欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

植物学论文优选九篇

时间:2022-03-19 14:35:43

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇植物学论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

植物学论文

第1篇

观赏植物学是生态旅游专业的一门专业基础课,与植物学、生理学、树木学等课程关系密切。对于无上述基础的学生,若按传统教学方法,全面讲授观赏植物的分类、资源、园林应用等,很明显是不适用的。本课程教学目的是让学生能够认识旅游中常见的观赏植物并能讲解相关文化知识,所以课程的重点在于观赏植物本身的特殊性、多样性及相关的花文化。通过《观赏植物学》课程的学习,使学生能够了解常见观赏植物特征、观赏特性等基本知识;掌握观赏植物相关文化,为导游基础、景区规划等专业课程奠定坚实的理论和实践基础。

二、教学内容及教学方法的调整

(一)教学内容的调整

在该课程已有课程体系的基础上,对传统的课程体系进行有效的改造,弱化生物学相关理论的讲解,加强应用知识和相关文化知识的讲授,建立起适应生态旅游专业本身发展需要的课程体系。

1.课程框架体系的调整

传统的课程构架是按总论和各论讲解,各论是分科属讲述的,对种的特征和应用讲述较少,重点强调的是植物的科属特点。在课堂实践中发现,该教学法对于生态旅游专业学生来说,效果不好。根据生态旅游专业学生形象思维能力强,而生物学基础薄弱的特点,弱化了植物所属的科属及其特征,仅需学生掌握该种植物的主要特征及其观赏特性。

2.教学内容的改进

观赏植物学作为一门实践性较强的课程,既要重视基本理论的学习,又要提高学生的综合运用能力。对生态旅游专业学生而言,要培养学生认识和讲解能力,并以新颖有效的手段实现教学目标。在具体实践中,理论知识做到“适度”“够用”,仅用6学时进行深入浅出的介绍,点到为止。将剩余的大部分学时放到植物种类的教学中,主要给学生介绍旅游中常见的观赏植物的种类、特征及相关的文化知识,并结合实习,使学生能掌握北方常见的观赏植物上百种,学会讲解该植物。

(二)教学方法的改革

通过选择多种教学方法,激发学生的学习主观能动性,拓宽知识面,让学生能够更好地参与到教学当中来,提高学生的学习兴趣,活跃课堂气氛,做到教学相长。

1.理论教学方面

(1)采用多媒体教学方式。多媒体教学中,通过形象的演示,加上教师深入浅出的讲解,学生会在不知不觉中学到知识。教师通过自己拍照、网络等方法积累教学材料,将图片、动画制作成精美的课件,学生可以很直观地看到植物的特殊性,对于形态特殊的观赏植物,一张图片就可以让学生深刻记忆,如黄栌、银杏等。

(2)利用启发式教学。观赏植物学不仅是自然科学,还有很深的文化内涵。在教学过程中,注重相关知识如诗词、典故、花语等的积累,使学生获取更多的信息。在课堂教学时,放一些植物图片,启发学生用专业的词汇去描述;采集相关的植物标本带到课堂,让学生更直观地理解。每次课利用5-10分钟让学生讲解观赏植物的趣事及见过的有特色的植物,使学生更好地掌握理论知识,并且可以提高自信心及语言表达能力。

2.实践教学方面

(1)注重实践教学。在实践教学中,实习3-4次,主要是常见树木和花卉的识别。秦皇岛市区各大景区有观赏植物上百种,从春天的迎春、玉兰,到夏天的荷花、合欢,到秋天的木槿、,到冬天的腊梅等,再到四季常绿的松柏等。四季有景、四季有花,非常适合学生的实践教学。

(2)培养学生的综合归纳能力。要想让学生尽快掌握大量的树种识别知识,只有培养学生的兴趣,才能达到事半功倍的效果。让学生学会归纳,善于总结,在对比的同时,可以更好地认识植物。在实践教学中,除了观赏植物的识别外,还要注重学生对观赏植物的讲解能力,让学生对各类植物进行评价,调动学生学习的积极性。

(三)考核方法的改革

第2篇

在教学过程中,我遗憾的发现学生死记硬背,为了应付考试,只记住表面肤浅的知识内容,在阅卷过程中,发现学生选择题和填空题答的质量不高,这说明学生对小的知识点掌握不牢;考试过后又全都忘记了,因此我觉得加强学习内容建设是非常重要的,也就是说要使难理解的内容简单话,繁琐的内容明了话。并且植物生物化学主要研究植物,因此我们不能沿用其他生物化学的课程;在教学中还发现学生不愿记忆,觉得记忆困难,这点也是学生在学习本门课的难点问题。

2植物生物化学教改内容

2.1养成良好的学习习惯

在教学过程中,我要求学生以系统性、条理性学习,注意上下内容连贯,通过课堂提问的方式,使学生养成细心耐心、循序渐进的学习习惯,让学生懂得,怎样抓住重点,分清主次,这个习惯的养成对于其他学科的学习也是十分重要的,做好预习,多做习题是学习的关键。

2.2教学内容与时俱进

在每个知识点给出之前,我都会以启发教学的形式提出很多问题,并且鼓励学生互动,这样可以激发学生的兴趣点和学习的热情,这样便于学生长期记忆。比如说我会在蛋白质这章,利用幻灯形式,把社会关注重点“三鹿奶粉”推到学生面前,让学生们思考蛋白质的缺失对生命的意义,并且深入探讨酶的催化作用、调节作用(胰岛素、生长素等)、运输功能(血红蛋白、脂蛋白等),运动功能(肌动蛋白),免疫保护作用(干扰素、抗体等),传递信息的受体(激素),贮存功能(种子贮藏蛋白)等[2],都通过实例来引导学生。通过网络,有牛津大学的公开课,让学生们开阔眼界,在课堂上领略异国教育风采。

2.3优化教学内容

学习一门科学,教学内容的紧凑性和递进性是很重要的,尤其是对于大二的学生。因此,打破原有教材的知识框架,适当调整教材的先后顺序,对教材内容进行重新组合。比如:在生物化学的动态部分,物质代谢各个章节中,首先涉及到新陈代谢概念,对学习四大物质代谢起到一个铺垫的作用,在实际教学环节中也可将生物氧化和物质代谢之间的相互联系这两部分内容提到前面来讲,在学生的头脑中形成了一个连续的思路,在进行四大物质代谢的讲授过程中就会自然而然地形成一种思维模式,用动态的思维去理解各大物质之间的联系,便于学生的理解与掌握。

3结束语

第3篇

舞蹈是一项充满审美体验的综合运动,舞蹈能够让学生在音乐的熏陶下,在运动中获得美的体验,从观赏练习实践中培养审美情趣和健康能力,在运动中不断强化对美的感悟,逐渐塑造优美的形体,不断培养他们高雅的品位,增强他们的艺术修养,培养气质。随着社会就业竞争力的不断增强,社会对人才的要求,既注重外形,又注重内修,既强调技能,又考虑品位修养,只有那些形体美行为美心灵美的人才能更好地满足社会的需要。舞蹈教室都有大镜子和音响设备,高职学生能够通过镜子纠正自己的动作,矫正自己的形体姿势,不断发现并努力塑造自己的形体美,建立自己的审美标准,强化他们的审美体验。在舞蹈训练中,为了达到一定的动作标准和形体效果,每个学生都要反复训练,克服自身的不足,历经多次失败,不断增强他们的意志和毅力,树立迎难而上百折不挠的勇气,塑造形体美的同时也在塑造他们的心灵美。

二、树立学生自信,增强气质与风度

高职学生需要具备强大的自信,社会是充满竞争的,人生也是有许多不可预知的,生活道路上不可能一帆风顺,职场上也不尽是顺风顺水,在创业的道路上更是充满荆棘,每一个学生要在社会的大海大浪中激流杨帆,必须充满自信。舞蹈训练能够让学生塑造健康的体质、优美的形体,长期的舞蹈训练能够让学生具备外在美与内在美,不断增强他们工作和生活的自信。高职学生要在以后的职场上争取更多的优势和发展空间,还应具备一定的气质和风度,气质与风度是一个人的个性,也是一个人最好的名片。气质不会与生俱来,风度也不会随年龄的增长而增,都需要通过后天的努力培养,才能具备优雅的举止,良好的言语谈吐,才会给人以和蔼友善,亲和融洽,温文尔雅,如沐春风的感觉,才能在生活中更好地与人相处,工作中受人尊重,交际中受人欢迎,更好地适应社会,发展事业,享受人生。舞蹈教学是培养学生风度与气质的最好途径,舞蹈隐含着一种气度、精神和风度,在舞蹈训练中,要全神贯注,每一个动作和技巧都严格要求,审美追求和艺术品位不断提升,逐渐培养一种高雅的气度。

