欢迎来到易发表网!

关于我们 期刊咨询 科普杂志

建筑结构论文优选九篇

时间:2022-03-16 18:37:18

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇建筑结构论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

建筑结构论文

第1篇

[论文关键词]高层建筑;结构特点;结构体系

我国改革开放以来,建筑业有了突飞猛进的发展,近十几年我国已建成高层建筑万栋,建筑面积达到2亿平方米,其中具有代表性的建筑如深圳地王大厦81层,高325米;广州中天广场80层,高322米;上海金茂大厦88层,高420.5米。另外在南宁市也建起第一高楼:地王国际商会中心即地王大厦共54层,高206.3米。随着城市化进程加速发展,全国各地的高层建筑不断涌现,作为土建工作设计人员,必须充分了解高层建筑结构设计特点及其结构体系,只有这样才能使设计达到技术先进、经济合理、安全适用、确保质量的基本原则。

一、高层建筑结构设计的特点

高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。其主要特点有:

(一)水平力是设计主要因素

在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。

(二)侧移成为控指标

与低层或多层建筑不同,结构侧移已成为高层结构设计中的关键因素。随着建筑高度的增加,水平荷载下结构的侧向变形迅速增大,与建筑高度H的4次方成正比(=qH4/8EI)。

另外,高层建筑随着高度的增加、轻质高强材料的应用、新的建筑形式和结构体系的出现、侧向位移的迅速增大,在设计中不仅要求结构具有足够的强度,还要求具有足够的抗推刚度,使结构在水平荷载下产生的侧移被控制在某一限度之内,否则会产生以下情况:

1.因侧移产生较大的附加内力,尤其是竖向构件,当侧向位移增大时,偏心加剧,当产生的附加内力值超过一定数值时,将会导致房屋侧塌。

2.使居住人员感到不适或惊慌。

3.使填充墙或建筑装饰开裂或损坏,使机电设备管道损坏,使电梯轨道变型造成不能正常运行。

4.使主体结构构件出现大裂缝,甚至损坏。

(三)抗震设计要求更高

有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。

(四)减轻高层建筑自重比多层建筑更为重要

高层建筑减轻自重比多层建筑更有意义。从地基承载力或桩基承载力考虑,如果在同样地基或桩基的情况下,减轻房屋自重意昧着不增加基础造价和处理措施,可以多建层数,这在软弱土层有突出的经济效益。

地震效应与建筑的重量成正比,减轻房屋自重是提高结构抗震能力的有效办法。高层建筑重量大了,不仅作用于结构上的地震剪力大,还由于重心高地震作用倾覆力矩大,对竖向构件产生很大的附加轴力,从而造成附加弯矩更大。

(五)轴向变形不容忽视

采用框架体系和框架——剪力墙体系的高层建筑中,框架中柱的轴压应力往往大于边柱的轴压应力,中柱的轴向压缩变形大于边柱的轴向压缩变形。当房屋很高时,此种轴向变形的差异将会达到较大的数值,其后果相当于连续梁中间支座沉陷,从而使连续梁中间支座处的负弯矩值减小,跨中正弯矩值和端支座负弯矩值增大。

(六)概念设计与理论计算同样重要

抗震设计可以分为计算设计和概念设计两部分。高层建筑结构的抗震设计计算是在一定的假想条件下进行的,尽管分析手段不断提高,分析的原则不断完善,但由于地震作用的复杂性和不确定性,地基土影响的复杂性和结构体系本身的复杂性,可能导致理论分析计算和实际情况相差数倍之多,尤其是当结构进入弹塑性阶段之后,会出现构件局部开裂甚至破坏,这时结构已很难用常规的计算原理去进行分析。实践表明,在设计中把握好高层建筑的概念设计也是很重要的。

二、高层建筑的结构体系

(一)高层建筑结构设计原则

1.钢筋混凝土高层建筑结构设计应与建筑、设备和施工密切配合,做到安全适用、技术先进、经济合理,并积极采用新技术、新工艺和新材料。

2.高层建筑结构设计应重视结构选型和构造,择优选择抗震及抗风性能好而经济合理的结构体系与平、立面布置方案,并注意加强构造连接。在抗震设计中,应保证结构整体抗震性能,使整个结构有足够的承载力、刚度和延性。

(二)高层建筑结构体系及适用范围

目前国内的高层建筑基本上采用钢筋混凝土结构。其结构体系有:框架结构、剪力墙结构、框架—剪力墙结构、筒体结构等。

1.框架结构体系。框架结构体系是由楼板、梁、柱及基础四种承重构件组成。由梁、柱、基础构成平面框架,它是主要承重结构,各平面框架再由连系梁连系起来,即形成一个空间结构体系,它是高层建筑中常用的结构形式之一。

框架结构体系优点是:建筑平面布置灵活,能获得大空间,建筑立面也容易处理,结构自重轻,计算理论也比较成熟,在一定高度范围内造价较低。

框架结构的缺点是:框架结构本身柔性较大,抗侧力能力较差,在风荷载作用下会产生较大的水平位移,在地震荷载作用下,非结构构件破坏比较严重。

框架结构的适用范围:框架结构的合理层数一般是6到15层,最经济的层数是10层左右。由于框架结构能提供较大的建筑空间,平面布置灵活,可适合多种工艺与使用的要求,已广泛应用于办公、住宅、商店、医院、旅馆、学校及多层工业厂房和仓库中。

2.剪力墙结构体系。在高层建筑中为了提高房屋结构的抗侧力刚度,在其中设置的钢筋混凝土墙体称为“剪力墙”,剪力墙的主要作用在于提高整个房屋的抗剪强度和刚度,墙体同时也作为维护及房间分格构件。

剪力墙结构中,由钢筋混凝土墙体承受全部水平和竖向荷载,剪力墙沿横向纵向正交布置或沿多轴线斜交布置,它刚度大,空间整体性好,用钢量省。历史地震中,剪力墙结构表现了良好的抗震性能,震害较少发生,而且程度也较轻微,在住宅和旅馆客房中采用剪力墙结构可以较好地适应墙体较多、房间面积不太大的特点,而且可以使房间不露梁柱,整齐美观。

