时间:2022-08-13 09:52:31
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇无线电论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
从查获的作弊设备种类来看,不法分子主要采用两种无线电通信设备。一是无线视频传输设备,分为发射和接收两部分,使用1GHz以上的频率。考场内,考生利用微型摄像设备拍摄试题,然后通过无线视频发射设备向场外发送试题图像;考场外,“”利用无线视频接收设备及显示器接收试题(见图1)。二是答案传送设备,分为发射和接收两部分,大都使用400MHz对讲机频段和230MHz数传频段。考场外,“”解题后,利用对讲机传送答案信息,考生通过携带的无线接收器和隐形耳机获取。
2研究目的
衢州市无线电管理局原有无线电警示系统虽然在各类考试保障中发挥了积极作用,但存在着扫描速度和信号处理较慢、软件操作烦琐、远程控制单一等不足之处。另外,由于科目一考试几乎在每个工作日都会开考,如要防范高科技作弊,无线电管理部门则要耗费大量的人力物力,执法成本很高。正是由于缺乏有效的防范措施,使不法分子有了可乘之机。该课题就是针对科目一考试作弊的主要形式和特点,研究如何在原有设备的基础上,通过升级设备配置,提升信号处置速度,提高压制效果,从而对利用无线电通信设备进行考试作弊的不法行为起到震慑作用。
3研究思路
为实现实时发现作弊信号、提升压制效果、降低执法成本的目的,课题组经过分析认为,需对原有无线电警示系统的系统架构、信号处理和远程控制等方面进行改造升级,使其在扫描速度、信号处理、压制效果、远程控制等方面得到明显提升和改善。(1)提高信号扫描速度。舍弃原有无线电警示系统的前端接收机,选用性能优异并具有DSCAN快速扫描功能的EB200接收机作为接收前端,以提高系统的扫描速度。(2)提升信号处理能力。选用某电子技术公司开发的无线电信号快速处理系统作为控制软件,通过EB200的网络控制端口,对接收机进行控制。升级后的控制软件具有频段扫描、中频测量、干扰处置一体化设计,能快速发现、分析和判别信号,并可自动触发压制设备。(3)提高压制设备的针对性。课题研究前期,在考场架设了监测接收系统,连续监测数月,收集作弊信号的频谱特征,并据此定制3副不同频段的发射天线。同时,利用考场固定这一有利条件,在考场外选择合适位置架设天线,定向发射,提高考场内压制信号的场强,使压制效果更好。(4)优化远程控制模式。原有无线电警示系统远程控制模式单一,工作效率不高。因此,该系统在控制模式上采取多样化配置,通过LAN专网使无线电警示系统与局监测中心互联,同时增加平板电脑,通过无线VPN专网卡与无线电警示系统进行联网,使控制模式多样、灵活,方便监测人员的操作,提高工作效率。
4实际效果
无线电警示系统改造升级后,在发现作弊信号的速度、信号压制效果和远程控制模式等方面都有了明显的提高和改善。(1)信号处理速度更快。当系统监测到的信号强度大于事先保存的信号样本时,会自动触发中频监听功能,同时启动录音功能。一旦确认为作弊信号,可以在同一界面下,迅速启动压制功能,对作弊信号进行压制。(2)压制效果更理想。由于采用定制的高增益天线定向发射,使到达考场内的压制信号强度大大提高,从而实现更好的压制效果。为了验证实际效果,课题组根据考场的实际环境,选择了可被不法分子利用、距离考场最近的位置,利用车载台发射模拟作弊信号,并对压制设备启用前后进行了测试对比。从信号频谱图来看,压制信号完全覆盖了模拟作弊信号(见图3、图4);现场测量表明,压制信号电平远远大于模拟作弊信号电平(见表1);实效试验也表明,压制设备启用后,用于接收信号的对讲机已完全听不到模拟作弊信号内容。输由于考虑保密性要求,一般考虑利用指定的电话网络或卫星通信技术。
5总结
摘要:感知无线电技术是在软件无线电技术基础上发展起来的一种新的智能无线通信技术,是软件无线电技术的扩展,它使软件无线电从预先定义协议的盲目执行者转变成为无线电领域的智能。感知无线电虽具有独特的优点,但技术并不成熟,本文对感知无线电的无线传输场景分析、信道状态估计及其容量预测、功率控制和频谱管理,无线电知识描述语言等关键问题进行了探讨,希望能够对相关工作的开展提供一些参考。
一、感知无线电的概念
感知无线电技术用以实现动态频谱共享。通过检测空中信号占用频谱,通过探知无线环境中空闲频谱资源,选择可被自己利用频率进行通信。租借系统通过采用感知无线电技术,实时跟踪授权系统占用频率状况,随时使用、释放频段,在保障授权系统通信前提下,与授权系统动态共享频谱。论文百事通采用频谱检测方式获取频谱信息可使感知无线电技术能适应无线环境频谱使用状况短期变化,高效利用频谱,并且感知无线电技术不要求改造现有系统,对无线信道环境和用户需求都将具有较好适应性。
感知无线电技术动态频谱共享是自适应传输技术思想在频谱分配领域的运用。自适应传输使无线通信系统数据传输适应信道传输能力的变化,通过提高数据传输速率来改善频谱利用率。而感知无线电使无线通信系统占用的频谱适应无线环境频谱使用状况的变化,通过增加共享同一频段的系统数、用户数来提高频谱利用率。不管是自适应传输技术还是感知无线电技术,其思想的核心都是无线通信系统能自动地适应外界环境和自身需求的变化。