三、增强人际交往能力,培养集体与责任意识

人是社会中的人,需要与人交往,需要与人合作,需要把个人与社会融为一体,不断提升自己的交际能力,学会与人合作,培养自己的团队意识与集体荣誉感。也应把个人的价值与社会价值统一起来,不断增强自己的社会责任感,才能更好的适应社会发展,成就自我,成为社会有用的人才,高职舞蹈教学一般采取集体教学的形式,学生集体练习,不同个性不同性别的学生参与舞蹈训练,一方面能够让他们有更多的交际和交流机会,提高他们的交往能力;另一方面,一个集体需要相互配合,相互帮助,也要集体荣誉感,也要一定的责任与担当意识。在舞蹈训练中,需要与舞伴密切配合,在动作节奏上保持一致,和他人一起把舞蹈的美展现出来,增强团队精神与合作意识。在与舞伴协调配合过程中,既锻炼身体,提升了舞蹈技能,又能让那些性格内向胆小腼腆的高职学生逐步消除与人交往的心理障碍,努力塑造健康的心灵。同时,舞蹈需要更好地协调配合,需要表达交流,让他们学会表达与倾听,学会理解与宽容,学会体谅与包容,逐步掌握交际的礼仪与为人处事的技巧,为走向社会更好地与人交往奠定良好的基础。另外,他们在舞蹈训练中学会忍让与体贴、互助与谦逊,这些优秀的品质都是他们适应社会的基本素养与能力。

四、培养团队精神,增强合作能力

现在的高职学生面对的是一个竞争异常激烈的社会,每一个人不能仅靠个人的力量获得更大的成就。只有较强的团队精神与合作能力,才能在现代职场更好地发挥作用,才能在激烈的市场价竞争中形成更为强大的竞争力。一个人要想在社会上更好地发展,必须学会与他人合作,必须具有团队精神,才能胜任各种工作,才能在未来的发展中不断拓展自己的事业,因此,团队精神和合作能力是学生适应社会发展的必备能力。

五、结语

第4篇

文科生和理科生基础不同,生物化学相关知识不能很好地衔接,因此,学校主要采取小班式教学。将文科生放在一个班,教师可以放慢进度,将与授课内容有关的高中基础知识补充讲解,方便学生理解后续授课内容,然而目前大学生物化学课普遍存在内容多但课时少的矛盾,使一些教师不注重教法探讨和学法研究,往往忽视学生主体,大多利用多媒体技术,以讲授法为主,实施灌注式、填鸭式教学策略[5]。对于文科生和理科生的教学内容方法区别不大,虽然教学任务完成了,但是教学效果差,学生短时间无法掌握,学习难度大,每次上课感觉在听“天书”,久而久之便产生厌学情绪,逆反心理,没有信心学好生物化学,因此,在有限的学时内,如何积极开展轻松愉快的课堂教学,形成和谐的学习氛围,提高课堂教学效率是需要生物化学教师共同思考和探讨的问题。

2生物化学教学策略的改进

2.1帮助学生陪养兴趣,增强学习的信心和动力

“态度决定一切”“兴趣是最好的老师”“自信是迈向成功的第一步”……从这些耳熟能详的名言锦句可以得到启示,做好一件事,态度是关键、兴趣是动力、信心必不可少。要想学好生物化学这门课,这三要素同样不可或缺。首先,学生要明确学科重要性,树立正确的学习态度。绪论课是一门课程的缩影和向导,是引发学生习兴趣、明确学科重要性、树立良好的学习态度的重要开端,第一节课学生好奇心都较强,应利用这一特点,精心设计有效引导,使学生从“要我学”的被动状态转变为“我要学”的主动状态。随着多媒体的普及,利用网络开拓生物化学知识领域成为提高学习兴趣的有效途径。教师可利用课间播放一些生物化学的影视资料,学生可在课后充分利用网络查阅资料,观看生物化学相关视频。另外,学生可利用图书馆资料读一些相关的课外书籍。从多个方面让学生感受生物化学的神奇与奥秘,激发学生的求知欲[6-7]。生物化学教材中的物质代谢部分是重点也是难点,涉及多步化学反应以及多种酶,内容较为抽象,难懂易忘,若仅用化学结构式和反应方程式来讲解内容难免枯燥乏味,如何让学生易于接受呢?首先,概述三大物质代谢,其次章分节详细讲解,最后总结三大物质之间的代谢联系。整个教学采取总-分-总的教学策略,注重理论和实际结合,例如:讲解糖代谢时可结合学生体内1d的糖代谢变化分析,掌握血糖的三大来源四大去路。讲解三大物质代谢之间的相互转化关系时,以高糖高脂高蛋白饮食、肥胖患者、三高人群为例。教师在讲解过程中要密切结合学科前沿知识、最新研究进展、科学家趣事、临床实例、日常生活实例等,来增加讲解的生动性和趣味性,提高学生的学习兴趣[8-9]。心理学家布鲁姆提出的“掌握学习”理论在教学实践中取得了显著成效,该理论告诉教师一定要对自己的教学充满信心,并努力创设条件和机会促进每位学生增强自信心,引导文科生从心理上消除畏难情绪。在教学过程中,教师要把握文科生的接受能力,由简到难、由浅到深的授课,精选教学内容,减轻学生负担,切不可“满堂灌”。另外,通过情感教育激励学生,关爱学生,引导学生敢想、敢说、敢问,逐步培养学生发现问题、提出问题及解决问题的能力[10]。

2.2布置课前预习,提高教学质量,考察学习效果

教师应要求学生课前预习,通过图书馆、网络等渠道查阅相关资料,了解背景资料及熟悉一些专有名词,不求深入,初步做到课前心里有底,这样才能跟上老师的“节奏”,课堂上,学生才能收到良好的效果,例如:核酸的结构和功能这一章,涉及核糖核酸、脱氧核糖核酸、核苷酸、碱基、戊糖、磷酸等名词术语和它们之间的包含关系,学生通过多读多查,熟悉定义,理顺关系,那么听课过程中会很轻松,克服了生物化学教学课时少但内容多的矛盾。在授课过程中,教师应将内容分为了解、熟悉、掌握三个层次。授课层次清晰,重难点突出,利于学生把握生物化学的主线[11]。教学大纲要求了解的内容,教师可将该内容布置为课后作业,培养学生自学能力。要求熟悉和掌握的教学内容,教师需注重学习思路、学习方法和学习技巧的讲授。生物化学教学中,教师通常利用多媒体与黑板相结合的手段授课,多媒体教学既能将抽象的内容、复杂的代谢过程直观生动地表达出来,动画、视频等元素又能增加生物化学教学的趣味性,同时很重要的一点是可以缩短教师板书的时间,达到事半功倍的效果,例如讲授DNA的复制过程时可通过动画短片,生动地展现各种酶、引物、底物及其他蛋白质因子的动态变化,从而使枯燥乏味的课堂内容变得生动有趣。多媒体在当代教学中发挥十分重要的作用,但是这种手段有一定的缺点,使用不当反而效果大打折扣。教师一定要在幻灯片制作上下功夫,在教学中掌握技巧,不能完全依赖于多媒体。要将多媒体与板书、教材有机结合,才能提高教学效果[12-13]。生物化学教学方式种类繁多,如讲解式、引导式、启发式、举例式、探究式等[14]。教师可根据不同的教学内容或教学章节灵活选用,一堂高质量的生物化学课往往运用了多种教学法。生物化学知识点繁多、大多需要理解识记,教师要引导学生把无意识记和有意识记巧妙地结合起来,对于需要记忆的内容不要“死记”,而要“巧记”。利用谐音、顺口溜、小诗歌记忆法帮助学生记忆[15]。例如可以利用谐音:“假设来借一两本书”,记忆8种必需氨基酸———甲硫即蛋氨酸、色氨酸、赖氨酸、缬氨酸、异亮氨酸、亮氨酸、苯丙氨酸、苏氨酸。另外以理解为基础才能记得牢记得准。文科生大多具有思维活跃、理解力强、擅长记忆等优点,因此,利用文科生的长处,方法得当,肯下功夫,相信每个文科生都能学好生物化学。为了督促学生学习,教师可通过课间提问、组织学生进行课堂讨论,实践表明,课堂提问可增进师生交流、活跃课堂气氛、集中学生注意力、激发学习兴趣、开拓学生思路、启迪学生思维、获得信息反馈、提高教学质量。开设讨论课不仅有助于加强学生对基本理论知识的理解,而且可以激发学生的创新思维能力和综合学习能力。课后,布置作业,督促学生巩固已学内容,鼓励学生利用邮件、QQ、微信等现代通讯手段,相互讨论,共同学习[16]。