剪力墙结构墙体较多,不容易布置面积较大的房间,为了满足旅馆布置门厅、餐厅、会议室等大面积公共用房的要求,以及在住宅楼底层布置商店和公共设施的要求,可以将部分底层或部分层取消剪力墙代之以框架,形成框支剪力墙结构。

在框支剪力墙中,底层柱的刚度小,形成上下刚度突变,在地震作用下底层柱会产生很大内力及塑性变形,因此,在地震区不允许采用这种框支剪力墙结构。

3.框架—剪力墙结构体系。在框架结构中布置一定数量的剪力墙,可以组成框架—剪力墙结构,这种结构既有框架结构布置灵活、使用方便的特点,又有较大的刚度和较强的抗震能力,因而广泛地应用于高层建筑中的办公楼和旅馆。

4.筒体结构体系。随着建筑层数、高度的增长和抗震设防要求的提高,以平面工作状态的框架、剪力墙来组成高层建筑结构体系,往往不能满足要求。这时可以由剪力墙构成空间薄壁筒体,成为竖向悬臂箱形梁,加密柱子,以增强梁的刚度,也可以形成空间整体受力的框筒,由一个或多个筒体为主抵抗水平力的结构称为筒体结构。通常筒体结构有:

(1)框架—筒体结构。中央布置剪力墙薄壁筒,由它受大部分水平力,周边布置大柱距的普通框架,这种结构受力特点类似框架—剪力墙结构,目前南宁市的地王大厦也用这种结构。

(2)筒中筒结构。筒中筒结构由内、外两个筒体组合而成,内筒为剪力墙薄壁筒,外筒为密柱(通常柱距不大于3米)组成的框筒。由于外柱很密,梁刚度很大,门密洞口面积小(一般不大于墙体面积50%),因而框筒工作不同于普通平面框架,而有很好的空间整体作用,类似一个多孔的竖向箱形梁,有很好的抗风和抗震性能。目前国内最高的钢筋混凝土结构如上海金茂大厦(88层、420.5米)、广州中天广场大厦(80层、320米)都是采用筒中筒结构。

(3)成束筒结构。在平面内设置多个剪力墙薄壁筒体,每个筒体都比较小,这种结构多用于平面形状复杂的建筑中。

(4)巨型结构体系。巨型结构是由若干个巨柱(通常由电梯井或大面积实体柱组成)以及巨梁(每隔几层或十几个楼层设一道,梁截面一般占一至二层楼高度)组成一级巨型框架,承受主要水平力和竖向荷载,其余的楼面梁、柱组成二级结构,它只是将楼面荷载传递到第一级框架结构上去。这种结构的二级结构梁柱截面较小,使建筑布置有更大的灵活性和平面空间。

除以上介绍的几种结构体系外,还有其他一些结构形式,也可应用,如薄壳、悬索、膜结构、网架等,不过目前应用最广泛的还是框架、剪力墙、框架—剪力墙和筒体等四种结构。

[参考文献]

[1]GB50011-2001建筑抗震设计规范.

[2]GB50010-2002混凝土结构设计规范.

第2篇

在建筑结构设计过程中,其结构材料的选择对结构整体性能也有重大影响,表1列出了结构材料性能对比。当前,设计人员在对房屋建筑进行设计时,应重视钢结构的应用,其与传统的结构相比,具有相当大的优势:①相比于混凝土以及砖石结构,钢结构的力学性能更好,其能够把建筑结构受力体系由平面发展至空间,增强建筑安全性能;②钢结构更加轻盈,具有明显的技术美、艺术美以及自然美;③钢材料类型多样,建筑手段与方法层出不穷,此两者相结合来,有利于提高建筑施工进度,降低施工成本。综上所述,钢结构应用于房屋建筑中,不但能够满足人们对于建筑物耐用性、功能性以及安全性的要求,还能够提高其经济性与美观性,符合建筑结构优化的目标,十分值得推广。

2房屋建筑结构优化技术应用中需要注意的问题

2.1前期的参与

对于建筑施工项目而言,其前期的设计方案很大程度上直接决定了建筑施工质量和施工成本,但是不少建筑项目的前期方案确定时,并未进行结构设计的优化,忽略了建筑结构的合理性以及经济性,从而使得结构设计难度及成本在一定程度上被提高了。因此,对于设计人员而言,在建筑的前期设计中一定要重视优化设计方案的融入,从而达到节约成本、提高质量的目的。

2.2细部优化

当设计人员对建筑的结构进行优化设计时,其不仅要关注整体设计,更要关注到基本构件的精细设计。例如:在对现浇板进行设计时,应重视其受力程度,避免产生拐角裂缝。当前,随着科学技术的不断发展,优化设计的理论同计算机技术相结合,优化设计也从工程实践向着数学问题发展。因此,对于工程设计人员而言,其应全面掌握计算机技术的优化设计,提高建筑设计的合理性和准确性。

3工程实例

3.1工程概况

下文主要分析了某住宅建筑的结构优化设计,该住宅建筑地上32层,地下1层,结构形式为钢结构框架剪力墙。根据该建筑项目的实际需求以及现场情况综合分析之后,决定应用结构优化设计,实现对传统的结构设计模式的改进与创新。在优化设计中,以计算机为辅助,实现了对整个工程的全局优化。

3.2优化设计规范

在对该建筑工程项目进行结构优化设计时,设计人员严格地遵循有关结构设计的规范,针对结构设计中所存在的不足,如:安全性较差、要求过宽等,结合实际施工条件对其进行了优化处理。

3.3前期参与

在本工程中,设计人员在工程的前期规划中即结合了结构优化设计,根据工程项目的实际需求与施工条件,对建筑结构形式进行了科学取舍,保证其施工可行性与经济性。值得注意的是,在建筑前期规划中,设计人员不应仅凭自身的经验进行结构的优化设计,否则容易出现对建筑结构体系受力情况把握不当的现象,直接导致建筑质量不过关,不利于后期的施工,容易造成建筑建设成本的大幅度增加。

