号线脱落、分配器故障、模拟停传等,信号中断情况并不多见,主要依靠站点维护人员代为排查并帮助恢复。

2.4.2授权及信源错误主要是智能卡授权到期未能及时续授权及信号源不是最新的用户端信号,需要和站点所在地网络公司进行协调解决。

2.5故障处理的一般流程故障的处理要求准确、高效、具体、有针对性,一般采通过用户反馈和每日一报获取故障信息及维护请求,维护人进行简单故障判断、故障具体环节判断和分析,根据判断情况,优先采用远程维护,无法解决的在确定故障环节的情况下制定完善的维护计划,做好现场维护及备件准备。详细故障处理流程见图3。

3几点维护经验

3.1充分发挥中心软件中的状态监控功能中心软件具有站点运行状态查看功能,该功能通过不同颜色表示不同的工作状态,根据状态可以初步判定站点异常情况。比如紫色表示软件工作异常,主机工作正常,可以通过远程访问来查看具体情况并远程重启计算机及软件等;红色表示主机通讯异常,无法上传数据,在网络和远程电源管理器正常的情况下通过中心软件可以进行远程断电重启设备。充分利用状态监控功能,能方便、快捷的处理一般简单故障,也能更快的排除及定位故障环节。

3.2网络故障环节的判断要慎重网络故障具体表现为站点所有设备都无法通讯,可能的原因多样,故障环节的判断较复杂,同时网络故障有可能牵涉到第三方(网络公司),所以对网络故障环节判断必须慎重,首先从站点网络设备如交换机、网线、协议转换器等入手,最后才考虑数据链路故障的可能,并请网络公司人员帮助排查。

3.3用好远程维护的技术手段站点的维护工作主要依靠远程维护,大部分的非硬件故障都可以通过远程解决,部分硬件故障也需要远程软件来协助进行故障分析和故障环节定位,因此要充分发挥远程维护技术手段在维护中的作用。我们采用的技术手段主要有三种:1.远程电源管理器、计算机远程桌面控制软件、远程访问命令及软件,监测站点都配备远程电源管理器,通过WEB访问或中心软件可以方便的对电源管理器供电的设备进行断电重启;2.计算机远程桌面控制软件较常用的有VNC和PCANYWHERE,共同的特点是可以对固定IP的站点计算机远程访问,远程桌面会显示在主控计算机上,通过鼠标、键盘实现对站点主机的操作,跟在现场操作一样方便有效;3.对部分LINUX系统的站点,还可以通过PUTY软件和TELNET进入系统内核通过命令行方式进行操作,适用于有一定LINUX系统基础的技术人员。用好上述几种远程技术手段,不仅能及时完成站点大部分日常维护工作,同时也可以和现场维护相结合,提高维护效率。

3.4备品备件充分,方案完善,预防突况监测站点设备运行时间过长容易导致各种硬件故障,特别是采用工控机方式的站点,主机内部任何硬件的故障都可能导致主机无法启动或频繁死机现象,具体原因很难通过远程手段来判断,同时突发性故障也较常见,因此在通过远程手段尽可能准确的定位故障环节的同时,还要充分做好维护方案,尽可能详细的考虑各种可能的突况,备品备件要准备充分,风扇、硬盘、内存、电源、板卡等易损件必须常备。

3.5多依靠站点代维人员站点代维人员在维护中发挥着重要作用,特别是网络故障及电源类故障特别需要依靠现场观察来辅助定位故障环节,部分不需拆机更换的备件也是快递给站点代维人员并委托其更换,多数需要现场操作的简单维护都可以由其代为完成,保持和站点代维人员的良好沟通并充分发挥其维护能力不仅能更快的排除及定位故障环节,更能节省维护成本。

4改进维护工作的几点建议与思考

4.1促进技术升级及设备更新

4.1.1加快设备更新加快嵌入式数字监测站点设备的安装及更换,尽快启动模拟监测设备向全嵌入式转换,建设数字、模拟一体化的嵌入式监测站点,既能避免重复投入,又大大减少故障发生的几率,也更加易于维护。

4.1.2推动SDH省市县三级监测网络扩容与改造将现在的县级站点网络传输模式向以太网方式转变,摒弃协议转换器这个易发故障的环节,部分提前转换为以太接入的市县运行情况表明,网络故障的几率将大大降低。同时对网络带宽进行扩容,以满足监测业务的快速发展的需求。