3结束语

第5篇

尽管肌体对应外部的感受系统繁多、各部分组织及器官复杂多样,但这些神经系统进入脑内后布局合理、活动有序.如脑干中来自不同部位的7种神经系统,因运动和感受功能不同进一步细分为19个脑神经核,并分别对应于肌体各运动和感知组织及器官[4].这些神经核团或许运用振荡频率的差异进行功能分类或区域划分.上述5部分假设模型基于以下的理由提出:首先,早在20多年前,德国的有关研究人员首先在猫的视皮层观察到振荡现象[8-9].之后,其他研究人员在猫、免、猴的视、听、海马等不同部位都发现了振荡现象.实验发现,神经元发出的脉冲并不随机出现,而是和皮层局域的振荡“同步”发放.这些振荡波并不很规则,而更像一个随手画出的粗糙的波.当使用2个电极作记录时,场电位还存在同位相振荡现象[10-11].也有实验表明,同步振荡可以出现在大脑两半球皮质之间[12].对于振荡现象,许多人认为感觉通道中对同一物体的不同特征敏感的神经元,可能通过40Hz的同步振荡把它们整合(捆绑)起来,形成一个完整的物体概念[13-20].Crick与科赫合作研究视觉意识时还将这一观点进一步推广,认为这些与γ振荡(35~75Hz)同步发放,可能与视觉觉知的神经相关联[21].近年来,运用功能磁共振成像(fMRI)等技术,神经同步振荡现象在认知以及记忆等方面也有着广泛的研究[22-24].其次,脑干中的复杂结构是神经解剖学一直未找到合理解释的一个谜.位于脑干的网状结构在神经系统中发挥的功能和作用,早在10多年前就已引起许多研究者的关注,他们中的大部分人认为:所有的感觉神经都有分支通向网状结构,网状结构对于“唤醒”大脑皮层的功能起重要的作用,所以网状结构对意识起重要作用[25].现有的医学教课书都将脑干称之为神经中枢区域,分布于肌体全身的12对神经,包括视神经进入大脑后几乎无一例外地终止于各自的一个神经核团,对于这些神经核团均称其为特异结构或称“疑核”.第三,长期以来,在医疗实践中被习以为常的脑电图测定中的某些怪现象,也可在本假设模型中获得解释.视网膜获取的电信号经外侧膝状核振荡后,形成的电波向外发送:眼睛一睁,15~25Hz的β脑电波立即出现;眼睛闭合,视网膜信号消失,神经核的振荡也就停止,电波频率重又回到8~12Hz的α波.而困倦或睡眠状态,电波频率就落在1~4Hz的δ频率段[1],这是肌体对外的神经感受器停止工作后,其所对应的所有神经核团不再需要发送电波的显著迹象.1~4Hz是肌体自身活动所形成的神经核发放的电波频率段.电荷振荡产生电磁波是物理学的基本特性之一,通过同步振荡形成电波符合生物进化规律.人体从外部采集的大量信息,进入大脑后不再存在任何介质可用于电信号传导.覆盖在顶部的端脑与脊髓延伸的脑干之间,所有神经系统均不具备足以传导大量信息的连接介质.信号的形成、传递和加工必须在生物学的范畴内考虑.而许多研究者在实验和理论上提出的脑内信息多次传递折返形成意识的理论模型,明显地违背生物学中细胞保持稳定这一法则,将意识研究引到不可知论之中.需要特别说明的是:视网膜就是一个接收电波(人类可接收的波长为380~780nm[6])信号的神经组织.本模型提出的脑干中“特性不明”的网状结构接收电波信息只是换了个位置,仅是一个“同位等效”的逻辑推理,最终当然需要实验加以证明.

2意识功能区感知神经活动原理及其物理学依据

从临床实践中已知,脑干网状结构受到损伤会导致不同程度的意识障碍,甚至深度昏迷,一些镇静药物就是通过阻滞该系统传入通路而达到镇静[4].某些患者因肿瘤治疗,为了处理肿瘤的恶性扩散,作为最后一种方案切除肿瘤所在的整个左半球大脑,没有遗留下任何大脑皮层.手术导致了最严重的全面失语症.但病人的核心意识未受损伤,不只是清醒和有注意力,有时还能使用手势表达问题,主导情绪与当时的情景非常协调[26].

2.1网状结构具有意识感知功能的拟合特性

脑干中的网状神经结构不仅在解剖学上符合意识功能区的最佳位置布局选择,而且其结构特点也非常有规律性:(1)神经元胞体形状和大小各异,小的只有12~14μm,大的可达90μm,这些细胞被纤维分隔成许多小群,核团不易辨认.(2)纤维来源和走向纵横交错.(3)纤维联系广泛,平均每个神经元表面有7000~8000个突触[4].网状结构中的每个尺寸的神经细胞分别对应一个固定的电波频率范围起作用,正像视网膜中每个神经元可捕获一种固定波长的光波一样.网状结构的布局形式非常拟合于同时接收不同频率组合的电波信号.

2.2从视网膜接收到意识感知的信号转换

为了证明意识和记忆是2个独立的功能区,现以视觉系统的意识形成为例进行分析.视网膜上约有60种不同类型细胞,1亿个左右视杆细胞和500万个视锥细胞[1],眼睛一睁开,视网膜通过3条通路约150万根神经节细胞的轴突每秒大约输出1000万bit以上的视觉信息[1],大量信息传输的下一站是外侧膝状核,之后没有下一站,通过神经纤维介质传导的电信号就此终断.神经解剖中还有小部分纤维走向由视网膜出发后不经过外侧膝状核而与脑内上丘和顶盖前区等组织相连,称为视第2通路[6].这种信息通路很容易被理解为脑内各神经组织活动时起同步触发器作用.大脑该如何处理视网膜源源不断的信号,并最终形成视图意识?外侧膝状核通过有节律(如25Hz)的振荡活动将电信号进行整合,以特定频率向外发送电波信号.电波进入意识感知区后,脑干部位的网状神经结构中广泛分布的大量12~90μm大小不同的神经元正好对应这一由视图转换后的电波信号,众多获得对应波长感知的神经元组合形成的综合感受就是眼前的一幅图景.这种视图感知意识也可以看成从视网膜到脑干网状结构的信号转换和神经元功能转换,相当于一种映射.外侧膝状核振荡频率25Hz是一个待定值,笔者采用电影发展史上的经验数据,即电影放映速度从每秒16祯到24祯改进后,画面的轴动(俗称卓别琳动作)现象消失,动作变得流畅.外侧膝状核每隔40ms(1000ms/25)发送1次电波恰似一个速度开关,将自然界3×105km•s-1的光速(电磁波)转换成生物学意义上的神经元的机械运动速度.外侧膝状核振荡电波除了被网状结构感知,同时也被大脑皮层记忆神经元接收.如果大脑皮层记忆神经元中已储存了相同的视图信息,则电波信号与记忆神经元之间因同频谐振的特性使得记忆神经元被激活,即同频谐振波幅叠加的物理学特性确保了发送信号与储存类同信息的神经元达到了准确无误对接.被激活的记忆神经元转而又向外发送电波,皮层记忆神经元发送的电波信息让意识区网状结构神经元感知到曾经有过的体验—–熟悉.如果电波信息完全是新的,即视觉画面从未见过,则电波所含的内容成为新的一个记忆事件储存.

3大脑皮层记忆神经元的信息储存原理及其生物学依据

3.1基于模型假设的记忆信息储存原理

生命诞生初期,记忆神经元的原始状态可形象地认为“空白”.当意识感知到的电波同样作用于“空白”神经元时,脑内的神经化学递质与电波共同作用改变了神经元的结构,比如增加了许多树突和树棘,这就形成了神经元记忆储存的最初架构.神经元的结构改变并不符合“生命活动的最高目标是保持结构稳定”这一铁的规则,在电子显微镜下可以发现,一个单细胞的生命体也以最大的努力保持内部平衡以达到生命的延续.稳定和平衡是神经元的最大目标,也是生命活动的最大任务[26].被增生树突树棘的神经元处于不稳定状态,恢复原状的活动使神经元产生了与记忆储存时类同的电波信号.初始阶段,神经元活动强度较大,其产生的信号强度也大,所以刚形成的记忆很容易得到恢复,且回忆的准确度也高.随着时间推移,神经元慢慢降低活动强度,产生的信号变弱,部分增生的树突或树棘丢失了,但电波的总体架构没有变,能模糊记得某件事,而不那么准确.时间无限延长后,神经元恢复原状的成功率增加,直至基本复原,我们小时候的大量记忆事件就是这样被遗忘了.心理学上的记忆曲线变化规律符合神经元树突树棘增生和丢失的生物学机制过程,人类在实践中归纳出的经验是可以用科学的内在规律进行解释的.被改变结构的神经元若再次受到同样的意识电波作用,神经元的结构改变将被强化,多次被改变被强化就成了新的稳定结构.树突棘具有可塑性,在学习过程中可能发生新的树突棘[7].比如你新认识的朋友,再次相遇,二三次及以后的意识电波作用在同一神经元上,神经元会增加许多新的树棘和分叉的树突,甚至还发现与别的神经元新增加“突触”,即一个神经元的轴突或树突与后一个神经元的树突形成突触相连,因为新的记忆事件慢慢成为老的记忆事件后,信息的容量扩大了,记忆的细节丰富了,内容拓展了.大脑回忆的事件总是相关联的内容一起出现,这是记忆神经元发放时,通过同步振荡确保了以“突触”相关联的神经元在时间次序上起到先后排队作用.此外,与原有事件相关的内容总是容易记住.心理学实验中强调有意义的事件或关联性的事件一起记忆效率更高就是这种生物学机制的作用.时间推移造成记忆模糊总是发生在细节内容方面,即树突树棘的丢失.记忆的初始架构非常重要,如大家知道一个人成长初期的启蒙教育很重要,一个好的行为习惯也是从入门教育开始.这些被人们普遍认可的规律背后就是记忆神经元初始架构形成的不可改变性的生物学机制.