3.4概念设计

在建筑项目的建设过程中,若是其结构布局方式不同,设计效果也大不相同。因此,在对房屋结构进行优化设计时,应实现细部结构优化和概念设计的有机结合,从而切实有效提高结构优化设计效果。在本工程中,将建筑的概念设计作为了设计工作中的一大重点,贯穿于整个的设计过程之中。概念设计主要是对缺乏相应数值的细节进行处理,例如:地震设防烈度量化等情况,若是仅仅依靠相应的公式进行设计计算,得出的结果必然会和实际情况存在较大差异,而使用概念设计,则可将数值当作一种参考依据,实现对结构设计中细节的合理把握,提高结构优化设计的质量。

3.5结构优化设计的效益分析

在本工程中,优化后方案同优化前方案相比,更加科学合理;同时,其有效降低了施工成本,工程结束后,对整个工程造价进行计算,发现工程造价降低了26%。

4结语

第3篇

关键词:建筑结构;检测;加固

在需要对建筑物的施工质量进行评定时,或当建筑物由于某种原因不能满足某项功能的要求或对满足某项功能的要求产生怀疑时,就需要对建筑物的整体结构、结构的某一部分或某些构件进行检测。当判定被检结构存在安全隐患时,就应该对其进行加固处理,或者拆除。

以前,建筑结构检测、加固的重点主要是面对旧房,但近十年来,无论旧房或新房都存在着检测、加固的问题,建筑结构检测检测、加固的工作越来越多。一般来说,在下列情况下要对建筑物进行检测、鉴定和加固:(1)设计不周或有误;如对工程地质、水文地质尾部和地基情况了解不全,地基承载力估计过高,漏算或少算作用于结构上的荷载;设计人员受力分析概念不清,结构内力计算错误等;(2)施工质量低劣;如混凝土强度等级低于设计要求,钢筋混凝土结构构件有蜂窝、孔洞、露筋等缺陷,钢筋力学性能不符合设计要求;或砌体砌筑方法不当,造成通缝,空心砌块不按设计要求灌筑混凝土芯柱;或钢结构的焊接质量或焊缝高度达不到设计要求;(3)使用或改造不当;如未经核算就在原有建筑物上加层或对其进行改造,造成原有结构承载力不足,使用过程中任意改变用途加大荷载;或随意拆除承重墙或墙上开洞;(4)使用环境恶化;如结构长期受到高温、振动、酸、碱、盐、杂散电流等不利因素作用,引起结构构件的腐蚀性和损伤等。(5)建筑物年久失修.结构有损伤或破坏,不能满足目前的使用要求或安全度不足;(6)由于各种灾害事件的影响使结构产生裂缝或者破坏;(7)需要对古建筑、历史性建筑进行进一步维护、保护。

建筑结构试验检测技术是以相应现行规范为根据、以实验为技术手段,测量能反映结构或构件实际工作性能的有关参数,为判断结构的承载能力和安全储备提供重要依据。建筑结构试验检测不仅对新建工程安全性能的评定起重要作用,而且对于危旧房屋的更新改造、古建筑和受损结构的加固修复等提供直接的技术参数。

一、常用检测方法

结构检测工作包括的内容比较多,一般有结构材料的力学性能检测、结构的构造措施检测、结构构件尺寸检测、钢筋位置及直径检测、结构及构件的开裂和变形情况检测及结构性能实荷检测等。我们按所检的结构种类把建筑结构检测方法分为:混凝土结构检测、砌体结构检测、钢结构检测和钢一混凝土组合结构检测等。对某些结构或构件为获得其结构承整体受力性能或构件承载力、刚度或抗裂性能,可进行结构或构件的整体性能的静力实荷检验。对某些重要建筑和大型的公共建筑还可进行结构的动力测试。其中静力实荷检验可分为使用性能检验、承载力检验和破坏性检验。使用性能的检验主要用于验证结构或构件在规定荷的作用下不出现过大的变形和损伤,结构或构件经过检测后还必须满足正常使用要求;承载力检验主要用于验证结构或构件的设计承载力;破坏性检验主要用于确定结构或模型的实际承载力。对混凝土结构的混凝土材料强度目前广泛应用的检测方法是钻芯法和回弹法。钻芯法是在建筑构件上钻取混凝土芯样直接进行抗压强度检验,结果准确可靠,但会造成对结构物局部的损坏,尤其是对重要的结构部位,无法进行大量的检测。非破损法中的回弹法、超声法、超声一回弹综合法所测定的参数(回弹值、声速值)对混凝土强度来说并不很敏感,测试结果精度不高。拔出法是一种介于钻芯法和非破损检测方法之间的混凝土强度微破损检测方法,操作简便易行,对结构物损伤极小,又有足够检测精度.尤其是近20年才出现的后装拔出法无需预先在混凝土中埋置锚固件,而是在己硬化的混凝土上通过钻孔、扩槽、嵌人的方法将锚固件置人并固定其中,因此,在己硬化的新旧混凝土的各种构件上都可以使用,适应性很强,检测结果的可靠性也较高,特别是当现场结构缺少混凝土强度的有关试验资料时,是非常有价值的一种检验评定手段。对砌体结构的检测目前主要使用轴压法、扁顶法、原位单剪法、原位单砖双剪法、推出法、筒压法、砂浆片剪切法、回弹法、点荷法、射钉法。这些检测方法大致可分为两类:直接法和间接法,前者为检测砌体抗压强度和砌体抗剪强度的方法,后者为测试砂浆强度的方法。直接法的优点是直接测试砌体的强度参数,反映被测试工程的材料质量和施工质量,其缺点是试验工作量较大,对砌体有一定的损伤;间接法是测试与砂浆强度有关的物理参数,进而推定其强度,“推定”时难免增大测试误差,也不能综合反应工程的材料质量和施工质量,使用时具有一定的局限性,其优点是测试工作较为简便,对砌体工程损伤较少或无损伤。检测方法的选用应综合考虑结构情况,选用直接或间接或两者综合。由于钢结构的材质均匀,因此具有强度、塑性与韧性均能较方便地进行测试的优势。