4.1.3制定系统建设规范和接口标准建立一套适用于我省在建和已建监测系统的统一规范和接口协议标准,方便现有及新建系统功能扩展和在原系统基础上的业务扩展,最终实现各业务系统之间互联互通,站点设备和中心系统将在统一规范下相对独立,不同厂商的设备在满足该规范的条件下更好的兼容。

4.2改变维护方式及维护策略

4.2.1建立监测站点设备信息与维护记录数据库根据机房环境、供电情况、设备清单、设备年份、设备状态等信息建立监测站点基本信息库,并根据维护、巡检情况对变化信息进行反馈和更新,为数据分析、设备趋势预测和定期维护计划制定提供基础。

4.2.2改变维护策略按照设备使用年限、工作环境、老化程度和故障频次将设备维护级别分为三个级别。一级优先级最高,设备年份最久,老化严重,故障隐患最大,二级次之,三级最低。根据级别分类,制定巡检计划,增加一级维护站点的巡检次数,对可能存在隐患的设备环境、板卡、硬盘、风扇、系统等软硬件环节进行排查及提前更换,做到提前维护,减少突发故障。

4.2.3简化维护方式对所有监测站点配置文件进行备份,在对故障进行详细分析的前提下,更多采用整机更换的方式,始终保证数套完整监测站点的备份,并根据监

测站点设备信息库的数据及配置文件,快速还原故障站点需要更换的设备或主机,并远程指导站点维护人员代为更换。

4.3加强培训与沟通加强对我台维护人员及站点代维人员的业务培训,重点提高我台维护人员的故障分析、判断、远程调试能力及现场维护水平;提高站点代维人员对站点设备构成及工作原理的了解并熟悉常见故障现象,同时和站点代维人员加强沟通,建立良好的合作关系。

5结束语

第9篇

关键词:电容式电压互感器故障分析处理

2001年3月中旬,我局继电保护人员在对110kV金原变电站新安装设备电源自动投入(以下简称BZT)装置进行投运前检查时,发现备用电源侧无电压。因为这个电压是通过安装在备用电源线路侧的电容式电压互感器(以下简称CVT)而引入的,于是继电保护和高压试验人员对CVT及其二次回路进行了一系列的检查试验,结果发现该CVT电磁单元烧损的严重故障,检修人员及时对其进行了更换,避免了一起设备事故的发生。

1设备故障发现经过

我局金原变电站有两条110kV电源线路,正常运行时,一条主供一条CVT备用。为了在主供线路发生永久性故障时能快速合上备用线路开关,110kV系统装设了BZT装置。如图1所示,BZT装置接入金原110kV南北两段母线电压和两条线路侧电压,通过装置的切换把手,可以分别将每条线路转换为主供线路或备用线路,并把相应母线电压、线路电压和二次回路做相应的切换。正常运行方式下,紫金线为主供电源,T金线备用,这时将金原110kV北母线电压和T金2线路侧电压切入BZT装置,北母线电压反映主供电源工作状态,T金2线路侧电压反映备用电源是否正常,能否起到备用作用。

这套BZT装置是2000年12月份安装的。今年3月中旬,继电保护人员对装置进行投运前检查。工作人员在装置屏后端子排上测量了两段母线电压和紫金线路侧电压,正常:当测量备用电源T金2线路侧CVT的二次电压时,没有电压。当时工作人员认为线路没带电,就将此事搁下,而只对装置本身进行了检验。因那时全站设备要进行定期高压试验,只有将备用线路投入运行,主供线路设备才能停下作试验。运行人员同调度联系后将T金线投运带全站负荷,紫金线停运。这时继电保护人员确知T金线有电,便再次在BZT装置屏上测其线路侧电压,仍旧没有。CVT二次保险,没有爆;拆了回路核对线芯,没有问题;拔下二次保险,直接在二次出线端子上测量,还是没有电压。继电保护人员这才意识到可能是CVT内部出了故障。所以在很快对紫金线设备做完高压试验后,将紫金线投入运行,安排T金线停电,拆除其线路侧CVT的一次引线进行试验。

这台电容式电压互感器的型号是是2000年12月份才投入运行时,CVT的电气原理如图2所示。高压试验人员先测试了CVT的高压电容C1、中压电容C2以及总电容量,再试验了介质损耗,与设备出厂时和投运前的试验数据相比变化不大,说明电容分压器单元没有问题。