3.2记忆储存的生物学依据

为了进一步解释笔者的假设模型,从神经解剖学的角度比对神经元结构的许多固有特性,可进一步说明记忆储存的生物学特性.一个胞体直径5~150μm的神经元,平均表面约有6000~10000个棘[7],不同种类的神经元的树突形态和大小各不相同、一般树突从胞体的发起部较宽,其后分支和变细,长度不等,一般较短.树突上最突出的特征是带有大小不同的伸出物,称为树突棘,可呈细长形体、蘑菇形、粗短形等不同形状.树突棘极大地扩展了树突与其他神经元形成接触的机会,且在学习记忆过程中树突树棘会有数量和形状上的变化[6].另外,20世纪70年代,纽约A1bertEinstein医学院的Purpura等发现了树突结构的重要的线索.他们用高尔基染色法研究智障儿童的脑,发现其神经元的树突结构发生了明显的改变.智障儿童的树突上少了很多树突棘,而仅有的少量树突棘又异常细长.进一步观察发现,树突棘改变的程度与智力迟钝的程度成正相关.Purpura指出智障儿童的树突棘与正常胎儿的树突触棘非常相似[27].

3.3记忆信息处在不断变化中

意识形成的电波结构组合每一单位时间都在变化,因此记忆神经元的结构也随之变化.如果按照现代信息储存概念,一个人一生中形成的天量数据几乎很难用任何人造的设备可以完整储存.自然进化恰恰在关键的时候出乎预料.记忆神经元的储存方式与意识当下形成的电波,在电波的框架结构(电波频率组合及次序)相似性上解决了难题.当后一个意识电波形成的框架结构与记忆神经元中已储存电波的框架结构相似度比较高时,新的电波就在原有记忆神经元或神经元组合上找到了“归宿”.新电波与原储存电波之间的差异部分,通过树突树棘的增生就轻易地解决了记忆储存的扩容.

3.4记忆信息的恢复原理

意识电波与记忆神经元之间运用物理学中的谐振原理很容易地解决了现代信息技术中很难解决的寻址速度难题.人们用无线收音机很容易在浩翰无边的空间找到自己需要的广播电台,相同的原理,一个储存了信息的神经元就是一台固定频率组合的收发机,下一次只要大脑中出现同样的电波,对应的神经元就会立即动作—–接收,接收到的电波信息与储存的信息不完全相同,故树突树棘又有新的变化;变化又产生了新的不稳定,之后神经元就转为反对变形活动—–发送.用传统的概念表述就是神经元被激活,被激活(被变形)的神经元一定会比其他神经元发放更高电位的信号.大脑的这种机制确保了意识的高效率工作,在茫茫人海中,无论你走到哪里,当你偶遇老同学时会不假思索地叫出对方的称呼,并感知到老同学与你相处时的几乎所有的经历,此时意识概念和意识闪念都在起作用,如果相遇者是曾经恋爱过的男女朋友,此时或许你的心跳会突然加快,脸色跟着变化,肌体内形成的是一种意识体验.就在见到老同学的当下,你的记忆神经元的储存信息也在变化,比如老同学头发白了,人老了.所以意识当下的电波结构在化学神经递质的共同作用下,又一次对同一个单位的记忆神经元进行新的结构改变,如树突或树棘又在增加.而这次新增的记忆信息容易保存,原因就在储存老同学的神经元早已成为一种新的稳定结构,不再向“空白”复原,这就成了永久记忆.

3.5记忆储存与“小人图”的关系

记忆神经元不仅储存下大脑活动时的显性意识,如你的所有生活经历,它还储存了肌体活动形成的固有的动作习惯信息(传统上称为无意识活动),应该称为隐性意识.Penfield绘制的“小人图”就是肌体各部位动作信息储存的对应位置.“小人图”中手和头部,尤其嘴唇所占空间面积特别大[28],就是因为肌体在长期的生活经历中过多地活动了这2个部位保留下来的记忆储存.可以预言,一个因意外事故造成上肢被截,日后学会用脚干活,尤其学会用脚做针线活、弹钢琴者,其“小人图”中脚对应的皮层空间位置一定很大,而手则很小.个体成长期间学会走路、学会用筷子、用手与脚干各种高难度的事,均是经过长期反复练习后,动作对应的电信号被储存到皮层记忆神经元,之后在日常生活中方可运用自如.跳水、体操等各种技巧性动作的运动员在极短的时间内将一个非常复杂的动作做得完美无缺,正是通过长期的训练,这一连串动作电波组合被记忆神经元稳定地储存下来,之后才能够达到各关节协调自如.临床实践中,医学专家已把意识与记忆的工作原理很好地运用在患者身上了.央视《走近科学》(2013-11-11)曾介绍北京武警总医院神经科医生运用大脑干细胞移植技术成功将一些下肢无法站立的脑瘫患者治愈,并让其学会走路.大脑干细胞移植并获得增生确保了下肢运动神经形成的电信号有了储存的位置.而帕金森疾病则是患者对应的记忆神经元功能降低,致使以往储存的信息不能获得稳定的发放.目前医学上采用一种电子信号发生器—–电子药,通过导线将一定的频率信号送至大脑皮层相应位置,剌激记忆神经元,这种强制神经元工作的治疗方法,在初期阶段已显示出非常好的效果.

4意识与记忆之间的互动关系

第6篇

2. 植物材料应附正确的拉丁学名、产地、数量和制备方法。

3. 化学结构图须另页绘制,基团标注无误,在文稿内注明插图位置。常见化合物的结构不必给出。表插人文中适当位置,图表应附相应的英文。

4. 参考文献按出现的先后顺序在文中注明,著录格式见本刊“征稿简则”,其中,英文期刊名的缩写参照CA,但不加点,不可随意缩写,如:Phytochem(正确为Phytochemistry),Tetra(正确为Tetrahedron)。

5. 实验部分必须简明扼要,但要使实验化学家能够据此重复出该实验,可以省略的一些实验细节:(1>常规衍生物(如乙酰化物)的制备方法;(2)化合物分离的细节,如装柱,TLC板,柱子及分馏的大小等;(3)仪器(不包括型号)及化学试剂的商业来源。

6. 新化合物采用IUPAC命名规则给出一个完整的系统名,若有必要可再取一个得体的俗名。文中化合物第一次出现时若注有编号,下文均以编号代表。

7. 每个化合物尽可能标出得率,如:化合物3 (510mg;0.0031%)。结晶须指明所用溶剂,如:白色针晶(MeOH),熔点的表示法,如:mp259—261°C。液体化合物的折射率表示法,如ngl.653„

8. 元素分析表示法,如:已知化合物(Found: C,62.9;H,5.4.Calc,forC13H)3ON4:C,62.9;H,5.3%)。新化合物(Found:C,62.9;H,5.4.C13H13ON4requires:C,62.9;H,5.3%)。

9. 比旋度的表示法:[a]?®测定值° (所用溶剂;c指100ml溶剂里化合物的克数),如[a]2D3+32.2°(EtOHiC0.32-10).