二、常用加固方法

一般所需加固的结构大都存在由于结构自身的承载能力因灾害(如火灾、腐蚀、冻害)或施工质量不到位或功能改变等因素的影响而导致结构承载能力不足的现象,所采用的加固方法多是从提高结构的有效受力面积出发(如加大载面法等)减小截面的应力,或者直接改变结构的受力体系,改变其传力途径(如增加支撑法等)从而降低结构构件的受力,最终达到加固的目的。a)混凝土结构加固方法,b)砌体结构加固方法,c)钢结构加固方法。结构加固中需根据实际条件以及使用要求选择适宜的加固方法。

对于混凝土结构,在选择加固方法的同时还需选择相应的配套技术。其中施工技术一般有:

(1)托换技术。该技术系托梁(或析架,以下同)拆柱(或墙,以下同)、托梁接柱和托梁换柱等技术的概称。托换技术属于一种综合性技术,由相关结构加固、上部结构顶升与复位以及废弃构件拆除等技术组成,适用于已有建筑物的加固改造。与传统做法相比,具有施工时间短?费用低、对生活和生产影响小等优点?但对技术要求比较高,需要由熟练工人来完成,才能确保安全。

(2)植筋技术。该技术系一项对混凝土结构较简捷、有效的连接与锚固技术,可植入普通钢筋,也可植人螺栓式锚筋,已广泛应用于已有建筑物的加固改造工程。

(3)裂缝修补技术。该技术根据混凝土裂缝的起因、性状和大小,采用不同封护方法进行修补,使结构因开裂而降低的使用功能和耐久性得以恢复;主要适用于已有建筑物中各类裂缝的处理,但对受力性裂缝,除修补外,尚应采用相应的加固措施。(4)碳化混凝土修复技术。该技术系指通过恢复混凝土的碱性(钝化作用)或增加其阻抗而使碳化造成的钢筋腐蚀得到遏制的技术,目前这一技术还不够成熟。(5)混凝土表面处理技术。该技术是指采用化学方法、机械方法、喷砂方法、真空吸尘方法、射水方法等清理混凝土表面污痕、油迹、残渣以及其它附着物的专门技术。

第4篇

我国当前主要通过常微分方程求解器对高层建筑结构力学进行分析。高层建筑结构力学常微分方程求解器功能强大,自适应求解效果非常好,可以有效满足对用户进行预先解答,提高解答的精度,降低解答指定的误差限。当前我国在高层建筑结构分析通过对常微分方程求解器的应用,有效实现了对高层建筑结构楼板变形时的动力计算、稳定计算和静力计算,实现对数据的整体分析和处理。建筑人员通过使用常微分方程求解器的分析,有效降低了在进行高层建筑结构分析时的处理量,降低了高层建筑结构分析中的方程组数,有效提高运算效果,从本质上实现了对建筑结构的优化。

在对高层建筑结构常微分方程求解器进行深入研究的过程中,清华大学教授包世华和袁驷有效提高了常微分方程求解器的应用,实现了对常微分方程求解器的深化研究。袁驷教授利用有限元技术,对偏微分方程的半离散化进行控制,有效实现了对常微分方程组的求解,提高了对结构线性函数的应用。通过常微分方程求解器的直接求解,对有限元线进行实际应用,有效对一般力学问题进行计算,在很大程度上提高了一般力学问题的计算效果。而包世华教授对半解析-微分方程求解器方法进行分析深化,有效将半解析-微分方程求解器方法应用到高层建筑结构结构静力、动力、稳定性的分析验证中,提高了对高层建筑结构力学分析的效果。

2高层建筑结构弹塑性动力分析方法

高层建筑结构弹塑性动力分析方法在高层建筑结构力学分析中又被称为时程法。高层建筑结构弹塑性动力分析方法主要是对地震波直接输入结构,完成结构的弹塑性性能分析。这种方法要求结构力学分析人员建立专门结构弹塑性恢复性动力方程,通过逐步积分法实现对地震过程中速度、加速度、位移等的时程变化,完成对建筑结构的描述。高层建筑结构弹塑性动力分析方法对建筑结构在强震的作用下弹性及非弹性阶段的内力变化进行深入研究,有效对高层建筑构件可能出现的损坏、开裂、屈服、倒塌进行分析,提高建筑结构力学的分析效果。当前在国内的高层建筑结构弹塑性动力分析方法主要输入地震波为随机人工地震波,结构模型的计算多采取层模型。除此之外,高层建筑结构弹塑性动力分析方法还加大了对楼板结构变形的分析,使用并列多质点计算模型进行计算,对高层建筑结构的基础转动和评议进行研究,有效提高了对土体、基础及上部结构耦合振动的模拟效果。

近年来我国还高层建筑结构弹塑性动力分析方法中对扭转振动进行分析,取得显著进展。高层建筑结构弹塑性动力分析方法能够有效对高层建筑结构中存在的薄弱环节进行分析,提高对结构延展性、变形的实际分析效果。高层建筑结构弹塑性动力分析方法预计的破坏形态与实际地震的破坏效果非常接近,有效对地震危害进行防护处理,提高了高层建筑结构的防震效果。但是当前对高层建筑结构弹塑性动力分析方法的整体看法不一。部分人员认为采取大型高速计算机对典型地震波进行分析;但是部分人员认为典型地震波本身不一定能代表真正的地震,因此在进行研究的过程中要对研究算法进行简化,对近似方法进行研究。随着高层建筑结构弹塑性动力分析方法的逐渐发展,越来越多国家在进行高层建筑结构力学分析的过程中开始对地震波根据实际情况进行选取,模拟效果大幅提高。