感知无线电思想可以推广到移动通信其它层面。从低层到高层,要求未来移动通信系统能检测系统各层参数与状态,如链路质量、网络拓扑、业务负载、甚至用户需求,并能适应这些变化。从通信端到端,在存在重叠覆盖多种无线电通信环境下,要求移动设备能够在异构网络间切换,实现包括终端、网络和业务在内的端到端重配置。这也就是所谓的认知网络(CognitiveNetwork)。
二、感知无线电关键技术分析
作为一种新的智能无线通信技术,感知无线电可以感知到周围的环境特征,采用构建方法进行学习,通过相关描述语言与通信网络智能交流,实时调整传输参数,使系统的无线规则与输入的无线电激励的变化相适应,以达到随时随地通信系统的高可靠性和频谱利用的高效性。无线规则指一系列适合无线频谱合理使用的射频带宽、空中接口、相关协议和空间时间模式的设置。感知无线电系统的重构能力很重要,该功能就是以软件无线电作为平台来实现的。重构功能是由软件无线电实现,而感知无线电的其他任务是通过信号处理和机器学习的过程实现,其感知过程开始于无线电激励的被动感应,以做出反应行为而终止,一个基本的感知周期要大致分为3个基本过程,分别是无线传输场景分析、信道状态估计及其容量预测、功率控制和频谱管理,它们的顺序执行使感知无线电系统的感知功能得以实现。
2.1感知无线电技术与动态频谱分配
未来移动通信系统满足用户需求的关键点是提高频谱利用率。移动通信的发展使带来了越来越严重的频率短缺问题。解决频率短缺大致有两类方法,一是扩大可利用的频率范围,二是提高频谱利用率。为增加可用频率,移动通信系统的频率已扩展至300GHZ。无线信道的路径损耗是随频率升高而迅速增加的,所以频率过高并不利于移动通信。因而,更加有效的方法是提高频谱利用率。
提高频谱利用率有三类途径,改进通信设备的传输技术,优化网络、提高组网能力。目前广泛采用这两种途径,但是这两种方法能够获得的频潜利用率增益将越来越少。第三种提高频谱利用率的途径是改进频谱分配方式。
目前国际上主要采用固定频谱分配方式,一个频段只分配给一个无线接入系统,不管分配的频段是否被频率牌照的所有者实际使用,其它无线接入系统不能占用该频段。为提高频谱利用率,可以将一些频段分配给了多个系统,允许它们同时占有同一个频段,甚至一些频段可以开放为不需牌照的频段,允许任意系统占用。尽管固定频谱分配方式能够改善系统干扰问题,但由于频谱的授权系统并不是在任何地区的任何时刻都使用频率,其频谱利用率很低。而简单地允许多个系统共享一个频段,虽然优于独占性的固定频谱分配方式,但由于它对频谱共享没有加以必要的控制,一个系统占用频率前并不知道该频率是否正在被其它系统使用,从而导致了两方面的问题。可见,如果仅仅是简单地允许多个系统共享频谱,而不避免系统间干扰,会制约频谱利用率的提高,并且不能保证通信质量。
为解决频谱短缺与频谱利用率低下的矛盾,可以考虑采用动态频谱分配方式。允许多个系统共享同一频段,各系统只在需要通信时才能占有频段,通信结束就释放频段,而且必须控制系统间干扰,后接入的系统不能影响其它已有系统的通信。为与现有通信系统兼容,分配频段上授权系统有使用频谱的最高优先级,只要不影响授权系统通信,租借系统与授权系统动态共享频谱。这种动态的频谱共享包含时间与空间两方面。在时间上,当授权系统不使用所分配的频率时,租借系统可以占用频率,但当授权系统重新占用频率时,租借系统必须及时地归还频率。
2.2信道状态估计及其容量预测
信道估计的结果可用来计算信道容量,用于控制发送端的信号能量,可使用香农法则计算信道容量C,但在感知无线电系统中并不直接在发送端传输C的信息,而是量化C,一定的量化率用于反馈发送端,量化比率是预先确定的,所以接收机接收的信息量要小于信道容量C。一般来说,无线系统的传输率是波动的,当其超出一定界限时,就会引起系统的不正常工作,这个界限决定了最大的传输比特率。
2.3功率控制和频谱管理
2.3.1功率控制
在感知无线电通信系统中功率控制的实现以分布方式进行,以扩大系统工作范围,提高接收机性能。控制发送端功率是感知无线电系统的关键技术之一。在多址接入的感知无线电信道环境中,主要采用协作机制方法,包括规则及协议和协作的Adhoc网络两方面内容。多用户的感知无线电系统彼此协作工作,基于先进的频谱管理功能,可以提高系统工作性能,支持更多用户接入。
2.3.2动态频谱管理
动态频谱管理也称为动态频谱分配,具有实现系统频谱高效利用的功能。在感知无线电系统中,频谱管理的算法可这样描述:基于频谱空穴和功率控制器的输出,选择一种调制方式以适应时变的无线传输环境,使系统工作在可靠传输的状态下。系统工作的可靠性可由信噪比差额(SNRgap)的大小确定。
2.4无线电知识描述语言
传统的软件无线电不能与网络进行智能交流,因为没有基于模式推理计划能力和没有相关描述语言。在以软件无线电为发展平台的感知无线电研究中,研究表示无线系统知识、计划和所需语言是关键技术,无线电知识描述语言(RKRL)应运而生,它表示了无线规则、系统配置、软件模块、网络传送、用户需求、应用环境等知识。
参考文献:
[1]何丽华,谢显中,董雪涛,周通.感知无线电中的频谱检测技术[J].通信技术,2007,(05)
[2]王军,李少谦.认知无线电:原理、技术与发展趋势[J].中兴通讯技术,2007,(03)
[3]谭学治,姜靖,孙洪剑.认知无线电的频谱感知技术研究[J].信息安全与通信保密,2007,(03).