旋光每散谱(ORD)可用一系列不同波长下的[a]值或分子比旋[0]值表示。

园二色散谱(CD)可用分子椭率值如[0]256+21780,[0]307-16113或微分子色散吸收值如Ae253-1.02(MeOH;c0.164)表示。

10. NMR表示为4NMR或13CNMR,须注明仪器的频率,溶剂及内标物。化学位移以<5值(对TMS)表示,注明峰形,如:单峰(s),宽单峰(brs),双峰(d),双二重峰(dd),复峰(m)等。l3CNMR及1HNMR数所须注明所对应的碳和氢的位置,采用IUPAC定位,标为C-l,C-2;H-l,H-2。例如:I3CNMR(21.15Mz,CDC13):<530.l(t,C-5),74.1(d,C-6),121.3(d,C-3),144.2(s,C-4).'HNMR(100MHz,CDC13):<50.681(3H,S,H-18),0.884(6H,d,J=6.0Hz,H-26andH-27),0.901(3H,d,J=5.0Hz,H-21),4.342(1H,q,J6a,7a=4.5Hz,J6a,7^=2.0Hz,H-6),4.211(1H,m,Wl/2=18.0Hz,H-3a)„所用仪器频率及溶剂若在实验部分的总论中已注明,则以下皆可省略。

11. 质谱须注明所用的方法,如(EIMS, CIMS,GC-MS,FABMS等)及离解能,只须给出分子离f-峰及重要的特征碎片峰(相对强度),如:EIMS(70eVm/z(%):386[M+](36),368[M-H20]+(100),275[M-111]+(35)等。髙分辩质谱(HRMS)若有必要可多给一些信息。

12. 紫外光谱表示法,如UV/CGxHnm(lge):203(4.17)。

13. 红外光谱表示法,如IR<aB丨cnT1: 1740。官能团的指定放在圆括号内,如:1740(>C=0)„若要标明吸收带的强度,则采用以下缩写符号:w(弱),m(中等),v(可变),s(强),vs(很强)。

14. 有机化合物和无机化合物及有关的缩写符号须规范化(参考CA),如氘代溶剂CDC13, DMSO-d5,D20,pyridine-d5等。常见化学试剂在文中均以化学符号表示,如:MeOH,EtOH,n-BuOH,PrOH,iso-PrOH,PhOH(苯酚),petrol(石油醚),CHC13,CC14,C6C6,Et20,Me2CO,HOAc,EtOAc,THF,Ac20.NaOMe,CH2N2,HC02H(甲酸),TCA(三氣乙酸),TFA(三氟乙酸),NaOAc,NaOH,HC1,H,S04,CO,,H, B03.nh3,N2等。

15. 制备薄层析须注明(1)薄层厚度;⑵样品的量;(3)确定带的方法;⑷从吸附剂上洗脱下化合物所用的溶剂。特殊TLC的吸附剂须注明,如:AgN03-硅胶(1:9)。

16. 气相色谱(GC)须注明检测器(FID,EC等),载气及流速,操作温度,柱子情况等。

第7篇

关键词:药用植物;代谢组学;功能基因组学

代谢组学是对生物体内代谢物进行大规模分析的一项技术[1],它是系统生物学的重要组成部分(如图1所示),药用植物代谢组学主要研究外界因素变化对植物所造成的影响,如气候变化、营养胁迫、生物胁迫,以及基因的突变和重组等引起的微小变化,是物种表型分析最强有力的工具之一。在现代中药研究中,代谢组学在药物有效性和安全性、中药资源和质量控制研究等方面具有重要理论意义和应用价值。另外,在对模式植物突变体文库或转基因文库进行分析之前,代谢组学往往是首先考虑采用的研究方法之一。目前,国外已有成功利用代谢组学技术对拟南芥突变株进行大规模基因筛选的例子,这为与重要性状相关基因功能的阐明和选育可供商业化利用的转基因作物奠定了基础。

图1系统生物学研究的四个层次略

目前,还有许多经济作物的全基因组测序计划尚未完成,由于代谢组学研究并不要求对基因组信息的了解,所以在与这些作物有关的研究领域具有更大的利用价值,这也是其与转录组学和蛋白组学研究相比的优势之一。代谢组学研究涉及与生物技术、分析化学、有机化学、化学计量学和信息学相关的大量知识,Fiehn[2]对代谢组学有关的研究方向进行了分类(见表1)。

1代谢组学研究的技术步骤

代谢组学研究涉及的技术步骤主要包括植物栽培、样本制备、衍生化、分离纯化和数据分析5个方面(见图2)。

1.1植物栽培

对研究对象进行培育的目的是为了对样本的稳定性进行控制,相对于微生物和动物而言,植物的人工栽培需要考

表1代谢组学的分类及定义略

虑更多的问题,如中药材在不同年龄、不同发育阶段、不同部位以及光照、水肥、耕作等环境因素的微小差异都可引起生理状态的变化,而这些非可控及可控双重因素的影响很难进行精确的控制,从而影响药用植物代谢组研究的重复性。为了解决以上问题,推荐使用大容量的培养箱[3],定时更换培养箱中栽培对象的位置,以及使用无土栽培技术等,FukusakiE[4]利用无土栽培系统将水和养分直接引入植物根部,并且对供给量进行精确地控制,大大提高了实验的重复性。

1.2样本制备

为了获得稳定的实验结果,样本制备需要考虑样本的生长、取样的时间和地点、取样量以及样本的处理方法等问题,并根据分析对象的分子结构、溶解性、极性等理化性质及其相对含量大小对提取和分离的方法进行选择,逐一优化试验方案。MaharjanRP等[5]用6种方法分别对大肠杆菌中代谢产物进行提取,发现用-40℃甲醇进行提取的效果最好。现阶段代谢组学的分析对象主要集中在亲水性小分子,尤其是初级代谢产物,气相色谱质谱联用(GCMS)和毛细管电泳质谱(CEMS)联用都是分析亲水小分子的重要技术。FiehnO等[6]使用GCMS对拟南芥叶片中的亲水小分子进行了分析,发现酒石酸半缩醛、柠苹酸、别苏氨酸、羟基乙酸等15种植物代谢物。

1.3衍生化处理

对目标代谢产物的衍生化处理取决于所使用的分析设备,GCMS系统只适合对挥发性成分进行分析,高效液相色谱法(HPLC)一般则使用紫外或荧光标记的方法对样本进行衍生处理,BlauK[7]对酯化、酰化、烷基化、硅烷化、硼烷化、环化和离子化等衍生方法进行了详细的说明。然而离子化抑制常使得质谱分析过程中目标代谢产物的离子化效率降低,这主要是由于分离过程中污染物与目标代谢物难以完全分离开所引起的,优化色谱分离时间可有效缓解离子化抑制,然而在实际操作中不可能对上百种代谢产物的分离时间进行优化,利用非放射性同位素稀释法进行相对定量可以很好的解决该问题。HanDK等[8]应用同位素编码的亲和标记(ICAT),根据经诱导分化的微粒蛋白及其同位素标记物的峰面积比,对该蛋白的相对含量进行分析。ZhangR等[9]发现同位素标记技术也可用于代谢组学的研究,但是却存在许多困难。活体的同位素标记方法对于同位素的洗脱是一种非常有潜力的技术,目前关于使用34s的研究已有报道[10]。

图2代谢组学研究技术步骤略

1.4分离和定量

分离是代谢组学研究中的重要步骤,与质谱联用的色谱和电泳分析技术都是使用紫外或电化学检测的方法进行定量,其对代谢组数据的分辨率与定量能力都有一定的影响。TomitaM等[11]总结了各种色谱分离法中经常遇到的技术问题,认为毛细管电泳和气相色谱法由于具有较高的分辨率,已成为代谢组学研究的常规技术手段之一,液相色谱因其适用范围广,应用也相当广泛。

TanakaN等[12]用高效液相色谱对样品进行分离,认为使用硅胶基质填充毛细管整体柱的高效液相色谱系统具有用量少、灵敏性高、低压降高速分离等优势;同时,TolstikovV等[13]也使用硅胶填充的毛细管液相色谱方法对聚戊烯醇类异构体进行了有效分离,获得了很好的分辨率。TanakaN等[14]发现二维毛细管液相色谱法的分辨率比传统的高效液相法高10倍。相对于其他色谱方法而言,超临界流体色谱(SFC)是分离疏水代谢物最具潜力的技术之一,特别适用于分离那些传统HPLC难以分析的疏水聚合物,BambaT等[15]通过SFC对聚戊烯醇进行分析,证明其具有较好的分离能力。针对质谱中存在的共洗脱现象,HalketJM等[16]发明了一种适用于GCMS的反褶积系统,对共洗脱的代谢产物进行分离与识别。AharoniA等[17]使用傅立叶变换离子回旋共振质谱(FTICRMS)对非目标代谢物进行分析,快速扫描植物突变样品,获得了一定量的代谢成分。