3基于最优化理论的结构分析方法

基于最优化理论的结构分析方法主要是通过数学上的最优化理论及计算机技术实现对高层建筑结构设计的一种新方法。基于最优化理论的结构分析方法有效实现了对结构设计的被动分析道主动设计的转变,提高了高层建筑结构设计的灵活性,对设计具有非常好的促进效果。基于最优化理论的结构分析方法对空间的要求较为严格,设计过程中要保证以最小的质量产生最大的刚度。因此,设计人员要对框架剪力墙结构中的剪力墙进行充分分析,实现墙体的优化布置和数量选取,提高基于最优化理论的结构分力学析效果。基于最优化理论的结构分析方法中要求保证适度的刚度,对刚度要进行严格控制。尤其是在分析剪力墙与地震作用的时,要对剪力墙刚度进行优化设计,确保建立正确的最优化刚度模型,提高基于最优化理论的结构分析方法的模型实际应用效果。目前我国的基于最优化理论的结构分析方法发展还不全面,在进行单位建筑面积上剪力墙惯性矩度量指标设计的过程中还存在较多问题。我国的基于最优化理论的结构分析方法仍处於研究和发展阶段。高层建筑结构力学分析人员要对基于最优化理论的结构分析方法中的数学模型进行深入研究,对剪力墙最优刚度进行有效分析,从本质上提高数据分析处理效果,拓宽基于最优化理论的结构分析方法的应用前景。

4基于分区广义变分原理与分区混合有限元的分析方法

在进行分区的过程中,高层建筑结构力学分析人员要对有限元进行全面分型。有限元中杂交元和非协调元的发展在很大程度上促进了分区广义变分原理的发展,为分区广义变分原理奠定了坚实的理论基础。清华大学龙驭球教授对分区广义变分原理进行研究,实现了对分区广义变分原理的深化。龙驭球教授的分区混合有限元法将分区广义变分原理进行拓展,实现了继位移法、杂交元法之后的改革和完善。分区混合有限元法对弹性体分类,对势能区使用位移单元能量分析,将结点位移作为基本未知量。而余能区使用应力单元,将结构应力函数作为基本未知量,实现对能量项的交界面附加。分区混合有限元法在满足位移和力的基础上保证了位移的连续和收敛性,有效对总能量泛函驻值分区混合进行方程选取。分区混合有限元法适应性非常强,分区较为灵活,在很大程度上保证了函数的收敛性,对高层建筑结构力学的分析具有非常好的促进效果。

第5篇

1.1建筑设计方案不够合理

在土建工程中,方案设计是工程能否顺利进行的前提,建筑工程的稳定性与安全性首先取决于方案设计的合理性。但目前,我国很多工程建筑管理者对方案设计环节并没有足够的重视,这就导致在方案设计环节出现不合理现象,有些应该细化的条款变得笼统,有些应强调的环节一笔带过甚至直接忽略,而且,现在很多方案在设计时大多考虑到建筑的承载力,对建筑的寿命考虑非常少,这些都直接影响到建筑结构的安全性。

1.2建筑团队对建筑结构安全性意识不强

在我国,工程的建筑团队大多数是来自农村的劳动力,他们一般接受的教育较少,对建筑结构的安全性认识普遍较低,近几年建筑工程不断发生的安全事故给建筑团队敲响警钟,使管理者开始重视安全培训,但由于建筑团队自身综合素质的影响,对培训的内容一知半解,对建筑结构的安全问题缺乏系统的认识,无法更好的防范安全隐患,这很容易导致因人为因素出现建筑结构的安全性问题。

1.3安全规范政策标准较低

我国在土木建筑工程中制定了一系列的安全规范标准,用于规范建筑过程,但与发达国家相比,这些标准过低,例如,在承载能力方面,我国设置的安全水准,是以分项系数或者安全系数为主要指标的,对土木建筑结构的安全性测试以系数为准,认为系数越大安全性越高,而且,针对一些特殊状况如地震、爆炸等建筑的牢固性,我国的规范标准并没有设置明确的要求。同时,我国在建筑结构方面重点强调结构的强度,对建筑的耐久性没有过多的要求,缺少规范标准。

2影响土木建筑结构安全性的因素

2.1牢固性

近几年,我国很多地区发生过地震灾害,如汶川地震,给国家的发展和人民的生命财产都造成了无法弥补的损失,显现了地震灾害的巨大破坏力,同时也对建筑的牢固性进行了一次考验。建筑的牢固性不够是导致灾害严重的重要原因。建筑的牢固性一方面要求建筑结构构件要具有足够的承载力,另一方面也要求建筑结构整体具有牢固性。要保证建筑结构的整体牢固性必须满足两个指标,结构物的冗余度及延性。这样的建筑物不会因为局部倒坍而造成整体的连续破坏。

2.2安全性

在土木建筑工程中,安全性是考量整体建筑结构的重要质量指标,指的是建筑结构承载倒塌、破坏等的能力。影响结构安全性的因素主要有两个,一是在建筑过程中的方案设计合理性以及施工水准,二是建筑完成后的使用、检测及维护。方案设计是建筑工程是否安全的重要指标,必须保证设计规范符合建筑结构的要求,标准要合理严谨,规范标准的制定是影响建筑结构安全性的一个重要因素。

2.3耐久性

土木建筑结构的耐久性指的是建筑的使用寿命,保证建筑能够在规定的使用年限内发挥正常的使用功能。现在大多数的土木建筑工程采用的都是混凝土,因此,建筑工程的质量很大一部分是取决于混凝土结构的耐久性。虽然人们普遍认为混凝土的耐久性非常强,但资料显示混凝土的正常使用年限不超过三十年。在我国的土木建筑工程中,由于有害物质侵蚀等原因,使建筑的使用年限不断缩减。虽然设置较低的安全水准会给建筑工程带来一定的安全隐患,但因外界因素如混凝土锈蚀等原因给建筑造成的危害更胜一筹。当然,建筑结构的耐久性与建筑完成后的使用、检测与维护有密不可分的关系,因此,在建筑工程时必须将后期维护预计产生的费用核算在内,避免过度超支。

3提高建筑结构安全性的措施

3.1重视土木建筑工程的方案设计环节

在建筑工程中,要充分重视方案设计环节,对建筑结构进行零误差、零缺陷的设计,不得掺杂主观色彩,有质量的完成产品、过程或服务。在强化结构构造以及增强材料性能方面,可采取防治盐害及冻融的综合措施。另外,方案设计的合理性直接影响到土木建筑结构安全性的系数,必须保证建筑结构局部具有牢固性,同时结构整体还要具有整体牢固性,要将环境等外界因素充分考虑全面。