[4]刘元,彭端,陈楚.认知无线电的关键技术和应用研究[J].通信技术,2007,(07)
随着社会在发展,人们的生活水平也越来越高,根据国家体育总局联合教育部进行的全国第五学生体质普查显示,从1985年到现在,我国学生的体质越来越差,无论从爆发力、持久力、速度等方面,都比以往下降,而肥胖以及视力不良却在逐渐的增加,这种情况让人担忧,如果这种情况持续下去,后果不堪设想。所以国家提出“健康第一”,要在注重学业的时候增强学生的体制。从2007年开始,全国校园推广阳光校园的活动,旨在培养出德智体美劳全面发展的学生,而无线电测向完美的符合了这种要求,无线电测向要求学生能够灵活的运用知识,综合考验了参与者的身体素质、理论知识、道德品质、动手能力以及判断能力,使得学生得到充分的教育。
2.黑龙江省高校开展无线电测向的必要性
根据我省的实际情况,联系健康第一的活动,笔者觉得开展无线电测向运动有以下几点好处:第一,通过无线电测向活动能够促进学生的身心健康。在现在社会,学生的课余活动太少,而且单调缺乏趣味,大部分的学生都沉溺于上网,他们将大部分的时间花费在网络游戏中,不仅耗时耗力,长时间的上网会降低视力,体制变差,抵抗力变弱,在血腥的网络世界,打打杀杀习以为常,严重的影响了学生的身心健康。而无线电测向运动却不同,它要求学生拥有短跑冲刺的能力,也要同时兼具长跑的能力,通过平时的训练,大大的增强了学生的体制和心理能力,而且无线电测向的场地是在广袤的自然环境之中,这使得学生能够亲近自然,回归自然,同时也增强了学生对于各种环境的适应能力。无线电测向要求学生能够了解无线电知识,对于目前的状况能够准确的判断,锻炼了学生。在训练之中出现楼台以及找错台等突发状况,可以培养学生应对紧急情况的能力,且可以锻炼学生的心理承受能力。第二,教育改革的目的在于培养大学生的综合素质,无线电测向运动能够完美的符合教育改革的目的。从广义上来讲,无线电测向运动属于军事体育运动,它能够培养学生的爱国意识、国防意识以及爱国精神,当运动员穿梭在树林、草原和丘陵之间寻找隐蔽的信号源,就像是一名名战士,为保卫祖国尽力,此外,在进行无线电测向运动之前对学生的无线电知识有着一定的要求,这样他们才能根据无线电的特点找出隐蔽的信号源,考验了学生的判断力、动脑能力以及求知欲,随后,学生还必须学会测向机的组装与改良,为了比赛的胜利,学生一定会自己动手,这增加了学生的自主动手能力,拓展了他们的知识面,除此以外,因为这是一场比赛,还锻炼了学生的拼搏能力,还能培养学生学会独立思考。因为比赛的全程都是由学生独立完成,这很好的考验了学生的体力,脑力、对于知识的掌握。从狭义上来讲,无线电测向运动是一种运动,它锻炼了学生的体魄,使得学生在各种环境中活动,锻炼了学生独自承受的能力和体质。
3.无线电测向运动开展方式
学校可以通过社团活动将无线电测向加入学的生活,在高校开学军训时候,无线电测向能够作为一项运动加入,除此以外,体育课,课外活动等等实践课程都能加入无线电测向运动,这不仅培养了学生,响应了国家的号召,更能为学校培养人才,为社会培养人才。
4.结束语
无线电通信由于其上述众多优点的存在,对于促进我国改革开放和经济的发展都十分重要,但现阶段的无线电发展技术中仍存在许多弊端。比如信号稳定性差,容易遭受外界电波信号的干扰和影响,这也是最为显著的一个缺点;安全性不好,无线电信号在传输过程中容易被截获,保密性不强;还有信号失真问题。在出海过程中,无线电通信是与陆地总部保持联系的重要方式。如果总是出现信号不好、信号丢失等现象,就会给任务的执行和计划的安排部署带来很大的困难;并且如果保密性不强,很可能丢失机密信息,危害到国家安全。所以,我国应该不断加大对无线电通信技术的研究支持力度,要进行不断改进和完善,使该技术在我国各行各业中发挥更大的作用。
2无线电通信的发展趋势
如今伴随信息化、科技化、智能化技术的飞速发展,无线电通信技术必须加快脚步来满足社会经济发展和人们生活水平的需要。提高自主创新能力、将无线电通信技术与突飞猛进的高科技技术进行有机高效的结合,都会给我国的无线电通信技术带来意想不到的发展。(1)数字化发展。数字化通信技术可以有效利用系统频谱资源,提高信号传输过程的稳定性,规避抗干扰风险。与此同时,还可以增大通信容量,增强安全保密性。(2)宽带化发展。随着WLAN、WiMAX等宽带接入技术的发展,无线电通信技术将会逐渐朝着宽带化方向演变。(3)软件化发展。在军事通信领域,软件无线电通信侦察技术应用较为广泛。但是在其他领域还未得到应用,如果将软件技术与无线电通信技术的有机结合体普及开来,将可以极大地提高通信过程的保密性。这点对于我国航海航运过程的无线电通信发展应用也极为关键。(4)保证通信网络的持续有效性。众所周知,无线电通信是基于网络设备的基础上发展而成的,如果网络配置和铺设出现了间断、故障等现象,后果将不堪设想。因此,必须提高网络设备的性能,优化网络配置。这也是无线电通信技术的一个重要发展方向。
3海上无线电通信技术的发展应用
3.1全球海上遇险和安全系统(GlobalMaritimeDistresSandSafetySystem,GMDSS)
GMDSS比较全面地建立了海上遇险、通信、搜救系统,包括国际海事卫星通讯系统、地面无线电系统、船舶报告系统、海上安全信息播发系统等。根据国际相关法律法规的程序,我国的海上遇险和安全系统是GMDSS的重要组成部分。此外,我国还是《海上搜救公约》的缔约国,另外也是国际海事卫星组织和ITU的成员国,因此,必须对海上遇险的搜救工作和安全保卫工作担任起相应的责任。无线电通信技术在GMDSS系统中发挥着至关重要的作用,在出海过程中应该做到对GMDSS无线电通信的规范使用,平时也要加强对GMDSS设备的维修保养,及时进行设备更新,保证在遇到危险的情况下,GMDSS无线电通信设备能够对呼叫做到及时的反馈,并进行转发。
3.2船舶远航识别和跟踪系统(LongRangeIdentificationandTracking,LRIT)