与分离一样,定量能力也是代谢组学研究中的重要因素,其取决于各分析系统的线性范围。傅立叶转换核磁共振(FTNMR)、傅立叶红外光谱(FTIR)以及近场红外光谱法(NIR)等技术由于敏感性低,重复性受共洗脱现象影响较小也被用于检测中。近年来,FTNMR技术常被用于植物代谢组的指纹图谱研究[18],但由于NMR分析需要样品量较大,分析结果易受污染,GriffinJL[19]发现将统计模式识别与FTNMR相结合可以对代谢物进行全面分析。除FTNMR之外,FTIR通过对有机成分的结构进行常规光谱测定,也可适用于代谢组学的研究,特别是应用于构建代谢组学的指纹图谱。尽管它不能对代谢物进行全面分析,但对具有特定功能的组分却有很好的定量效果,对从工业及食品原材料中分离的代谢混合物也可以进行全面分析,目前,已有学者将其成功地应用于拟南芥[20]和番茄[21]代谢产物指纹图谱的研究中。

1.5数据转换

为阐明代谢物复杂的线性或非线性关系,需要进行多变量分析,将原始的色谱图数据转换为数字化的矩阵数据,通过对色谱峰鉴定和整合从而进行多变量分析。由于环境等因素的干扰,光谱数据需要通过适当的数据加工方法进行校正,包括:①降低噪声;②校正基线;③提高分辨率;④数据标准化。JonssonP等[22]报道了一种关于GCMS色谱图数据处理的方法,可以对大量代谢产物样品进行有效的识别。

2代谢组学中的数据分析方法

2.1主成分分析法(PCA)

主成分分析法,将实测的多个指标用少数几个潜在的相互独立的主成分指标线性组合来表示,反映原始测量指标的主要信息。使得分析与评价指标变量时能够找出主导因素,切断其他相关因素的干扰,作出更为准确的估量与评价。PCA数据矩阵通常来自于GCMS,LCMS或CEMS,因此将目标代谢产物作为自变量,而相应的代谢产物含量作为因变量,定义与最大特征值方向一致的特征向量为第一主成分,依此类推,PCA便能通过对几个主要成分的分析,从代谢组中识别出有效信息。主成分分析有助于简化分析和多维数据的可视化,但是该方法可能导致一部分有用信息的丢失。

2.2层次聚类分析法(HCA)

层次聚类分析法也常用于代谢组学的研究中,它是将n个样品分类,计算两两之间的距离,构成距离矩阵,合并距离最近的两类为一新类,计算新类与当前各类的距离。再合并、计算,直至只有一类为止。进行层次聚类前首先要计算相似度(similarity),然后使用最短距离法(NearestNeighbor)、最长距离法(FurthestNeighbor)、类间平均链锁法(BetweengroupsLinkage)或类内平均链锁法(WithingroupsLinkage)四种方法计算类与类之间的距离。该方法虽然精确,但计算机数据密集,对大量数据点进行分析时,更适合选用K均值聚类法(KMC)或批次自组织映射图法(BLSOM),而HCA适合将数据转换为主成分后使用。2.3自组织映射图法(SOM)

神经网络中邻近的各个神经元通过侧向交互作用相互竞争,发展成检测不同信号的特殊检测器,这就是自组织特征映射的含义。其基本原理是将多维数据输入为几何学节点,相似的数据模式聚成节点,相隔较近的节点组成相邻的类,从而使多维的数据模式聚成二维节点的自组织映射图。除PCA和HCA外,SOM同样也可应用于包括基因组和转录组等组学研究中[23]。最初SOM计算时间长,依靠数据输入顺序决定聚类结果,近年来SOM逐渐发展成为不受数据录入顺序影响的批次自组织映射图法(BLSOM)。由于BLSOM可以对类进行调整,且有明确的分类标准,优化次序优于其他聚类法,已在基因组学和转录组学数据分析中得到广泛的应用。

2.4其他数据采矿方法

除PCA、HCA和SOM外,很多变量分析方法都可用于植物代谢组学的分析。软独立建模分类法(SIMCA)是利用主成分模型对未知样品进行分类和预测,适合对大量样本进行分析;近邻分类法(KNN)和K平均值聚类分析法(KMN)也可用于样品分类;主成分回归法(PCR)或偏最小二乘回归法(PLS)在某些情况下也可使用。然而到目前为止由于还没有建立一个标准的数据分析方法,代谢组学仍然是一门有待完善的学科。

3代谢组学在药用植物中的实践

植物药材来源于药用植物体,而药用植物体的形态建成是其体内一系列生理、生化代谢活动的结果。植物代谢活动分为初生代谢和次生代谢,初生代谢在植物生命过程中始终都在发生,其通过光合作用、柠檬酸循环等途径,为次生代谢的发生提供能量和一些小分子化合物原料。次生代谢往往发生在植物生命过程中的某一阶段,其主要生物合成途径有莽草酸途径、多酮途径和甲瓦龙酸途径等。植物药材含有的生物碱、胺类、萜类、黄酮类、醌类、皂苷、强心苷等活性物质的绝大多数属于次生代谢产物,因此探讨次生代谢产物在药用植物体内的合成积累机制及其影响因素,对于提高活性物质含量、保证药材质量、稳定临床疗效等具有重要意义。孙视等[24]通过对银杏叶中黄酮类成分积累规律的研究,提出了选择具有一定环境压力的次适宜生态环境解决药用植物栽培中生长和次生产物积累的矛盾。王昆等[25]以人参叶组织为材料,总结了构建人参叶cDNA文库过程中存在的一些关键问题和应采取的对策,为今后关于人参有效成分如人参皂苷的生物合成途径及其调控的基础研究提供技术参考和理论指导。最近,美国加利福尼亚大学伯克利分校的Keasling等[26]采用一系列的转基因调控方法,通过基因工程酵母合成了青蒿素的前体物质——青蒿酸,其产量超过100mg/L,为有效降低抗疟药物的成本提供了机遇。经过长期的研究积累,人们对代谢途径的主干部分(为次生代谢提供底物的初生代谢途径)已经基本了解,例如酚类的莽草酸途径,萜类的异戊二烯二磷酸(IPP)途径等。被子植物中一些相对保守的次生代谢途径也得到了很好的研究,如黄酮类、木质素的生物合成与调控。然而,对次生代谢最丰富最神奇的部分——特定产物合成与积累的过程,还所知甚少[27]。

4展望

近年来,代谢组学正日益成为研究的热点,越来越多的人已加入到代谢组学的研究中。随着代谢组学积累的数据和信息量的增大,其在药用植物学各个领域的应用价值也与日俱增。它将不仅能对单个代谢物进行全方面的分析,更能寻找其代谢过程中的关键基因、通过代谢指纹分析对药用植物进行快速分类、进一步研究药用植物有效成分代谢途径以及环境因子对植物代谢和品质的影响与调控机制。

然而依据传统中医药学和系统生物学的指导思想,目前急待解决的是中药种质资源的代谢组学研究和中药体内作用的代谢组学研究。同时,代谢组学在分析平台技术、方法学手段和应用策略等方面相对于其他组学技术还需要进一步发展和完善,还需要其他学科的配合和介入。相信随着更有力的成分分析设备的使用及代谢组数据库的建立,药用植物代谢组学将对中医药学产生深远的影响。

【参考文献】

[1]WECKWERTHW.Metabolomicsinsystemsbiology[J].AnnuRevPlantBiol,2003,54:669-689.

[2]FIEHNO.Metabolomics—thelinkbetweengenotypesandphenotypes[J].PlantMolBiol,2002,48:155-171.

[3]TRETHEWEYRN.Metaboliteprofilingasanaidtometabolicengineeringinplants[J].CurrOpinPlantBiol,2004,7:196-201.

[4]FUKUSAKIE,IKEDAT,SUZUMURAD,etal.Afaciletransformationofarabidopsisthalianausingceramicsupportedpropagationsystem[J].JBiosciBioeng,2003,96:503-505.

[5]MAHARJANRP,FERENCIT.Globalmetaboliteanalysis:theinfluenceofextractionmethodologyonmetabolomeprofilesofEscherichiacoli[J].AnalBiochem,2003,313:145-154.

[6]FIEHNO,KOPKAJ,TRETHEWEYRN,etal.Identificationofuncommonplantmetabolitesbasedoncalculationofelementalcompositionsusinggaschromatographyandquadrupolemassspectrometry[J].AnalChe,2000,72:3573-3580.

[7]BLAUK,HALKETJM.Handbookofderivativesforchromatography[M].2nded.JohnWiley&Sons,Chichester,1993.

[8]HANDK,ENGJ,ZHOUH,etal.Quantitativeprofilingofdifferentiationinducedmicrosomalproteinsusingisotopecodedaffinitytagsandmassspectrometry[J].NatBiotechnol,2001,19:9469-9451.

[9]ZHANGR,SIOMACS,WANGS,etal.Fractionationofisotopicallylabeledpeptidesinquantitativeproteomics[J].AnalChem,2001,73:5142-5149.