3.2做好质量管控

首先,要严格控制土木建筑工程的进度。在施工前期,通过对整个建筑工程的宏观把握,包括对工程的难易程度、工程质量要求、施工工艺方式以及其他因素的考虑,综合分析,制定施工进度计划与安排。严格控制工程进度,就是保证工程建设任务能够按照承包合同规定进行。在我国,一般会采用对比法来检验施工进度,如利用横道图计划。在编制计划时要保证项目执行严格按照进度规划进行,把施工进度规划进一步细化,制定施工任务书,合理调配人力、物力、财力。同时,在施工过程中,要实时获取施工的具体情况,确保项目施工进度严格按照进度规划进行。在实际的施工过程中,可能存在进度的调整,这其实是一种周期性的循环。可以利用网络计划,采取调整、纠正偏差的措施对进度规划进行调整,将工期压缩以及赶工成本等因素考虑全面,有计划的调整进度规划,确保建筑工程能够顺利进行。

3.3做好原料的检测及建筑的维护

为保证土木建筑结构的安全性,在施工开始前,必须对施工所需的原材料进行严格把控,如果原材料出现问题,必然会导致建筑工程出现安全隐患。在保证原材料优质的前提下,还要严格落实各个环节符合方案规划,做好进货检验记录,掌握材料价格、质量、供货能力等信息。同时,还要通过法律渠道保证土木建筑工程能够在规定的年限内正常使用,并对建筑进行定期检测与维护,提高建筑的安全系数。

3.4推广应用新技术

要保证土木建筑结构的安全性,必须找出制约其安全的因素,并加以预防与改善。在建筑工程中,影响安全性的因素主要有渗漏、裂缝及剥蚀,其中破坏力最大的是裂缝,而裂缝的关键是撩测,在传统的工程建筑过程中,主要采用声波跨孔法以及超声波法,效果不理想,针对这种情况,可以推广应用新技术,采用超声回弹综合法、回弹法以及射线法等方法探测建筑结构的表层强度,进而针对现状采取相应的安全措施。

4结语

第6篇

我国的高层建筑的设计特点大部分都集中的体现在侧移、结构延性、轴向变形和水平荷载等方面。而在一些竖零件中,由于楼房的自重问题以及楼面的使用荷载,而最终产生的弯矩数值还有轴力仅仅和楼房高度的成正比,另外由于竖向荷载较水平荷载具有的不确定性而具有确定性,所以,水平荷载往往在高层建筑中起到决定性的作用。而由于在水平荷载的作用下的结构侧移变形会伴随着这个高层建筑的楼层高度的增加而渐渐增大,所以,结构侧移都是整个高层建筑设计的关键因素和控制指标。除此之外,结构延性也可以作为高层建筑设计的重要指标。为了保证真个高层建筑拥有足够的结构延性,就需要使其结构在进入塑性变形的阶段时仍然具有较强的变形能力而不会使自身出现倒塌的现象,须在其结构的处理上采取相应的措施。此外,在整个高层建筑的设计中同样不能忽视高层建筑的轴向变形因素的影响。

二、高层建筑的构体系

2.1框架与剪力墙

当施工中单医德框架体系的强度及刚度无法满足施工的实际要求时,就需要在建筑平面的某些适当位置设立相应的增加较大的剪力墙来替代一部分框架,这就形成了框架-剪力墙体系。在受到水平方向力的影响时,框架和剪力墙都需要通过有足够大的刚度的楼板以及连梁组成的协同工作的结构体系。

2.2剪力墙体系

当承受力的主体结构主体部分全部都是由平面剪力墙构件组成的时候,就形成了剪力墙体系。在这种体系当中,一堵剪力墙就能够承受全部的垂直荷载及水平力。而剪力墙体系属于刚性结构的一种,其位移的曲线一般都呈现为弯曲型。而剪力墙体系自身的强度和刚度都很高,并且具有一定的延展性,抗震、抗倒塌等性能比较优越,是一种较为优秀的结构体系,能建的高度大于框架-剪力墙的混合体系。

三、高层建筑结构的相关问题分析

3.1结构超高的问题

在国家新出台的抗震规范和新规范中,对于建筑结构的总体高度有着一定的限制,尤其是新规范当中针对建筑物超高的问题,除此之外将以前高层建筑的高度限制设定为A级高度以外还新设立了B级高度,同时相应的处理措施以及设计方案也都有极大的改变。在工程师进行实际的工程设计工作时,可能出现的由于结构类型改变的问题从而忽略此类问题出现后将导致施工图纸再进行审查工作时未能通过,需要进行重新的设计和召开相应的专家会议来进行确切论证的情况,对工程的工期、造价等等整体规划都将造成很大的影响。

3.2短肢剪力墙设置问题

在新的施工规范中可以看到,对于短肢剪力墙的定义就是墙肢截面的高厚比为5~8的墙体,而且根据相应的实验数据以及工程师自身的经验,对于短肢剪力墙在高层建筑中的应用能力较低,同时也有比较高的限制,所以,在高层建筑的设计施工中,结构工程师应当尽可能的减少采用或不用短肢剪力墙,以避免产生关于设计方面的不必要的麻烦。

3.3嵌固端设置问题

我国目前的高层建筑大部分都自带地下室和人防,正因为如此,这样就有可能会将嵌固端设置在地下室的顶板上,当然也有可能会设置在人防顶板等等特殊位置,因此,就在这个问题的处理上,结构设计工程师经常会忽视了由嵌固端的设置位置不当带来的一些需要注意的问题,比如:嵌固端楼板本身的设计、嵌固端上下层刚度比的上限等等问题,而建筑工程必须要严谨,任何一个细小的问题都有可能在未来造成严重的后果。

3.4结构规则性问题

在当前新旧规范在这方面的规则出现了极大的差异,新的规范在这方面新增加了许多的限制条件,而且,新的规范增加了强制性的条文规定“即建筑不能采用严重不符合规范的设计方案。”因此,结构设计工程师自工作室就必须要注意对待新规范当中的的某些限制条件,以防止出现在施工后期设计图纸设计阶段的工作改动。