LRIT系统在基于无线电通信技术的基础之上发展起来的,该系统可以在全球范围内识别并且跟踪船舶,并且获得相关信息,已经被用于反恐、环保、搜救和航行安全等诸多领域。LRIT船舶识别和跟踪信息包括:船舶身份、船舶所处位置的具体经度和纬度、所提供位置的具体时间,并且这些信息的传输均需要依靠无线电通信技术。无线电通信的快速发展对于LRIT系统识别和跟踪的有效性、安全性有着重大帮助。
3.3海事卫星(MaritimeSatellite)
伴随着网络设备和通信工程事业的快速发展,海事卫星从被使用开始至今也已经历经了四展。海事卫星是用来提供遇险安全通信、数据、图像、声音等信息的综合服务系统。现在海事卫星已经可以为航海过程的手机、无线电通信、数据传输等过程提供高效的服务平台,对于解决航海过程的信号稳定性差、信号丢失等问题发挥了重要作用。基于海事卫星的众多优点,它也越来越多的被应用在众多其他领域,在保证通信质量方面显示出极大的优势。
4结语
1传输效率自寻优控制方法分析
在无线电能传输系统中,当工作频率在谐振点附近时,传输效率较高,随着工作频率偏离谐振点,传输效率会下降[8]。由于接收线圈两端的感应电压决定了接收模块的驱动能力,为了方便对传输效率进行测量,简单以接收线圈两端的电压与发送线圈两端电压之比衡量系统的传输效率。在频率较低时,增加频率可以提高传输效率,而当频率高于某一值时,继续增加频率则传输效率反而会降低,即存在一个频率点可以使传输效率取得最大值。实验显示,可以用高斯函数近似模拟传输效率随传输频率变化的趋势,如图1所示。发送设备自动调整工作频率到发送模块谐振点与接收模块谐振点之间的某一值,从而使传输效率达到最优。综上所述,以频率为变量对传输效率最大值的寻优过程就是寻找效率随频率变化曲线的最大值。模糊控制器是一种不需要了解被控对象的精确数学模型的控制器,它根据一套控制规则推理出控制决策。模糊控制的实质是用人的经验知识进行控制的一种控制方式[9-11],它是一种非线性控制,对参数的变化不敏感,具有很好的鲁棒性[12]。在无线电能传输系统中,工作频率由频率发生器决定,系统中采用单片机模拟输出PWM波形来作为频率发生器[13-15]。因此,可以直接在单片机中编程实现模糊控制器。利用实时采集到的数据计算出传输效率及传输效率变化率(传输效率变化量除以频率变化量)作为模糊控制器的输入,利用模糊控制规则推理出控制决策,调整工作频率,使系统始终工作在传输效率较高的频率点处。控制器设计思路如下:在系统开始工作时,由于无法计算传输效率变化率,任意设定1个较小的初始频率调整量,此后,则根据当前传输效率及传输效率变化率确定下一步频率调整量。不同频率处传输效率及传输效率变化率的曲线图如图2所示。当传输效率较低而传输效率变化率较大时,频率调整量取一个比较大的值,频率是增加还是减小则取决于传输效率变化率的符号。当传输效率变化率为正是,说明频率处于谐振点左边,频率调整量为正;当传输效率变化率为负时,则说明频率处于谐振点右边,频率调整量应该为负。而当传输效率较高或者传输效率变化率很小时,频率变化量应该取较小的值,其正负同样取决于传输效率变化率的正负。
2模糊控制器的设计
传输效率自寻优的过程实质上是一个通过不断改变工作频率进行尝试从而逐渐逼近极值点的过程。要尽快逼近到极值点附近就需要选取合适的频率调整量。在本文的设计中频率调整量由模糊控制器推理得出,因此,传输效率自寻优的实现关键是设计合适的模糊控制器。本文设计了1个双输入单输出模糊控制器,其中,两个输入变量分别为传输效率η(f)及传输效率变化率dη(f)/df。通过测量发送线圈两端电压u(1)与接收线圈两端电压u(2)可求得传输效率,即η(f)=u(2)u(1)×100,(2)作为输入变量1;将当前传输效率减去前一次测得的传输效率求得传输效率改变量,然后除以频率调整量得到传输效率对频率的变化率dη(f)/df,作为输入变量2。输出变量为频率调整量的决定因子U,由映射df=g(U),(3)决定下一步的频率调整量df。模糊控制器将输入变量1和输入变量2进行模糊化后根据控制规则推理出下一次的频率调整量df,以当前频率加上求得的频率调整量作为下一步的工作频率。模糊控制器结构示意图如图3所示。输入变量1,即η(f)采用6个语言值,分别为5(很大)、4(大)、3(一般大)、2(小)、1(很小)、0(零);输入变量2,即dη(f)/df采用5个语言值,分别为-2(负大)、-1(负小)、0(零)、1(正小),2(正大);输出变量U采用11个语言值,分别为5(正很大)、4(正大)、3(正一般大)、2(正小)、1(正很小)、0(零)、-1(负很小)、-2(负小)、-3(负一般大)、-4(负大)、-5(负很大)。输入变量及输出变量均采用三角形隶属度函数。各变量隶属度函数的图形分别用图4、图5和图6表示。分析频率调整因子U与输入变量1(传输效率)和输入变量2(传输效率变化率)之间的关系,可得到模糊控制器的规则表如表1所示。系统采用Mamdani模糊模型,在模糊推理过程中,“与”运算采用最小值运算,“或”运算采用最大值运算,模糊蕴含采用最小值运算,综合规则采用最大值运算,解模糊化采用中心法。
3仿真结果使用
Matlab对所设计的无线电能传输自寻优算法进行仿真验证。实验室所研究的无线电能传输系统在接收端靠近发送端时的理论谐振频率为530kHz。在实际工作过程中,由于元器件参数变化及测量误差,谐振频率会偏离理论谐振频率,因此,在实际系统运行时,可将初始传输频率设置为理论谐振频率,随后按文中控制方法进行传输效率自寻优。在做仿真验证时,将初始频率设置为530kHz,假设由于参数的改变,谐振频率变为600kHz,且理想最佳传输效率为80%,用高斯函数η=80×exp-f-600000()200000[]2,(4)模拟实际系统的传输效率随工作频率的变化曲线。经试验,当df与U的映射关系取df=sign(U)×10×10|U|时控制效果较好。系统在工作时有两种调整方式,第一种方式是持续调整,始终保持效率最优;第二种方式是连续5次调整量df均小于某一固定值时结束调整,系统传输频率不再改变。对应第一种工作方式,观察100个调整周期,其仿真结果如图7所示。对应第二种方式,设定结束条件为连续5次|U|<2,即频率调整量df≤100,仿真结果如图8所示。由图7、图8可以看出,经过4个调整周期后,传输效率就很接近理想传输效率,此后,传输效率均能一直保持在最优传输效率附近。