为查清CVT的电磁单元有什么问题,试验人员先用万用表的电阻档测中压互感器的一次线圈电阻,其阻值为500多欧姆;然后在中压互感器的一次线圈上加交流电压,测二次电压的值,当一次电压升高时二次电压不仅不升反而下降;最后在中压互感器二次侧的da、dn线圈上加交流电压,用静电电压表测一次电压的值,电压均为零。根据这些试验情况和数据,试验人员初步判断电磁单元内部可能有短路。因没有更为详细的关于这些型号CVT的技术和试验数据,所以当时无法判定具体的故障。鉴于设备要尽快投运(该站载波通讯的结合滤波器接在这台CVT下),检修人员就将这台CVT拆下,我局物资公司通知设备厂家在郑州的办事处,第二天就送来一台新的电容式电压互感器。

新CVT与原来的型号一样,只是电磁单元的结构稍有不同。有这台新CVT作参考,工作人员又对拆下的CVT电磁单元的线圈直流电阻和在二次侧加压重做了试验,对比试验数据如表1所示。这些数据表明,T金线路侧电容式电压互感器电磁单元的中压互感器一次绕组发生了短路。于是,工作人员很快对新CVT进行了试验和安装,及时投入了运行,并将旧CVT运回局里准备解剖检查。

2CVT解体检查和故障原因分析

2001年4月,我局专业技术人员和CVT厂家人员一起,对拆下的CVT进行了解体检查。当工作人员用扳手拧松电磁单元油箱法兰的几颗螺栓后,刺鼻和刺眼的油气从法兰缝隙朝外喷出,明显感到内部聚有很大压力。拆完一圈螺栓,用天车将电容器单元稍微吊离下节油箱,在取下中间电压端子A′和中压电容C2下端接线端子δ与电磁单元之间的引线时,发现固定中压电容C2下端接线端子δ的4只螺栓少了一只,因油箱中的油较满,也看不到这只螺栓掉到了哪里。工作人员用器具把油箱中的油慢慢抽出,当油面低于中压互感器的接线板时,人们终于看清了,掉下的螺栓落在了中压互感器一次绕组抽头的几个接线柱中间。在螺栓与接线柱接触的地方,发现有轻微的短路熔焊痕迹。油箱中的油已经失去了其应有的淡黄色,而变成了象酱油一样的黑褐色。在往外抽油的过程中,油中不断有气体逸出,油中泛起黑褐色的泡沫。当油被全部抽完后,人们看到了中压互感器的铁芯已经烧得没有了硅钢片特有的光泽,最外层的硅钢片已被烧变了形,中间鼓起来了。中压互感器绕组外面包的白布带已被烧成黑炭质,用手一扣就有渣子掉下来。油箱内壁沾满了含有炭质的油渍,用手一摸全是黑。为了拆掉补偿电抗器的引线,工作人员将出线端子盒上方的盖板拆开,发现这个盖板因内部压力太大已经鼓肚。至此,CVT的故障已经十分清楚,那就是中压互感器一次线圈烧损。既是这样,我们还是让油务人员取了油样,进行了油色谱分析。分析结果:除乙炔为零值外,总烃和氢气均大大超过注意值;经计算三比值为020,故障类型是低温过热(150~300℃),这进一步印证了故障的情况。根据对CVT解体检查所发现的情况,我局技术人员和设备厂家人员一致认为,造成中间单元烧损的原因是,固定中压电容C2下端的一只螺栓掉入中压互感器一次绕组的接线柱丛中,使一次绕组部分线匝被短接,其交流阻抗减小,一次电流超过额定值,造成一次绕组烧毁。但螺栓造成的短路不是太严重,或者说被螺栓短接的匝数并不多,因为如果短路严重,短路电流所产生的热将在短时间内使变压器油分解出大量气体,这有可能造成下节油箱爆炸,或使高压电容C1两端所加电压太高而使其爆炸。至于这只螺栓为什么会在运行中脱落,我们认为,这是该设备在安装时未紧固好,工序间检查时也未发现。设备运行后,它位于中压互感器的交变电磁场中,在交变电磁场的作用下不断振动、转动和向下移位,以至于最后脱落,造成中间互感器一次绕组短路。所幸的是,在这次对继电保护自动装置检验中,发现了这个问题,并及时进行了更换,防止了更为严重的设备事故发生。

3经验教训

电容式电压互感器在电力系统中的应用非常广泛,但象这次因螺栓脱落而造成故障的情况却是十分罕见的。对电力设备制造厂家来说,在出厂产品中若万分之一有问题,对设备用户来说就是百分之百的故障隐患。T金线路侧的这只CVT,幸亏发现及时,才未酿成更大的设备事故。因此,作为电力设备的生产厂家,安装人员一定要加强责任心,质检人员一定要把好验收关,以确保每台产品的质量。

相关文章
相关期刊