四、总结

第7篇

应该在一限度之内控制在水平荷载作用下结构的侧移。具有更高的抗震设计要求。对于高层建筑进行结构的抗震设防设计,在考虑正常使用时的风荷载和竖向荷载的同时,还必须保证结构的抗震性能良好,确保在小震的情况下不损坏,在大地震时不倒塌。

2.提高建筑结构设计质量的有效途径

2.1要求我们工作人员要做好相关资料搜集工作,来确定最终的计算参数。对于建筑工程建设来说,建筑物所在地的地质条件决定了建筑结构设计工作开展过程中所涉及的参数。如不同地区有着不同的温度、气候条件、以及不同的地质条件,而在建筑结构设计中必须要参考这些基础而又重要的数据。所以,做好相关的资料搜集对于提高建筑结构设计质量意义重大。

2.2要充分利用结构设计软件。我们知道,21世纪是一个信息高速发展的社会,计算机、互联网技术以及融入到社会生产、生活的方方面面,所以,要想不断提高建筑结构设计工作质量,就必须采用先进、科学的计算机软件,来代替传统的手工计算方法,提高计算设计数据的准确性,但是,我们工作人员也决不能过度依赖计算机软件所计算出的结果,要对计算机所得出的结果进行系统的分析和论断,确定无误后在应用于设计工作中去。

2.3在结构设计工作开展中要认识到抗震设计的重要性。大多数结构设计人员常犯的错误就是在设计过程中只重视建筑横向框架的设计,而忽视纵向框架的设计,而往往科学的抗震设计要将横向设计和纵向设计有效结合,才能设计出科学的抗震性。也就是说横向设计与纵向设计二者同等重要。所以,在抗震设计过程中我们要严格遵循小震不坏、中震可修、大震不倒的抗震设计原则,这就要求结构设计应设计成延性结构。延性结构的变形能力能够有效地承载一定的地震作用。

2.4重视概念设计存在的差异进而对结构进行优化设计。在结构概念设计阶段,我们应该如实参考建筑所在地的地质条件,并且将该建筑所具备的功能结合在一起,同时要充分考虑到建筑的安全性、没关系、经济性,最终确定建筑结构的科学方案。同时在概念设计中应处理好总体布局与关键细节之间的关系,使两者兼顾,从而全面提高建筑结构的可靠性。

2.5在进行建筑结构方案设计及相关设计内容中,其设计工作人员在执行结构设计的过程中应当遵循统一的规范管理内容。对出现异议的情况,应当由相关的专门负责人进行解决。其最终意见主要由专门负责人以及总工程师进行确定,不能一意孤行,以免对工程质量和进度造成负面影响。

3.结语

第8篇

简单来讲智能土木结构是智能结构应用于土木结构的产物,现代社会的人们对于建筑的要求越来越高了,而其中最为重要的就是土木结构智能化。智能结构可以说是一种仿生结构体系,集合了驱动器、主结构、传感器和控制器,具有环境适应力、结构自监控和损伤自修复的特点,甚至智能结构能够在危险发生的状况下保护自身结构不受到伤害。建筑行业的飞速发展对建筑提出了智能化需求,土木工程师们会将仿生功能材料融入到基体材料中,使得传统建筑结构拥有智能化的工程,人们在习惯上将其称为智能土木结构。智能土木结构出现了之后,进一步解决了结构评估的完整性、耐久性、强度和安全性等等的问题,更大程度上减少了建筑结构维修费用,增强了土木结构预测能力。比如说智能土木结构具有自内而外预报方式,主要的原理就是在传统土木结构的内部植入一些传感器,组成一个网络,进而对结构性能进行实时监测。智能土木结构在建筑结构中的应用前景还是十分良好的,到目前为止智能土木结构主要应用于了高层建筑、桥梁和大坝等工程。近几年来的民用建筑和结构都采用了大规模、高性能的分布式智能检测系统。这些智能检测系统都能够为智能大厦发展建立坚实基础,我国的智能大厦,到目前为止,我国智能大厦已经如同雨后春笋般不断涌现。

2现代建筑结构中智能土木结构的应用

2.1智能传感元件在现代建筑结构中的应用

土木工程中通常会在建筑结构中粘贴或者是埋入一些传感元件来对建筑物进行健康检测,在确保检测结果正确性的同时,还要对建筑物的稳固性和安全性进行更为确切检测和评价,获取最为精准的数据,从而对建筑物的命运做出判决,进行维修或者是直接报废。对于一些比较重大的土木工程建筑来说,由于其结构的修建时间比较长,设备相对来说都比较陈旧,传统传感器并不能够适应这种内部环境,这个时候选择高性能的传感器检测结构健康是十分有效的。利用智能材料、光纤等制作成传感器并且应用于土木工程的发展历程当中已经具有了划时代的意义,使得土木工程的发展史开辟出了全新的篇章。

2.2建筑工程健康监测的具体实施过程

智能土木结构在建筑工程的结构损伤和健康检测方面都起到了十分重要的作用。在土木工程当中,建筑物的检测通常会采用目测的方法,除此之外还会利用到声发射、超声波以及X射线等无损性的检测,利用这种方法能够有效杜绝很多弊端,在建筑物的内部结构中出现了破损情况,或者是建筑物的实时动态都能够得到准确检测,在满足了人们对建筑整体了解的需求之上还能够保证检测效率和检测准确率。比如说当建筑物发生了损伤,内部就会出现裂纹,这些裂纹在外部力量的作用下会加大损伤的力度,并且会以声速扩散,而这些都会被特殊材料制成的传感元件所感知到,让相关的工作人员能够更加及时准确地掌握整个建筑物的内部情况,对建筑物进行更为及时的整体规划,采取一些措施来避免建筑物事故的发生。

2.3现代建筑节能支持

智能土木结构不仅仅为普通建筑提供了安全检测的功能,还能够为智能建筑提供节能技术,并且已经在实际中得到了逐步的推广使用,建筑师们也在此基础上提出了节能建筑的概念。所谓节能建筑其实就是在设计和建造的过程中,均尽量采用节能型的材料和器具,利用智能土木结构使得建筑本身具备监测控制能力,随着外部环境的变化而适当地做出调整,把建筑的自身能耗降低到最低的水准。智能土木结构为现代建筑节能提供的技术支持能够更好地实现绿色建筑,更加有利于环境友好和可持续发展。