4结语
无线电液控制技术的基本工作原理:首先,无线电液控制系统将操作者或机器的控制指令进行数字化处理(包括对信号的滤波,A/D转化等处理),变为易于处理的数字信号;其次,对数字指令信号进行编码处理;再次,指令信号在经发射系统进行数字调制后,通过发射天线以无线电波的方式传递给远处的接收系统。最后,接收系统通过接收天线把带控制指令的无线电波接收下来,经过解调和解码,转换为控制指令,实现对各种类型阀的进行控制。
由于无线电液控制技术在工程机械领域占有重要地位,它也越来越受到各国的重视,都投入了很多的技术力量和资金进行研究开发。虽然红外遥控也可以实现电液控制技术的远程遥控,但是由于红外遥控存在对工作背景要求高、能耗高、传输距离短(一般不会超过10米),且必需在同一直线上,中间不能有任何障碍物以及易受工业热辐射影响等缺点,使得无线电液控制技术成为当前研究的主要方向。
二、无线电液控制技术的研究现状及趋势
(一)无线电液控制技术的研究现状
最初,遥控电液控制系统都是采用有线遥控方式进行的。早在60年代初期,人们就能利用拖缆遥控装置来控制液压机械上的手动、电液多路阀,操作时通过拖缆遥控装置上的双向单轴摇杆输出线性比例信号来控制电液比例多路阀,线控盒摇杆的信号完全能模拟液压多路阀上手动拉杆的动作。虽然这种方式也可以使操作人员在作业区外对机械设备进行操作控制,但是由于控制信号在电缆线中的衰减,使得遥控的距离有限,同时由于电缆线的存在,影响了操作的灵活性,而且数米长的电缆经常是生产事故中的主要根源。[2]
随着无线电技术的成熟,把无线电技术引入电液控制系统成为了可能。由于无线电液控制技术是通过无线电波来传递控制指令,完全消除了拖缆式遥控装置所带来的故障隐患。但是一开始的无线电液控制系统都只能发射简单的指令,如:打开/关闭等指令。进入70年代后,随着大规模集成电路及专用微处理器的出现,开发出了可靠性更高的手持式无线遥控系统。后来,随着数字处理技术的快速发展,无线数字通信技术的日趋成熟,利用数字通信技术的抗干扰能力强、易于对数字信号进行各种处理等等的优点,使得遥控系统的抗干扰性能逐步提高,安全性能大大改善;与此同时,模拟集成电路设计的迅速发展,各种高精度的模拟/数字转换器(A/D)和数字/模拟转换器(D/A)的研制成功,并把他们应用到无线电液控制系统中,使得无线电液控制系统不但能够传输开关信号,也能够传输模拟控制量并且对控制指令有较高分辨能力,也就是说,无线电液控制系统不但能够控制普通的电磁开关阀,而且能够控制比例阀。
由于无线电液控制技术既有电液控制技术的优点,又有无线技术的优点,因此它有着很广泛的应用,特别是在工程机械领域中。无线电液控制系统的典型应用场合如工业行车、汽车吊、随车吊、混凝土泵(臂架)车、盾构掘进机的管片拼装机等。
80年代初,美国KraftTeleRobtics和约翰·迪尔等公司,相继开发出无线遥控系统,并应用于挖掘机中,成功推出遥控挖掘机。其中,比较典型的是约翰·迪尔公司的690CR型遥控挖掘机。
1983年,日本小松制作所研究开发了各种工作装置的微动控制和复合动作的无线电操纵,并成功改装PC200-2型液压挖掘机。
1987年,德国HBC公司研制成功应用于工程机械领域的工业无线电遥控装置。这种遥控装置采用了先进的数字化通信技术,传输的比例控制信号安全、可靠和实用,并对发射的指令有很高的分辨率;在接收端使用模拟技术可以使执行机构的加速、减速动作与无线电遥控装置发射器上的动作完全成比例,从而实现对执行机构的无级控制。利用它,结合电液比例伺服驱动机构、液压比例多路阀和电液比例减压阀及普通电磁控制开关阀,就可以实现工程机械的无线遥控。德国HBC无线电遥控系统采用的比例输出信号(0-5V/10V、4-20mA、PWM0-2A)可与多个厂家电液多路阀信号匹配,可模拟手动操作方式达到与液压控制系统互相间的协调。
与国外对无线电液控制技术的研究应用相比较,国内则相对比较晚,技术相对也落后一些。上海宝山钢铁公司于1997年引入HBC无线遥控系统、意大利FABERCOM的比例液压伺服模块,对黄河工程机械厂生产的ZY65型履带式装载机进行了遥控改造,使其成为一台遥控装载机。
(二)无线电液控制技术研究趋势
随着数字通信技术和超大规模集成电路的高速发展,把数字通信技术和高性能、高集成度的集成电路应用到无线电液控制技术中,使得无线电液控制器的性能更加完善,可靠性更加高。它们都推动着无线电液控制技术的发展,具体表现在以下几个方面:(1)超大规模集成电路的飞速发展使无线电液控制器硬件电路的可靠性提高,同时为实现更强大的(下转第152页)(上接第193页)功能提供了可能性;(2)数字通信技术提高了无线电液控制器的性能;(3)纠错编码技术提高了无线电液控制器的抗干扰能力。
三、无线电液控制技术在盾构管片拼装机中的应用
盾构管片拼装机是一六自由度机械手,由电液比例多路阀控制各个方向执行器动作,实现管片的拼装。利用无线遥控系统控制电液比例多路阀的先导级就可以控制进入多路阀的流量。采用电液比例技术能提高管片机的拼装速度,有效地降低工程造价。
四、结语
由于无线电液比例技术具有多方面的优点,在工程机械领域得到了广泛的应用。将无线遥控技术应用于盾构管片拼装机系统,将具有重要的工程应用意义。
【参考文献】
[1]郑贵源.无线遥控装置在工业控制中的应用[J].机械与电子,1997,(2).
[2]李水平.工业遥控器在起重机上的应用[J].设备管理与维修,1997,(9).
[3]马宏远.钢铁工业中的无线遥控和计算机无线数据通信[J].钢铁技术,1999,(6).