[10]MOUGOUSJD,LEAVELLMD,SENARATNERH,etal.Discoveryofsulfatedmetabolitesinmycobacteriawithageneticandmassspectrometricapproach[J].ProcNatlAcadSciUSA,2002,99:17037-17042.

[11]TOMITAM,NISHIOKAT.Forefrontofmetabolomicsresearch[M].Tokyo:SpringerVerlagTokyo,2003.

[12]TANAKAN,KOBAYASHIH,ISHIZUKAN,etal.Monolithicsilicacolumnsforhighefficiencychromatographicseparations[J].JChromatogrA,2002,965:35-49.

[13]BAMBAT,FUKUSAKIE,NAKAZAWAY,etal.Rapidandhighresolutionanalysisofgeometricpolyprenolhomologuesbyconnectedoctadecylsilylatedmonolithicsilicacolumnsinhighperformanceliquidchromatography[J].JSepSci,2004,27:293-296.

[14]WIENKOOPS,GLINSKIM,TANAKAN,etal.Linkingproteinfractionationwithmultidimensionalmonolithicreversedphasepeptidechromatography/massspectrometryenhancesproteinidentificationfromcomplexmixtureseveninthepresenceofabundantproteins[J].RapidCommunMassSpectrom,2004,18:643-650.

[15]BAMBAT,FUKUSAKIE,NAKAZAWAY,etal.

Analysisoflongchainpolyprenolsusingsupercriticalfluidchromatographyandmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometry[J].JChromatogrA,2003,995:203-207.

[16]HALKETJM,PRZYBOROWSKAA,STEINSE,etal.Deconvolutiongaschromatography/massspectrometryofurinaryorganicacidspotentialforpatternrecognitionandautomatedidentificationofmetabolicdisorders[J].RapidCommunMassSpectrom,1999,13:279-284.

[17]AHARONIA,RICDEVOSCH,VERHOEVENHA,etal.NontargetedmetabolomeanalysisbyuseofFouriertransformioncyclotronmassspectrometry[J].Omics,2002,6:217-234.

[18]OTTKH,ARANIBARN,SINGHB,etal.Metabolomicclassifiespathwaysaffectedbybioactivecompouds.ArtificialneuralnetworkclassificationofNMRspectraofplantextracts[J].Phytochemistry,2003,62:971-985.

[19]GRIFFINJL.Metabonomics:NMRspectroscopyand

patternrecognitionanalysisofbodyfluidsandtissuesforcharacterisationofxenobiotictoxicityanddiseasediagnosis[J].CurrOpinChemBiol,2003,7:648-654.

[20]GIDMANAE,GOODACREBR,EMMETTCB,etal.Investigatingplantplantinterferencebymetabolicfingerprinting[J].Phytochemistry,2003,63:705-710.

[21]JOHNSONHE,BROADHURSTD,GOODACRER,etal.Metabolic

fingerprintingofsaltstressedtomatoes[J].Phytochemistry,2003,62:919-928.

[22]JONSSONP,GULLBERGJ,NORDSTROMA,etal.AstrategyforidentifyingdifferencesinlargeseriesofmetabolomicsamplesanalyzedbyGC/MS[J].AnalChem,2004,76:1738-1745.

[23]HIRAIMY,YANOM,GOODENOWEDB,etal.IntegrationoftranscriptomicsandmetabolomicsforunderstandingofglobalresponsestonutritionalstressesinArabidopsisthaliana[J].ProcNatlAcadSciUSA,2004,101:10205-10210.

[24]孙视,刘晚苟,潘福生,等.生态条件对银杏叶黄酮含量积累的影响[J].植物资源与环境,1998,7(3):1-7.

[25]王昆,王颖,鲍永利,等.人参叶cDNA文库构建中的问题与对策[J].人参研究,2005,17(4):2-4.

第8篇

一、强化学生积极的心理倾向、调动学生学习的自觉性

理想是意志行动的强大力量源泉,初中生正处在少年向青年的过渡时期,理想尚未形成。教学中应抓住学生积极的心理倾向:对物理有好奇心,从实用角度想学到能应用于日常生活的物理知识。他们常从物理的广泛应用和物理学家们取得成就的动人事迹中受到鼓舞,在心理上萌发一种将来在科学上有所贡献的愿望。

这些心理倾向,有利于理想的树立。因此,教学中首先应使学生这些积极的心理倾向得到满足。如教学“压强”时,上课一开始,向学生提出:“图钉的一头为什么做成尖锥形?”并指出,“如果我们学好了压强,就能知道其中的道理了。”

学生顿感到惊讶,想不到小小的图钉还有科学道理,随即产生浓厚兴趣。进而学习压强知识,应介绍它在生活中的应用,使学生体会到物理和生产生活实际的关系,强化了学生积极的心理倾向。其次,结合教学内容,适当介绍古今中外物理学家的故事,特别是选编一些反映我国现代化建设成就的物理问题,使学生认识到四化建设离不开物理,在心理上产生对物理学习的更高要求,逐步树立为实现四化振兴中华而学好物理的远大理想,调动学生学习的自觉性。

二、鼓励学生克服困难,培养学生的坚韧性

意志行动是与克服困难相联系的,离开困难,磨砺意志就会成为一句空话。

在教学中,当学生学习发生困难时,教师应积极启发诱导,通过学生自己的力,独立探索克服困难的方法和途径。根据心理发展的情况,初中生的独立意识很强,肯于独立钻研,有一定的自学能力和自信心,尤其是初三年级学生,他们能看懂的内容,不喜欢别人再讲,自己会做的题不想问别人。为此,教师应改进教学方法,给他们提供独立活动、克服困难的机会,鼓励学生独立解决一些力所能及的问题,培养他们的坚韧性。利用课余时间,让学生阅读一些物理学史,使学生的意志品质从科学家们的顽强的意志和惊人的毅力中,受到熏陶和感染。

三、帮助学生排除心理障碍,培养学生的果断性。

心理学研究表明,人的动机有“趋避冲突”现象,“趋”是追求成功,“避”是回避失败。彼此间发生矛盾,构成内心障碍,使外部行动陷入欲于不能、欲罢不甘的状态,这是产生优柔寡断的心理原因,同时来自周围环境非议的压力也是产生优柔寡断的很重要的因素。如在回答问题或板演时,由于过去未答好或出现错误而遭受同学的嘲笑,故产生想答而不敢答、想做而不敢做的心理,久而久之就会“前怕狼,后怕虎”,畏缩不前,因此,教学中,教师不要急于回答,应该在积极地启发、诱导的基础上,帮助学生分析出错的原因,鼓励学生把甘苦、荣辱置之度外,丢掉“怕”字,大胆说出自己的想法。

四、帮助学生克服片面的个性特征,培养学生的自制力

第9篇

仲景通过对患者四诊资料的收集,及时掌握病机转化。如仲景重视阳气旺衰,细致观察阳亡及阳气回复征象。《伤寒论》第296条指出少阴病由吐利、四逆,发展至躁烦,为阳气亡散之象;317条指出少阴病脉微欲绝,身反不恶寒,其人面色赤是阴盛格阳,治疗则在通脉四逆汤中加葱白以交通阴阳。288条指出少阴病,下利已止,手足转温,则代表里和阳气来复,为向愈之兆。《伤寒论•厥阴病》篇中,仲景通过观察厥热胜复时厥热时间的长短,来判断邪正消长、阴阳进退。为判断是否属于胃气衰败的除中证,“食以索饼”加以试探。仲景重视病情的观察,以掌握疾病的发展演变及预后,从而指导用药及抢救措施。现代护理学依然重视护士的病房巡视,及时发现病情变化并通知医师,其精神与仲景护理思想是一脉相承的。

2重视药物煎前的处理

仲景在临床用药时,重视对药物进行必要的处理,即“药前护理”。如桂枝茯苓丸方中牡丹“去心”,桃仁“去皮尖”;因麻黄节有止汗作用,不利于发散,用麻黄而多“去节”,且煎麻黄时上浮之沫易使人心烦,要“先煮去上沫”。对非用药部分净制,并去除影响药效的部分或成分。仲景对药物还经常使用液体进行洗涤浸渍。除用水洗涤浸渍为主之外,尚有用酒浸、醋渍之法。洗渍法可洗去药物的毒性副作用,如蜀漆洗去其腥味以防引起恶心呕吐。洗渍法还可改变药性及增强药效,如《金匮要略》抵当汤中大黄酒浸后可增强其活血之力。乌梅丸“以苦酒渍乌梅一宿”,增加乌梅的酸性而增强效用。附子、皂荚、巴豆用炮制以减毒。为了使药物的有效成分易于煎出,仲景又用釡咀、剉、切、擘、捣、杵、研等将药物破碎。这些均是根据所用药物的特点及所治疾病的需求而进行的用药前的护理内容。