3智能土木结构提升策略

3.1提高智能传感的技术

传感元件的应用是绝对离不开传感技术,所以提高智能传感技术已经是势在必行的了。从仿生学的角度来看,传感器就像是建筑物自身的感受器官,要想提高智能传感技术就必须要从传感技术的系统性入手,提高传感器的处理、感知、识别的能力,并且在这个基础上要提高传感器系统的灵敏度和可靠性,实现整体传感技术智能化。在建筑工程当中,传感元件要保证不影响建筑外形结构,要同建筑材料形成较好的相容性,把对建筑物的影响尽可能地降低到最低的水平,提高建筑物当中信号的抗干扰能力。

3.2发展智能控制集成

智能控制系统是一个相当于人类大脑神经中枢的最高级部分,这不仅仅取决于运动系统和感觉系统的运行程序,还担负着整个脑神经的高级功能运转。在土木工程的内部安装集控系统中,能够对一些强降雨和风暴做出迅速的应急,尽可能地降低损失,因此,相关建筑人员应该重视对于智能控制集成的开发和利用。例如说,在一些强台风的天气,各地方都会重视安全预警,而智能建筑中发展集成控制就能够更加及时地对整个环境进行控制,确保整个建筑的安全。

4结束语

第9篇

大楼平面形体是Z字形,L/Bmax=0.56>0.35,为不规则建筑结构,竖向存在立面缩进,层高差别大。通过初步运算发现,结构在风荷载和地震影响下的位移角可达到规定的要求,虽然可达到规范需要,然而第二周期扭转因子已经很大,达到0.34,这说明此结构抗扭刚度显然不够。与此同时,此结构在考虑偶然偏心情况下的扭转位移比X向和Y向都大于1.30,甚至还有1.40的,此结构的扭转效应比较严重,属于扭转不规则,裙房4层时薄弱层,刚度低于上3层平均刚度的近八成,首层是软弱层,抗剪承载力达不到上层的八成,此结构不规则位置为5项,属严重不规则结构,此楼上下层功能较多,地下室是车库,业主要求有较大空间布置墙体受到约束,2到4层时酒店多功能厅,需空间宽敞,布置墙体受约束,5到12层时酒店客房,不允许在建筑外侧设置剪力墙,12以上是办公楼,中间也很难布置墙体,很多功能使此楼中部和边上很难存在墙体上下贯通。此楼设计中的关键工作为调整周期比及扭转位移比,因此楼平面凹凸不规则,2个核心筒都处于两端,刚度十分的不均匀,刚心和质心有很大的偏差,在地震的影响下容易出现扭转破坏。控制周期比和控制位移比相同,但控制周期比的侧重点在于测向刚度和扭转刚度间的相对性,主要目的是抗侧力平面布置更加合理、有效,促使建筑结构不产生过大的扭转效应。所以,控制周期比的主要目的是使结构抗侧力构件的布置更加均匀、合理,而不是让结构更具有刚度。若是平动第一周期和扭转第一周期相对接近,因振动藕连作用,结构扭转效果应该会变化的较为明显。然而,此大厦第二周期扭转因子为0.34,一般认为其扭转刚度较弱,需要进行调整,不可只认为平动和扭转第一周期的比值低于0.9就可以,同时还需要考虑平动周期内的扭转因子,如若不然在地震较大时结构第一周期很有可能就会是扭转周期。考虑到这一比如哦环节,应该针对结构竖向构件进行调整:首先,在结构左上方及右下方各加1片相对较长的剪力墙,加强建筑物周边结构构件的抗扭性,同时还要把结构刚心大幅度的推向左侧;其次,在右下角核心筒位置开洞,降低此处的刚度,这主要是原因这一位置核心筒有很大偏心,这使得刚度中心向左侧偏移;第三,取消上部核心筒下端的1个小核心筒,降低中间刚度,并把此核心筒连梁减弱,从而使结构剪力墙更为均匀,这对于结构扭转周期比和位移比皆大有裨益。首层高度8m,致使受剪承载力低于上层的近八成,要妥善处理抗剪承载力不够的问题,应该增加抗剪截面或是提升混凝土的强度大小,具体办法为再首层以下每层柱截面都增加100mm,强厚增加50mm,混凝土强度增加一级,这之后受剪承载力比会在大于90%,达到基本需要。此大厦第4层初算是薄弱层,4层顶便是裙房屋面,扩大裙房屋面梁截面,增加屋面板厚度,能够有效防止薄弱层。经过以上调整,此大厦5项不规则调整成2项不规则,防止了申报超限情况的发生。

2调整前后的周期参数

由于1个小核心筒被取消,刚度变低,然而调整结构之后刚度显然比调整之前更加均匀,同时也加强了抗扭刚度,扭转位移比得到了显著的改善,最大扭转位移比都低于1.20,属规则建筑结构、一个平面上显然不规则的结构经过科学调整刚度,能够使其成为规则的结构。

3抗震技术的应用全面分析

工程实际的每一方面因素,一般应用的抗震技术有:(1)在条件允许的情况下,尽可能增加周边剪力墙的厚度,特别是离刚心最远的位置,把刚心及质心的偏心率调整成最低,降低扭转周期,把建筑结构调整为扭转规则的结构;(2)减弱核心筒的连梁,应用弱连接梁进行连接,增加平动周期和平扭周期比;(3)科学控制墙柱的轴压比,提升柱纵筋的配筋率及箍筋配筋率,纵筋配筋率都要扩大一级,柱箍筋全楼进行加密,角柱加芯柱,以此提升结构竖向构件在强震时抗形变水平;(4)在凹角位置设置45°的斜向钢筋,抵抗角区应力集中,加强薄弱位置的配筋与板厚;(5)虽然四层可不算作规范中的薄弱层,但是计算时依然要按照薄弱层进行运算,地震剪力需要乘以1.15增大系数,并且要强化此楼层的墙柱配筋,提升建筑结构在强震中的抗形变水平。

4结语

相关文章
相关期刊