感知无线电技术用以实现动态频谱共享。通过检测空中信号占用频谱,通过探知无线环境中空闲频谱资源,选择可被自己利用频率进行通信。租借系统通过采用感知无线电技术,实时跟踪授权系统占用频率状况,随时使用、释放频段,在保障授权系统通信前提下,与授权系统动态共享频谱。采用频谱检测方式获取频谱信息可使感知无线电技术能适应无线环境频谱使用状况短期变化,高效利用频谱,并且感知无线电技术不要求改造现有系统,对无线信道环境和用户需求都将具有较好适应性。
感知无线电技术动态频谱共享是自适应传输技术思想在频谱分配领域的运用。自适应传输使无线通信系统数据传输适应信道传输能力的变化,通过提高数据传输速率来改善频谱利用率。而感知无线电使无线通信系统占用的频谱适应无线环境频谱使用状况的变化,通过增加共享同一频段的系统数、用户数来提高频谱利用率。不管是自适应传输技术还是感知无线电技术,其思想的核心都是无线通信系统能自动地适应外界环境和自身需求的变化。
感知无线电思想可以推广到移动通信其它层面。从低层到高层,要求未来移动通信系统能检测系统各层参数与状态,如链路质量、网络拓扑、业务负载、甚至用户需求,并能适应这些变化。从通信端到端,在存在重叠覆盖多种无线电通信环境下,要求移动设备能够在异构网络间切换,实现包括终端、网络和业务在内的端到端重配置。这也就是所谓的认知网络(CognitiveNetwork)。
二、感知无线电关键技术分析
作为一种新的智能无线通信技术,感知无线电可以感知到周围的环境特征,采用构建方法进行学习,通过相关描述语言(RadioKnowledgeRepresentationLanguage,RKRL)与通信网络智能交流,实时调整传输参数,使系统的无线规则与输入的无线电激励的变化相适应,以达到随时随地通信系统的高可靠性和频谱利用的高效性。无线规则指一系列适合无线频谱合理使用的射频带宽、空中接口、相关协议和空间时间模式的设置。感知无线电系统的重构能力很重要,该功能就是以软件无线电作为平台来实现的。重构功能是由软件无线电实现,而感知无线电的其他任务是通过信号处理和机器学习的过程实现,其感知过程开始于无线电激励的被动感应,以做出反应行为而终止,一个基本的感知周期要大致分为3个基本过程,分别是无线传输场景分析、信道状态估计及其容量预测、功率控制和频谱管理,它们的顺序执行使感知无线电系统的感知功能得以实现。
2.1感知无线电技术与动态频谱分配
未来移动通信系统满足用户需求的关键点是提高频谱利用率。移动通信的发展使带来了越来越严重的频率短缺问题。解决频率短缺大致有两类方法,一是扩大可利用的频率范围,二是提高频谱利用率。为增加可用频率,移动通信系统的频率已扩展至300GHZ。无线信道的路径损耗是随频率升高而迅速增加的,所以频率过高并不利于移动通信。因而,更加有效的方法是提高频谱利用率。
提高频谱利用率有三类途径,改进通信设备的传输技术,优化网络、提高组网能力。目前广泛采用这两种途径,但是这两种方法能够获得的频潜利用率增益将越来越少。第三种提高频谱利用率的途径是改进频谱分配方式。
目前国际上主要采用固定频谱分配方式,一个频段只分配给一个无线接入系统,不管分配的频段是否被频率牌照的所有者实际使用,其它无线接入系统不能占用该频段。为提高频谱利用率,可以将一些频段分配给了多个系统,允许它们同时占有同一个频段,甚至一些频段可以开放为不需牌照的频段,允许任意系统占用。尽管固定频谱分配方式能够改善系统干扰问题,但由于频谱的授权系统并不是在任何地区的任何时刻都使用频率,其频谱利用率很低。而简单地允许多个系统共享一个频段,虽然优于独占性的固定频谱分配方式,但由于它对频谱共享没有加以必要的控制,一个系统占用频率前并不知道该频率是否正在被其它系统使用,从而导致了两方面的问题。可见,如果仅仅是简单地允许多个系统共享频谱,而不避免系统间干扰,会制约频谱利用率的提高,并且不能保证通信质量。
为解决频谱短缺与频谱利用率低下的矛盾,可以考虑采用动态频谱分配方式。允许多个系统共享同一频段,各系统只在需要通信时才能占有频段,通信结束就释放频段,而且必须控制系统间干扰,后接入的系统不能影响其它已有系统的通信。为与现有通信系统兼容,分配频段上授权系统有使用频谱的最高优先级,只要不影响授权系统通信,租借系统与授权系统动态共享频谱。这种动态的频谱共享包含时间与空间两方面。在时间上,当授权系统不使用所分配的频率时,租借系统可以占用频率,但当授权系统重新占用频率时,租借系统必须及时地归还频率。
2.2信道状态估计及其容量预测
信道估计的结果可用来计算信道容量,用于控制发送端的信号能量,可使用香农法则计算信道容量C,但在感知无线电系统中并不直接在发送端传输C的信息,而是量化C,一定的量化率用于反馈发送端,量化比率是预先确定的,所以接收机接收的信息量要小于信道容量C。一般来说,无线系统的传输率是波动的,当其超出一定界限时,就会引起系统的不正常工作,这个界限决定了最大的传输比特率。
2.3功率控制和频谱管理
2.3.1功率控制
在感知无线电通信系统中功率控制的实现以分布方式进行,以扩大系统工作范围,提高接收机性能。控制发送端功率是感知无线电系统的关键技术之一。在多址接入的感知无线电信道环境中,主要采用协作机制方法,包括规则及协议和协作的Adhoc网络两方面内容。多用户的感知无线电系统彼此协作工作,基于先进的频谱管理功能,可以提高系统工作性能,支持更多用户接入。
2.3.2动态频谱管理
动态频谱管理也称为动态频谱分配,具有实现系统频谱高效利用的功能。在感知无线电系统中,频谱管理的算法可这样描述:基于频谱空穴和功率控制器的输出,选择一种调制方式以适应时变的无线传输环境,使系统工作在可靠传输的状态下。系统工作的可靠性可由信噪比差额(SNRgap)的大小确定。
论文摘要:早在七十年代,人们开始研究无线电通信技术。无线电通信技术有线电通信相比,具有不用架设传输线路线、脱离传输距离限制、传输距离远、通信灵活等优点,备受市场的青睐。无线电通信技术为人们的生产和生活带来的影响无疑是巨大的,但它亦有不容忽视的缺点,譬如声音、文字、数据、图像和视频等传输的质量不甚稳定,由此造成的声音失真、文字模糊、数据滞后、图像和视频失真都亟须改进之处,还有信号容易受到干扰、容易被人截获造成通信内容保密性差[1],尤其在军事和经济领域,再一次说明无线电通信技术通信方法的拓新势在必行。本文就无线电的优缺点进行分析,探讨其通信技术所需拓新之处,并提出建议。
1无线电通信技术的发展历程