3重视煎药用水及煎煮法

仲景对煎药用水的选择非常讲究,书中煎药除用普通水外,还选用甘澜水、潦水、清浆水、米醋以及清酒等。《伤寒论》茯苓桂枝甘草大枣汤治疗脐下悸,欲作奔豚者,即以甘澜水煮药,意在取其洁净及轻清上浮之意。治疗脉结代、心悸动的炙甘草汤,以及《金匮要略》中鳖甲煎丸、防己地黄汤、栝蒌薤白白酒汤、下瘀血汤等皆用了清酒,能助药物温经散寒,活血通脉,同时,酒又有利于药物成分的煎出。苦酒有敛疮消肿之功效,用于苦酒汤中,加强半夏劫涎敛疮之功。仲景还使用了人尿、猪胆汁、泽漆汁、马通汁、蜜以及浆水等增强药物的疗效。仲景对煎药时间长短、先煎后下等均有要求。煎药时间的长短,与药物的性质、主治病证的性质、服用方法及用量等密切相关。含有有毒药物的半夏汤、蜀漆汤、乌头汤等久煎是为了破坏有毒物质,减轻其毒副作用;含有补益药的炙甘草汤、桂枝加芍药生姜人参新加汤、如理中汤、麦门冬汤等久煎,则是为了有效物质的充分溶出。解表方、清热类方或质轻疏松易于溶出挥发的药物,则宜轻煎,以免有效成分丢失,如桂枝汤、小建中汤及麻黄汤、葛根汤等,以当以煮沸为度。又如白虎汤煎药时间以米熟汤成为度。仲景因为药物性质的差异以及方药配伍、病情、性味的不同而有先煎、后下、包煎、去滓再煎,以及烊化、泡服、冲服等特殊的煎法。即使同一药物的先煎与后下,其效用亦有别,大黄在大陷胸汤中先煮则熟而行缓以治上,在大承气汤中后下则生而行急以治下。麻黄先煎去上沫,则能避免过汗亡阳及心烦、呕吐。大黄黄连泻心汤渍之以麻沸汤,取其轻清寒凉之气,以清泄中焦无形邪热而消痞。大、小柴胡汤,三泻心汤、旋覆代赭汤、柴胡桂枝干姜汤7方均去滓再煎,可使药性趋于协调和合,以助发挥调和脏腑、和解少阳枢机之功。阿胶、饴糖在诸方中皆去滓烊化,芒硝去滓后稍煎。其他如鸡子黄、猪胆汁等用分冲兑服法。后世徐灵胎《医学源流论》曾曰“煎药之法,最宜深讲,药之效不效,全在乎此”。李时珍亦云“凡服汤药,虽品物专精,修治如法,而煎药者鲁莽造次,水火不良,火候失度,则药亦无功”。说明古人已认识到煎煮过程中有许多因素影响汤药的质量,这也是中医护理的重要内容。

4重视服药时间及服药方法

仲景在服药护理方面,依据病程长短、证候缓急、病邪性质以及患者体质强弱的不同选择最佳服药时间,服药方法灵活多变。服药时间主要有平旦服,饭前服,昼夜服3种。平旦服即空腹服,便于药力速行,如十枣汤宜平旦时服,以便迅速发挥峻下利水的作用。饭前服便于药物吸收。桃核承气汤逐瘀泻热、乌梅丸安蛔止痛等,要求饭前服。昼日、昼夜服为昼日、昼夜各服若干次,以保持药效。仲景大部分方剂是采用昼日、昼夜服法。服苦酒汤、半夏汤“少少含咽”,即不分时,少量多次频服。服药次数则根据病情需要及药性不同而各有特点。药性较缓和的药物,需要持久治疗者常用一煎分多次服用,如五苓散、黄芪桂枝汤,“日三服”。亦有病情急重或病情复杂者,为使药物在体内持续作用而昼夜兼服。病情严重,病势危急之症。为求解急救逆,迅速发挥药效,宜一煎大剂顿服。如干姜附子汤主治太阳病下后复汗致阳虚阴盛,阳气暴脱的危重证候,采用顿服集中药力,急救回阳。服药的温度因病证不同也有区别。无特殊情况,一般宜温服。使用生姜半夏汤时为防寒饮固结于胸中,格拒热药则取小冷服。桂枝汤为解肌祛风之剂,药汁不宜过温、过凉,则适寒温服。服药量则因人、因病制宜。体质强而病情重者,虽加大剂量,但可加快祛邪速度,缩短病期。体虚、孕妇及病势缓者,不可大剂峻攻,以免伤及正气,加重病情。如攻泻之十枣汤“强人服一钱匕,羸人服半钱”。大乌头煎,主药为大毒的乌头,“微量渐加,以知为度”。

5重视多途径给药及护理操作技术

仲景开创了多途径给药法,如洗身法、熏洗法、浸洗法(如治百合病的百合洗方)、药摩法(如治偏头风的头风摩散)、含咽法(如治咽喉肿痛生疮的苦参汤)等。以及矾石丸、蛇床子散作为治阴中病的坐药。再如以苦参水煎去滓,洗渍前阴,治前阴蚀烂且伴咽喉干燥之症。以雄黄置筒瓦中烧,熏肛调治蚀烂之症。《伤寒论》中治大便难的蜜煎导而通之,或用土瓜根煎汤和猪胆汁灌入直肠导便,是有记载最早的药物灌肠术,也是当时比较成熟的护理操作技术之一。这些都反映了当时药物护理的发展水平。

6重视药后观察

服药之后,应当密切观察病情变化,判断预后,如病不尽除则需审情度势而相应地调整治疗方案和护病方法。主要有药后观汗、观吐、观二便、观矢气等。凡服解表药后均宜“遍身着絷絷微似有汗”,其汗不可“如水流漓”。如服大青龙汤后,“汗出多者,温粉粉之”,以免过汗伤阳。桂枝汤“一服若不汗,更服如前法,又不汗,后服小促其间,半日许令三服尽,若病重者,一日一夜服”。其文中“小促其间”、“半日许令三服尽”等进一步处理方法都须以药后对汗的观察为准。药后出现呕吐,一般是拒药之象,而服涌吐剂后出现呕吐,则为导邪外出。如瓜蒂散服后不吐者即未见效,当“少少加,得快吐,乃止”。用利水渗湿药以小便通利为有效,如桂枝去桂加白术茯苓汤服后,“小便利则愈,如不利而无效”。大小承气汤、桃核承气汤、大陷胸汤、大陷胸丸等泻下剂以大便通畅为见效。还要观察服药后二便的特殊变化,如治百合病之百合地黄汤药后,大便当如漆;治女劳疸之硝石矾石散药后,小便正黄、大便正黑;治肠痈之大黄牡丹汤药后,当下脓血等,都是服药后见效的正常表现。《伤寒论•阳明病》篇中,腹满不大便者先试之以小承气汤,观察患者服药后是否有矢气,作为能否使用攻下峻剂的依据。仲景还细致观察患者服药后的一些貌似“不正常”的表现,如白术附子汤方“三服都尽,其人如冒状”,柴胡桂姜汤方“初服微烦”,乌头桂枝汤“其知者如醉状,得呕者为中病”,治肾着之甘姜苓术汤,腰中当觉温,治风湿之防己黄芪汤,患者觉如虫行皮中,服苇茎汤后,当吐如脓等,是药后的各种正常情况,为药中病所。仲景注意服药后效果的观察,判断药物是否对证、药量是否失宜,掌握病情转机,予以相应处理,这也是中医护理工作的重要环节。

7重视药后调护

药后调护是指服药后的调养与护理。仲景非常重视药后调护,如服桂枝汤,啜稀粥以资汗源、助药力。五苓散以白饮和服,多饮暖水,补充胃气,助阳发汗。三物白散亦以白饮和服,且药后“不利,进热粥一杯;利过不止;进冷粥一杯”,药物疗效发挥与饮食寒热相关。理中丸服后“食顷”即饮温粥,以助温中之药力。服十枣汤,得快利,糜粥自养。解表剂如桂枝汤、麻黄汤、桂麻各半汤类,药后皆当温覆助汗。服防己黄芪汤后,注意患者若出现有似虫行皮中,且从腰以下冷如冰时,应让患者坐被上,并用一被绕腰以下,以保暖促汗。此外服药后还应观察不良反应,立即采取救治措施。如大青龙汤服后若汗出多者,温粉扑之以止汗,防止大汗亡阳。白术散若“若呕,以醋浆水服之,复不解者,小麦汁服之,已后渴者,大麦粥服之”。若未能如此药后调护,则不能达到预期治疗目的。

8结语

相关文章
相关期刊