1895年5月7日俄国物理学家波波夫已“金属屑与电振荡的关系”的论文向全世界宣布无线电通信技术的诞生,并当众展示了他发明的无线电接收机,那天俄国当局定为“无线电发明日”。
1896年3月24日,波波夫将无线电通信的通信距离延长到250米,做了用无线电传送莫尔斯电码的表演为无线电通信技术拉开新的序幕。
1898年,年轻的意大利青年马可尼利用游艇证明了他的无线电电报能够在20英里的海面畅通无阻地通信,第一次实际性地使用无线电通信技术。
1901年,他在相隔2700公里英国和纽芬兰岛之间成功地进行了跨越大西洋的远距离无线电通信,从此人类进入无线电波进行远距离通信的新时代。
随后,无线电通信技术如雨后春笋其涌现出来。直到1946年,美国人罗斯.威玛和日本人八本教授利用高灵敏度摄像管家用电视机接收天线问题,从此超短波转播站一些国家相继建立了,无线电通信技术迅速普及开来[2]。
随着电子技术的高速发展,信息超远控制技术为满足遥控、遥测和遥感技术的需要,于人们生产与生活中被广泛使用;后来微电子技术也推动了电子计算机的更新换代,使电子计算机信息处理功能大大增加,日益成为信息处理最重要和必不可少的工具。
信息技术是以微电子和光电技术为基础,以计算机和通信技术为支撑,以信息处理技术为主题的技术系统的总称,是一门综合性的技术。今天的信息化时代,就是电子计算机和通信技术紧密结合的标志。
无线电通信技术发展到今日,拥有无限潜力。军事、气象、生活、生产等各个领域都对其都有空前的需求。虽然无线电通信技术优点虽然卓越,但其缺点至今给技术的发展带来很大的障碍,都是我们亟须解决的难题。
2无线电通信技术的特点
近些年无线电通信技术领域引入无线接入技术,是迅速发展起来的新技术领域,不需要传输媒质,部分接入网甚至入网的全部皆可直接采用无线传播手段代替,无论是概念上还是技术含量上都产生了一个重大的飞跃,实现了降低成本、提高灵活性和扩展传输距离的目的。其特点喜忧参半,优点主要体现在传输线路线、通信方式等方面,我们可以总结如下:
不受时空限制。大多数情况下,人们对通信运用的时间、地点、容量需求无法预知,而无线电通信不受时空限制的优点能够采取灵活多样的手段和方法,确保通信联络综合高效,语音、数据、图像的综合传输畅通无阻,随着近年来国内各个经济领域和国际经济的来往,无线电通信技术不受时空限制方法为其打开方便之门,尤其通信与网络的连接,通信技术踏上新的台阶。
具备高度的机动性及可用性。无线电通信技术传输数字化、功能多样化、设备小型化、智能化及系统大容量化决定了其具备高度的机动性和可用性,尤其在军事构建地域通信网方面起到很大的作用。
可靠性高。无线电通信比起有线通信的一个卓越优点在抵抗水淹、台风、地震等方面有较大的可靠性,一般情况下除非信号干扰都能保持通信的畅通,这也是无线架输的最大特点。
无线电通信技术虽然解决了架设传输线路线、脱离传输距离限制、传输距离远、通信灵活等的难题,但其信号容易受到干扰、影响,还有容易被截获造成了该项技术的保密性极差。无线电通信技术的缺点几百年来都是让人头疼的问题,目前全球化经济愈演愈热,其信号的稳定性与安全性上升为经济领域里关注的焦点,因此,无线电通信技术的通信方法拓新成为其发展的新话题。
3无线电通信技术之通信方法的拓新
21世纪无线电通信技术正处在关键的转折时期,尤其最近几十年最为活跃。信息化的飞速发展和IP技术的兴起,欲求无线电通信技术适应未来社会生产和生活的需求。务必在通信方法上进行一系列的拓新。针对以上无线电通信技术的缺陷,笔者认为,我们可以从通信技术、信息技术、网络技术、蓝牙技术、软件技术等方面进行尝试,主要可总结一下八点:
3.1采用了数字通信技术
提高系统频谱资源的利用率,维持信号上的稳定,避免通信信号收到干扰,增大了系统通信容量,提供话音、图像和数据等多种通信服务,确保用户信息安全保密。
3.2推广通信信息技术宽带化的发展
信息的宽带化对于光纤传输技术和高通透量网络的发展起到关键的推进作用[3],尤其近年来世界范围内全面展开,无线通信技术正朝着无线接入宽带化的方向演进,这个方向对无线电通信信号源稳定来说的确非常之重要。
3.3推广个人信息化技术
个人信息化在全球个人通信已经有着不争的发展趋势。个人信息话,能够有效地减低传输路线的信息量堵塞,大幅度提高通信的传播速度。
3.4拓新接入网络的样式
技术上融合实现固定和其他通信等不同业务,在无线应用协议(WAP)的出现以后,无线数据业务的开展得到大幅度的推动,促进了信息网络传送多种业务信息的发展。随着市场竞争的需要,传统的电信网络与新兴的计算机网络融合,尤其具备开发潜力接入网部分通过固定接入、移动蜂窝接入、无线本地环路入等不同的接入设备,满足了生活与生产地各种通信需求。
.5过渡电路交换网络
关于过渡电路交换网络,IP网络无疑是核心关键技术,是最合适的选择对象,处理数据的能力电路交换网络大大提升,这一点对保持通信畅通方面解决了信号容易受到干扰的难题。
3.6使用Bluetooth技术作为信号传感器
Bluetooth技术具有更高的安全性和适用性,利用蓝牙做出来的传感器随时反映出用户所需要的信号方向,一旦连接到Internet上的话,即可以实现更具备高度的机动性及可用性。
3.7推广软件无线电
软件无线电通信侦察与对抗方面世人瞩目,但它仅限于军事通信领域,如果能够推广到市场,对于无线电通信技术的通信内容保密性来说将是一大跨步的改革创新。
3.8提高无线通信网络可持续性
无线电通信技术的网络设备如果没有良好的配置和网络部署,一旦受到安全威胁,其后果不堪设想。因此,无线电通信技术通信方法的拓新我们与必要提高网络设备性能、优化设备配置、冗余备份等等手段来保证网络的可靠性[4]。
结束语
回顾无线通信的发展历程,无线电通信技术的传输路线、传输距离、通信灵活性、信号稳定性、保密性等方面的需求将愈来愈突出。通信方法新技术的拓新将有愈来愈广阔的活动舞台及光明的发展前景。鉴于市场对经济的推进作用,尽管我国的无线电通信技术发展速度飞快,但面对我国12亿人口的通信需求,无线电通信技术普及率低的问题,面对我国12亿人口,网络规模和容量方面就变得苍白无力了。同时,无线电通信技术愈来愈激烈竞争局面促使各无线电通信运营企业积极拓新新的技术涵盖面,提升自身的营业水平,为市场提供丰更加富的选择,满足用户各个方面、各个层次的需求。因此,在无线电通信技术通信方法应用开发的发展潜力无穷,这要求我们积极加快无线领域的科技进步,为无线电通信技术创新出谋划策,为全球信息化及经济全球化的通信事业贡献力量。
参考文献
[1]《信号与系统(第二版)》A.V.Oppenheim西安交通大学出版社2000年.
[2]《数字与模拟通信系统》LeonW.Couch,II电子工业出版社.
近年来,随着各种电子工具的出炉,无线电通信在手机、电视、广播、民航导航中都得到了广泛的应用,但通信信号与电磁干扰信号是共存的,在无线通信日益发展的同时,信号干扰也与之俱兴,尤其是在民航中,无信通信干扰的存在严重威胁了飞机飞行的安全性,甚高频作为民航飞机与机组塔台的联系媒介,如果受到无用信号的干扰就会出现联络故障,出现各种噪声或接收到的声音信号嘈杂不清,致使机组人员无法顺利和指挥站的工作人员联系,严重者将会导致空难的发生,所以,我们需要对民航中无线通讯中信号干扰做深入的了解。
2无线通信干扰的种类
2.1邻带干扰
邻带干扰是干扰信号的邻带能量与所要接收的正常信号的邻带能量同处一个频带上,导致接收机接收的邻带信号中夹杂有无用信号,造成了接收信号的不精确和噪声比的下降,邻带干扰产生的原因是民航飞机设备本身的质量问题,设备与国家规定的标准有偏颇使得信号接收出现问题。例如,如果通信系统如果需要在多频道进行信号的接收,1频道被用户1民航甚高频无线电通信干扰的探讨文/常琪在现在的民航飞行环境中存在着诸多的电磁干扰,本文中笔者对民航所受的各种干扰信号从原理方面进行了详细的介绍,甚高频无线电通信是民航飞机与塔台进行联络的重要媒介,涉及民航的安全保障问题。摘要占用,2频道被用户2占用,两个频道之间的频率差为20KHz,那么从理论上来讲,1、2两个用户是互相不干扰的,但假如其中一台仪器出现了故障,尤其是设备质量导致的故障,就会导致机器的发射频率的稳定性降低,发射的信号的频带会加宽,只是1、2两个频带产生交集。
2.2频带外干扰
频带外干扰是指信号接收机接收到了正常频带和邻带以外的信号,指示信号的接受力降低,主要是发射机的杂辐射和接收机的杂辐射响应两种干扰。发射机的杂辐射产生原理是:在甚高频的低频区域,一般都是通过晶体振荡器发出基本频率,然后再经过多次的频率放大,得到发射波最后经由无线通信设备的信号发射机发射出去,但是在信号放大过程中,放大器的非线性特征使得信号中产生了大量的谐波的分量,在频率放大后如果得不到充分地滤波就会使产生的谐波与信号一起被放大然后发送出去,使接受对应频率的接收机对信号的判断出错,这种由接收机辐射产生的干扰信号只能从发射收机一段进行解决,因此国家对各种信号发射机做了非常明确的规定,以将其在辐射值控制在合理的范围之内进而减少发射波的杂辐射,但往往会因为厂家的利欲熏心而是无线通信环境受到污染;收机的杂辐射响应一般是指,接收机不光会接收到有用信号还会接收到频率之外的信号,这种能力被称为杂辐射响应,当接收机所收到的信号刚好是本接收机中频信号,而且发射机对放大的杂辐射信号过滤不彻底,接收机就会对此信号发生响应,于是使得有用信号的受到了干扰。
2.3互调干扰
互调干扰是民航甚高频干扰信号中最为严重的一类信号,一般分为外部信号引起的互调干扰、接收机引起的互调干扰和发射机引起的互调干扰三种。互调的产生需要一定的条件,即干扰信号需要一定的幅度,干扰频率与扰的接收机的特定接收频率之间存在一定的间隔关系,特别的,对于接收机互调干扰而言,接收机和干扰信号需要同时处在工作状态。发射机互调干扰是指多部发射机的信号同时施加到一台发射机,由于功率放大器的非线性特征使得各路信号互调,将产生的无用信号也发射出去影响接收机的正常信号接收的信号干扰。接收机互调干扰是指多个干扰信号同时被一台接收机接收,在混频时产生了可以被接收机接受的信号,这种信号干扰能力大小主要取决于干扰信号的大小。外部引起的互调干扰是由发射机的滤波器或者外部馈线电路的稳定性降低导致的,在强射频场中发生互调而形成的干扰信号,所以这种信号干扰最容易避免。机场甚高频的频率一般在130MHz左右,商业广播在88-108MHz左右,可见两段信号的频率谱比较接近,如果两系统的距离太小形成交叉区域就会造成信号的互调,而且商业信号本身的功率就比较大,经过多个非线性的放大器放大后落在民航信号频率段内就会对民航信号产生干扰,可以通过物理间隔降低发射机的耦合、在发射极的信号发射端安装单向器或者以上两种方法相结合的办法预防民航甚高频的无线通信干扰。
2.4同频率干扰
同频率干扰是指干扰信号和有用信号具有相同的频率,但不是接收机需要的信号。在信号的接受过程中,有用信号和无用信号都会被处理,由于信号的载波不同会导致信号失真,这种信号干扰主要是由同频波的接收机的距离太小导致的,是干扰信号中相对较容易找到干扰源的一种信号干扰。
3结束语